
I
s

M
a

b

a

A
R
R
A
A

M
1
1
1
1

K
R
S
O
C

1

l
c
s
v
a
n
p
c
d

(
c
i
l
u

(

0
h

The Journal of Systems and Software 85 (2012) 2241– 2260

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

dentification and application of Extract Class refactorings in object-oriented
ystems

arios Fokaefsa,∗, Nikolaos Tsantalisa, Eleni Strouliaa, Alexander Chatzigeorgioub

Department of Computing Science, University of Alberta, Edmonton, Canada
Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

 r t i c l e i n f o

rticle history:
eceived 12 December 2010
eceived in revised form 17 March 2012
ccepted 8 April 2012
vailable online 25 April 2012

SC:
0
0.040
0.060

a b s t r a c t

Refactoring is recognized as an essential practice in the context of evolutionary and agile software devel-
opment. Recognizing the importance of the practice, modern IDEs provide some support for low-level
refactorings. A notable exception in the list of supported refactorings is the “Extract Class” refactoring,
which is conceived to simplify large, complex, unwieldy and less cohesive classes.

In this work, we describe a method and a tool, implemented as an Eclipse plugin, designed to fulfill
exactly this need. Our method involves three steps: (a) recognition of Extract Class opportunities, (b)
ranking of the identified opportunities in terms of the improvement each one is anticipated to bring about
to the system design, and (c) fully automated application of the refactoring chosen by the developer. The
first step relies on an agglomerative clustering algorithm, which identifies cohesive sets of class members
0.070

eywords:
efactoring
oftware reengineering
bject-oriented programming
lustering

within the system classes. The second step relies on the Entity Placement metric as a measure of design
quality. Through a set of experiments we have shown that the tool is able to identify and extract new
classes that developers recognize as “coherent concepts” and improve the design quality of the underlying
system.

© 2012 Elsevier Inc. All rights reserved.
. Introduction

Evolutionary software development is the most broadly adopted
ifecycle process today. Software evolves throughout its lifecy-
le, even past its release, and, as a result, the as-is design of the
ystem usually ends up deviating from its original rationale and
iolating design principles. Such violations manifest themselves
s “bad smells” (Fowler et al., 1999) and refactoring becomes
ecessary to eliminate them (Opdyke, 1992). Refactoring is the
rocess of introducing behavior preserving restructurings to the
ode, in order to improve its design and enable it to support further
evelopment.

This work is motivated by a specific bad smell called “God Class”
Fowler et al., 1999). In principle, a class should implement only one
oncept (Martin, 2003) and should only change when the concept

t encapsulates evolves. The violation of this principle results in
arge, complex, unwieldy, inelegant, less cohesive and difficult to
nderstand and maintain “God Classes”. Generally, there are two

∗ Corresponding author. Tel.: +1 780 886 6893.
E-mail addresses: fokaefs@ualberta.ca (M. Fokaefs), tsantalis@ualberta.ca

N. Tsantalis), stroulia@ualberta.ca (E. Stroulia), achat@uom.gr (A. Chatzigeorgiou).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.04.013
types of such classes: some hold a lot of the system’s data in terms
of number of attributes (“Data God Classes” or “Lazy Classes”) and
others implement a great portion of the system’s functionality in
terms of many and frequently complex methods (“Behavioral God
Classes”). In the first case, developers can redistribute the attributes
of the “God Class” or move functionality (i.e. methods) from other
classes closer to the data. In the second case, they can either move
functionality from the “God Class” closer to the data of other classes
or simplify the class by extracting a cohesive and independent piece
of functionality (Fowler et al., 1999; Demeyer et al., 2002). The latter
is a refactoring called “Extract Class”.

Our work is not trying to identify “God Classes”, but rather
Extract Class refactoring opportunities in order to decompose large
classes. The proposed method recognizes coherent packages of data
and behaviors which if extracted into a new class would result
in improving the overall system design and, at the request of the
developer, automatically applies the “Extract Class” refactoring. To
identify Extract Class opportunities, our method employs a clus-
tering algorithm, as clustering has long been used for software
remodularization (Tzerpos and Holt, 1998; Wiggerts, 1997). More

specifically, the intuition behind using clustering in this problem
is that clusters may represent cohesive groups of class members
(methods and attributes) that have a distinct functionality and

dx.doi.org/10.1016/j.jss.2012.04.013
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:fokaefs@ualberta.ca
mailto:tsantalis@ualberta.ca
mailto:stroulia@ualberta.ca
mailto:achat@uom.gr
dx.doi.org/10.1016/j.jss.2012.04.013

2 tems a

c
t
m
d
m

a
M
o
s
o
(
t
g
m
i
a
c
w
t
o
i
t
d
i

c
t
r
m
b
o
b
J
r

a

1

2

3

T
a
t
a
p
t
u

242 M. Fokaefs et al. / The Journal of Sys

an be extracted as separate classes (Tan et al., 2005). In order
o apply a clustering algorithm, we need to define a distance

etric, which for our methodology is based on structural depen-
encies (i.e. field accesses and method invocations) between class
embers.
Semantic metrics have also been used to identify conceptu-

lly correlated software components (Maletic and Marcus, 2001;
arcus and Poshyvanyk, 2005; De Lucia et al., 2008). However, in

rder for these metrics to be reliable in the identification process,
pecific code conventions must be followed by the project devel-
pers. For instance, the developers must choose appropriate names
i.e. naming conventions) for variables and methods that reflect
he concepts and the functionality that they represent. Moreover,
ood documentation practices (in-code and documentation com-
ents) must be followed namely English language must be used

n order to match the code language, spelling errors should be
voided since they can break the matching between comments and
ode elements. Furthermore, due to the dynamic nature of soft-
are projects (e.g. changes in the development processes and/or

eam members), these conventions may not be consistent through-
ut the project’s lifecycle. In the evaluation of our work, we did
nvestigate the accuracy of our approach using structural, seman-
ic and a combination of structural and semantic measures as the
istance metric for the clustering algorithm and discuss our find-

ngs.
To assess the potential design improvement that a candidate

lass extraction will bring about to the system, our method uses
he Entity Placement metric (Tsantalis and Chatzigeorgiou, 2009), a
atio of the overall system cohesion over its coupling. Finally, the
anual application of the Extract Class refactoring is not trivial,

ecause of the difficulties arising from the human-driven analysis
f both inter- and intra-dependencies of the extracted class mem-
ers. For this reason, we have developed tooling within the Eclipse
Deodorant plugin (Fokaefs et al., 2011) to automatically apply such
efactorings once the developer has agreed to do so.

This paper makes three novel contributions to the state of the
rt in supporting object-oriented design evolution.

. Identification of new concepts. In the context of this work, we
define a concept as a distinct entity or abstraction for which
a single class provides a description and/or a set of attributes
and methods that contribute together to the same task. Our
method uses a clustering algorithm to identify conceptually
related groups of entities (i.e. attributes and methods) within
a single “God Class”. The identified concepts (i.e. entity clusters)
are considered as candidates for extraction.

. Ranking of the candidate refactorings based on their anticipated
impact on the design quality, as measured by the Entity Placement
metric (Tsantalis and Chatzigeorgiou, 2009), a combined metric
that captures both coupling and cohesion.

. Automatic application of a selected refactoring, so that it pre-
serves the syntactic correctness of the system and its observable
behavior. The refactoring application process checks a list of pre-
conditions before proceeding with the actual refactoring and
ensures that all the appropriate transformations are applied in
both the original and the new class.

he rest of the paper is organized as follows. Section 2 presents

 review of the related literature. Section 3 describes the iden-
ification of refactoring opportunities and the mechanics of the
pplication of the suggested refactorings in detail. Section 4
resents the results of the evaluation process. Section 5 concludes
his work, summarizing its main points and the results of the eval-
ation process as well as discussing our future plans.
nd Software 85 (2012) 2241– 2260

2. Related work

This section reviews the related literature in three different
areas. The first group of related papers focuses on general meth-
ods about code smell detection. The second group focuses on
research around methods for software remodularization, architec-
ture recovery or migration of legacy systems, including several
relying on clustering. The third group focuses on the identifica-
tion of problematic classes with low cohesion or key classes that
have a big portion of the system’s functionality and are intensively
maintained. Finally, the third group involves earlier research on
identifying Extract Class opportunities and suggesting extraction
solutions.

2.1. Code smell detection methods

Moha et al. (2010) introduced DECOR, a method for the spec-
ification and detection of code and design smells and DETEX,
an instantiation of this method. First, a taxonomy and classifica-
tion of smells is defined based on the key concepts in order to
highlight the similarities and differences among smells. The spec-
ification of smells is performed using a domain-specific language
(DSL) in the form of rules using the previous taxonomy. The rules
describe the properties that a class must have to be considered a
smell. The DSL allows the definition of properties for the detec-
tion of smells, including structural properties, naming properties
and internal properties using metrics. The detection algorithms are
automatically generated by parsing the rules defined in the speci-
fication process and they are applied on a model representation of
the examined system produced by forward engineering or reverse
engineering its source code.

Marinescu (2004) proposed the concept of detection strategies
as a means to detect instances of a structural anomaly. A detec-
tion strategy is actually a composition of various metric rules (i.e.
metrics that should comply with proper threshold values) com-
bined with AND/OR operators into a single rule that expresses
a design heuristic. The threshold values used in the metric rules
were defined based on statistical data collected from more than
60 Java and 50 C++projects. The identified design problems can be
eliminated based on corresponding restructuring strategies which
informally describe (i.e. in textual form) the required actions that
should be taken for the elimination procedure.

Munro (2005) attempted to address the issue of identifying the
characteristics of a bad smell through the use of a set of software
metrics. By using a predefined set of metric interpretation rules the
software engineer can be provided with significant guidance for
locating existing bad smells. Munro uses exactly the same detec-
tion approach as Marinescu (2004), i.e. a composition of metrics
that should comply with proper threshold values combined with
AND/OR operators into a single rule. His approach was evaluated on
two case studies, a small sized hotel booking system and a medium
sized Graph Tool system written in Java and for two code smells,
namely Lazy Class and Temporary Field.

Van Emden and Moonen (2002) proposed an approach for the
automatic detection and visualization of instanceof and typecast
code smells. The “instance” of code smell appears as a sequence
of conditional statements that test an object for its type, while the
typecast code smell appears when an object is explicitly converted
from one class type into another. To this end, they developed a pro-
totype code smell browser, named jCOSMO, which visualizes the

detected code smells in the form of a graph. In this graph, the code
smells are represented as additional nodes connected to the code
entities that they appear in. In this way it is possible to discriminate
which parts of the system have the largest number of code smells
and would benefit the most from restructuring.

tems a

2

t
p
o
c
u
c
i
i
fi
a
u

p
a
a
(
(
i

t
s
i
n
s
b
c
a
m
m
w

c
o
c
m
t
t
b
d
c
m
c
a
o
a

w
m
T
a
t
b
w
s
a
c

2

i
g

M. Fokaefs et al. / The Journal of Sys

.2. Software remodularization

The problem of software remodularization has been discussed in
he context of all types of software systems. Mancoridis et al. (1998)
roposed a method for remodularizing a software system, in terms
f “good” clusters with high cohesion (within the clusters) and low
oupling (between the clusters). The method produces the Mod-
le Dependency Graph based on the source code and then applies
lustering on the resulting graph, using the Modularization Qual-
ty measure to evaluate the produced clusters. This measure favors
ntra-module connectivity and penalizes inter-connectivity. After
nding a suboptimal partition using a combination of hill climbing
nd genetic algorithms, the method builds a hierarchy of clusters
sing a hierarchical clustering algorithm.

Doval et al. (1999) consider the problem of identifying a good
artitioning as an optimization problem. They propose a genetic
lgorithm as a means of partitioning large software systems using
s an objective function the modularization quality measures
Mancoridis et al., 1998). In a similar work, Shokoufandeh et al.
2005) apply a spectral clustering algorithm in order to remodular-
ze a system, adopting the same measure as the objective function.

Sartipi and Kontogiannis (2001) propose a semisupervised clus-
ering framework for software architecture recovery. The process
tarts by analyzing the source code to compute component similar-
ty. They employ the maximal association property (i.e. maximum
umber of shared features) to introduce two new similarity mea-
ures, namely association between entities and mutual association
etween components. Using these metrics, sufficiently similar
omponents are clustered together and, finally, the user manually
ssigns the remaining components to clusters or reallocates the
odules among the clusters. During the clustering phase the user
ay select among a set of main seeds, around which the new cluster
ill be built, or manually create a cluster.

van Deursen and Kuipers (1999) use clustering and con-
ept analysis for the purpose of migrating legacy systems to
bject-oriented technologies. They identify two shortcomings of
lustering: an element can exist only in one cluster, and an element
ay arbitrarily be assigned to different clusters in different runs of

he clustering algorithm. Neither of these problems are relevant
o the task of extracting classes. In this context, elements “should”
e in only one cluster because attributes and methods should be
eclared only in one class, and if an element is equally close to two
lusters these clusters will eventually be merged, resulting into a
ore complex class to be extracted. Another difference between

luster and concept analysis is that the latter method can identify
ll possible partitions. Up to a degree this problem is overcome in
ur work by presenting all the clusters identified by the algorithm
nd merging the results accordingly.

The aforementioned methods focus on remodularization of soft-
are, around larger modules, like, for example, packages, while our
ethod focuses on software remodularization at the class level.

he criteria appropriate for these two types of remodularization
re different. Classes may be organized into packages according to
heir release plan (classes in a single package should evolve and
e released together), or according to the inheritance hierarchy in
hich they belong (a package may contain the hierarchy tree of a

ingle class). On the other hand, the requirement for reorganizing
ttributes and methods into new classes is to better express and
ommunicate the conceptual model of the application domain.

.3. Identification of “God Classes”
There is substantial earlier research around the problem of
dentifying “God Classes”, or problematic complex modules more
enerally.
nd Software 85 (2012) 2241– 2260 2243

Trifu and Marinescu (2005) define “God Classes” as “large, non-
cohesive classes that have access to many foreign data” and use
a formula based on complexity, cohesion and coupling metrics to
determine whether a class belongs in that category or not. The
fundamental shortcoming of this method is that it requires thresh-
olds for the considered metrics, which have to be empirically or
statistically determined for any given system.

Tahvildari and Kontogiannis (2003) propose two quality design
heuristics and use a diagnosis algorithm based on complexity, cohe-
sion and coupling metrics to identify design flaws. In this case, the
thresholds are less tight and vaguely defined (high/low) and may
require user-defined input.

DuBois et al. (2004) propose a set of “guidelines” based on con-
ceptual and macroscopic criteria for improving the system design.
Their guideline for simplifying “God Classes” advises to “separate
the responsibilities. Extract those groups of methods and attributes
that neither use nor are used by other methods or attributes”. This
method offers no automation whatsoever and the guidelines are
not formalized in a way that would allow a degree of automation.

Finally, Demeyer et al. (2002) suggest some conceptual crite-
ria for identifying “God Classes”. They are usually incohesive and
memory consuming classes. They usually have abstract names like
“Controller”, “Manager”, “Driver” or “System”. Any change to the
system may cause changes to these classes. They are often called
the “heart of the system” and, in most of the cases, they are hard to
maintain.

All of the above methods are likely able to identify problematic
classes and improve system design metrics, but they do not produce
specific design improvement suggestions which are meaningful to
the designer.

Chatzigeorgiou (2003) and Chatzigeorgiou et al. (2004) apply
the Hyperlink Induced Topic Search (HITS) algorithm in order to
evaluate the quality of object-oriented design models. The algo-
rithm is extended in order to account for the number of discrete
messages exchanged between classes. The principal eigenvectors of
matrices, derived from the adjacency matrix containing the num-
ber of exchanges messages between classes, are used to identify and
quantify “God Classes” that deviate from the principle of distributed
responsibilities. Furthermore, the non-principal eigenvectors are
also employed in order to identify dense communities of classes
in a system that are well-separated from one another and possibly
constitute reusable components.

Xanthos (2006) employ a technique from algebraic graph the-
ory known as spectral graph partitioning. In this approach an
object-oriented system is represented as a graph where nodes
stand for the classes and the edges stand for the discrete messages
exchanged between the classes. The resulting graph is recursively
bi-partitioned until one of the produced subgraphs is less cohe-
sive than its parent graph. This is determined by examining if the
number of internal edges of each subgraph (i.e. intra-exchanged
messages) exceeds the number of external edges (inter-exchanged
messages). If the external edges are more than the internal the
algorithm stops.

Zaidman and Demeyer (2008) propose a method that employs
HITS to identify key classes in object oriented systems based on
coupling. This algorithm has the ability to incorporate the indi-
rect coupling between classes in the calculation of the overall
system coupling. This is achieved by calculating the transitive
closure of the class relationships. Their ultimate objective is
to improve the understandability of the code and help new
developers become familiar with a system by exploring the key
classes.
Khomh et al. (2009) propose an approach based on Bayesian
Belief Networks (BBNs) to specify design smells and detect them
in programs. Within the context of design smell detection, a BBN
is a directed acyclic graph, where nodes correspond to either

2 tems a

a
i
i
t
b
t
i
i
a
T
t
X
p
l
l
b
d
a
a
s

c
a
e
a
d
t
f
b
l
p
C

t
a
a
s
a
c
t
c
b

2

i
d
m
m
s
i
c
s
I
t
i

c
i
b
p
b
t
o
a

244 M. Fokaefs et al. / The Journal of Sys

n input (e.g. a metric value for a given class) if there are no
ncoming edges, to a decision step if there are incoming edges (e.g.
s a class part of a smell given the values of its parent nodes?), or
o an output node if there are no outgoing edges. A directed edge
etween two nodes indicates a probabilistic dependency between
he starting and the ending nodes. Eventually, the output of a BBN
s a probability that a class is part of a design smell. In this way, it
s possible to sort the candidate classes for a given design smell
nd prioritize the inspection of classes with higher probability.
heir approach is evaluated for the detection of the Blob antipat-
ern by building a BBN model on two open-source projects, namely
erces and GanttProject. The estimation of precision and recall is
erformed by comparing the results of the model with manually

ocated smells. An apparent disadvantage of probabilistic models,
ike Bayesian networks, is that the required probabilities result
ased on a training set, which within the context of design smell
etection corresponds to metric values for classes which have been
lready determined as valid instances. Obviously, the training set
ffects the classification results of the model on the actual data
et.

Vaucher et al. (2009) perform an exploratory analysis of the “life
ycle” of God Classes on two open-source projects, namely Xerces
nd Eclipse JDT. They use the same Bayesian approach as Khomh
t al. (2009) for detecting the presence of God Classes in systems
nd ranking them. Furthermore, they study the evolution of the
etected God Classes in the examined systems. More specifically,
hey study the way that God Classes are introduced in and removed
rom the systems and how they evolve over time. Finally, they have
uilt a prediction model on Xerces project that predicts the like-

ihood of creating a God Class given a specific code change. The
rediction model can be used to prevent the introduction of God
lasses in future versions of the systems.

As far as these works are concerned, we should point out that
he goal of our method is not to distinguish between “God Classes”
nd other classes. Every class of the system is equally inspected to
ssess whether it might potentially benefit from an extraction of
ome of its members. If a suggested extraction improves the over-
ll quality of the system in terms of its cohesion and coupling, as
ombined in the Entity Placement metric, it is presented as a refac-
oring opportunity to the developer. This way, a good opportunity
an be identified even in a class, which may not seem problematic
y means of traditional cohesion metrics.

.4. Identification of Extract Class opportunities

Simon et al. (2001) propose visualization based techniques for
dentifying Extract Class opportunities. This methodology defines
ependency sets for each type of class members (attributes and
ethods) in order to calculate the Jaccard distance between class
embers. Using mapping techniques, the entities are visually pre-

ented and then it is upon the designer to decide whether there
s an opportunity to extract a class or not. The fundamental short-
oming of visualization based approaches is that there is no good
patial metaphor for laying out the classes and they do not scale up.
n our work, new candidate classes are identified as cohesive clus-
ers of entities and they are ranked according to their anticipated
mpact on the design of the whole system.

Joshi and Joshi (2009) consider the problem of classes with low
ohesion as a graph partitioning problem. They focus on improv-
ng class cohesion by examining lattices based on the dependencies
etween attributes and methods. A shortcoming of this method, as
ointed out by the authors, is that, for large systems, the lattices can

ecome very complex and thus it is more difficult for the designer
o visually inspect the lattice and identify problematic cases. More-
ver, while this method focuses on improving the cohesion of

 class, it neglects to consider the conceptual coherence of the
nd Software 85 (2012) 2241– 2260

suggested extracted classes, which can only contain methods.
Finally, this method does not guarantee that the suggested refac-
torings will not affect the behavior of the program.

De Lucia et al. (2008) propose a methodology that takes into
account both structural and conceptual criteria. Their method
builds a weighted graph of the class methods based on structural
and semantic cohesion metrics, which then is split using a Max-
flow Min-cut algorithm to produce more cohesive classes. The
semantic cohesion metric is based on the names of classes and enti-
ties, which, in poor designs, can be arbitrary and thus the results
highly depend on the naming conventions used by the developers
of a project. Furthermore, by bipartitioning the graph it is possi-
ble to miss potential clusters. For example, a class might consist of
more than two cohesive subclasses which could not be identified
by splitting the class. Moreover, the attributes are not considered
during the calculation of the graph, but they are moved to the
extracted class. This might have undesirable effects on the cou-
pling of the system. Finally, the weights of the different metrics are
statistically determined based on the specific characteristics of the
examined system and there no systematic way of defining default
thresholds is provided. The work by Bavota et al. (2011) provided
an extended experimental evaluation where the findings of the
approach on an open-source project were evaluated by graduate
students.

In a similar work, Bavota et al. (2010) propose a simple
decomposition technique to identify Extract Class refactoring
opportunities. They use the same set of metrics as in the work
by Bavota et al. (2011) to calculate the cohesion between meth-
ods. Then based on the calls between methods they find chains of
methods by calculating the transitive closure of their dependen-
cies. The chains that are above a minimum cohesion and are of
a minimum length are suggested as possible extractions. The use
of chains allows the technique to possibly identify more than two
extractions. This work suffers from some of the limitations found
in its predecessors, such as the need for threshold definition and
the exclusion of attributes from the partitioning process which can
lead to non-optimal solutions.

Bavota et al. (2010) propose a game-theory approach for iden-
tifying Extract Class opportunities. In this approach, the two
candidate classes, in which a candidate God Class may be decom-
posed, “compete” against each other over the methods of the
original source class. At each round, each “player” is trying to
obtain a method that will increase its cohesion and not increase
its coupling based on structural and semantic similarity measures.
This method suffers from several shortcomings. First, it assumes
that the source class should be divided in two new classes, where
our method allows for the decomposition of a God Class in any
number of smaller classes. Furthermore, the game is defined as a
2-player general-sum game and it is known that finding particular
Nash equilibria in general-sum games is a hard problem (PPAD-
complete) (Daskalakis et al., 2009). And although it is proven that
there exists a Nash equilibrium for every game, this equilibrium is
not guaranteed to be a pure Nash equilibrium. In the Extract Class
problem the two players cannot mix over their actions because they
have to take a single method at each turn. Thus, it is not guaran-
teed that at each iteration there will be a pair of actions for the two
players to select.

In our previous work (Fokaefs et al., 2009), we have already
presented the identification of Extract Class opportunities using
a clustering algorithm. The differences compared to our previous
work are:
• improvement in the application of the hierarchical agglomerative
algorithm so that it does not require user-defined inputs;

• additional preconditions;

tems a

•

•

•

u
t
c
h
w
r
u
a
s
o
v
s

o
t
m
i
a
a
s
e
t
a
o

3

t
b
t
t

3

o
d
c
a
t
t
r
a
b

a
d
n
a

3

c
i
t

f
t

M. Fokaefs et al. / The Journal of Sys

detailed mechanics for the application of the Extract Class refac-
toring;
investigation of the suitability of Entity Placement as a ranking
criterion; and
enhancement of our evaluation process.

More specifically, with respect to the enhancement of the eval-
ation process we included two additional types of experiments. In
he first type, the evaluators were asked to manually identify con-
epts without neither having knowledge of our methodology nor
aving the assistance of our tool. Next, we compared their findings
ith the tool’s suggestions in order to extract the precision and

ecall of our approach. In the second type, we provided the eval-
ator, who is a professional in software quality assessment, with

 set of already applied refactorings on a well-known open-source
ystem (JHotDraw) and asked him to provide his expert opinion
n whether the newly created classes constituted meaningful and
alid concepts and if the applied refactorings improved the under-
tandability of the code.

More generally, there are two differences between this body
f work and our method. First, they stop at the identification of
he problems and do not suggest specific solutions, whereas our

ethod offers a complete solution to the problem, from identify-
ng the opportunities to suggesting proper refactorings and finally
pplying these refactorings in an automatic manner. Second, they
ttempt to identify a single “optimal” solution, which the designer
hould accept or reject in its entirety. On the contrary, our method is
ssentially a stepwise approach, that extracts a set of ordered refac-
oring suggestions. This offers the advantage of gradual change of

 system, allowing the developer to assess the conceptual integrity
f the refactoring suggestions at each step.

. Methodology

Our Extract Class refactoring method consists of three steps: (a)
he identification of the refactoring opportunities, (b) their ranking
ased on the improvement they are anticipated to bring about to
he system, and (c) the actual automated application of the refac-
oring chosen by the developer.

.1. Identification of Extract Class opportunities

The process of identifying Extract Class opportunities consists
f two steps. First, each class is analyzed in order to extract depen-
ency information among the class members, so that we can
alculate distances between them. This information is then used by

 clustering algorithm, which identifies cohesive groups of entities
hat can be extracted as separate classes. Second, the classes iden-
ified as candidates to be extracted are filtered by applying a set of
ules that evaluate whether these classes have sufficient function-
lity and whether the suggested refactorings would preserve the
ehavior of the original program.

Note that the identification method is applied to every class of
 system regardless of its cohesion. In this way, there is no need for
efining thresholds according to which a class will be examined or
ot. After all, a single threshold might not be sufficient to identify
ll problematic classes.

.1.1. Clustering algorithm and distance metric
Our objective in designing a clustering algorithm for the identifi-

ation of candidate classes for extraction was to require minimum
nput by the developers and minimum a priori knowledge about

he system under examination.

We first considered a partitioning algorithm, like k-means. This
amily of algorithms requires as input the number of desired clus-
ers and assumes that each object is placed in a feature space, where
nd Software 85 (2012) 2241– 2260 2245

the space dimensions correspond to the object attributes. None of
these knowledge assumptions are realistic in our case. First, it is
impossible to know how many, if any at all, concepts might be inter-
twined within a single class implementation. And if one were to run
the algorithm for every single possible value of k, the performance
of the process would dramatically deteriorate. Second, it is unclear
in terms of what attributes one might describe the class members
in order to place them within a multi-dimensional space. Partition-
ing algorithms are also not robust to noise, i.e. entities that are too
far from the others and cannot be included in any cluster. As it turns
out object-oriented classes usually produce rather sparse similar-
ity matrices (i.e. a lot of zero values), because not everything is
connected to everything, a fact that corresponds to a large amount
of noise. By nature, partitioning algorithms will cluster all entities
in spite of how far some of them might be. Furthermore, these
algorithms require an initial partitioning and then the clustering
is updated until it reaches an optimal level of fitness. However, the
resulting clustering is highly affected by this initial configuration.
First, different initial partitions might produce different clusterings.
Second, because of the initial partitioning the algorithm might fall
in a local minimum and never converge to the preset optimal fit-
ness level. For this reason, another stop condition is needed which
is the number of iterations. However, it is not easy to define this
number because it depends on many factors including the nature
of the examined dataset.

Next, we considered a density-based algorithm, since they are
more robust to noise and require no knowledge about the struc-
ture of the dataset. The aim here is to identify dense areas of
entities in the dataset. However, these algorithms also require a
priori knowledge of several parameters. A density based algorithm,
like DBSCAN (Ester et al., 1996), needs two parameters: (a) ε-
neighborhood, which defines a radius around a point, within which
a dense subgroup (not a cluster) can be defined, and (b) MinPts,
which corresponds to the minimum number of points for each sub-
group. In this particular software remodularization problem, it is
not clear what the minimum number of entities in a neighborhood
may represent and thus, it is difficult to define one. Furthermore,
it is not easy to define an ε value and if we try different values,
we will have to run the clustering algorithm for each of these
values.

Finally, we considered graph partitioning algorithms, which
can be either spectral methods such as Algebraic Connectivity
(Holzrichter and Oliveira, 1999) and Principal Component Anal-
ysis (Jolliffe, 1986) or flow-based such as the Max-flow Min-cut
(Cormen et al., 2001) algorithms. In these algorithms, we assume
the existence of a weighted graph on which we perform recursive
bipartitioning in order to identify the corresponding clusters. The
problem with recursion is that we need to define a stop criterion
based on an objective function. This transforms the problem into
an optimization one, as it is being addressed by Shokoufandeh et al.
(2005). In our case, we do not want to view the problem as an opti-
mization one, since our method aims to suggest a set of possible
refactorings rather than a single optimal one.

Eventually, we decided to adopt a hierarchical agglomerative
algorithm. This algorithm starts by assigning each class member to
a single cluster. In each iteration it merges the two closest clusters.
Finally, the algorithm terminates when all entities are contained
in a single cluster, which forms the root of a hierarchy of clusters.
The actual clusters can be determined at the merging points. The
hierarchy of the clusters is usually represented by a dendrogram
(an example is shown in Fig. 3). The leaves of the tree represent the
entities, the root is the final cluster and the intermediate nodes are
the actual clusters. The height of the tree represents the different
levels of the distance in which two clusters were merged.
From the examined algorithms, the hierarchical agglomerative
algorithm is the only one that satisfies all of the following criteria:

2 tems and Software 85 (2012) 2241– 2260

1

2

3

i
t
m
m
p
t
L
s
s
d
t
c
c
a
t
o

w
r
b
b

•
•

•

•
•
•

s
b
t
o
d
c
A

a
r
a
a
S
a
m
t

i
a
r
t

246 M. Fokaefs et al. / The Journal of Sys

. It is deterministic as it requires no random initializations (unlike
k-means) and it always produces the same results.

. It is finite as it does not require user-defined stop conditions
(unlike recursive graph bi-partitioning and k-means) and it pro-
duces a final output in finite time.

. It is fully automatic as it does not require user-defined input
(unlike k-means and DBSCAN).

An important aspect of the hierarchical agglomerative cluster-
ng algorithm is the distance merging criterion according to which
he algorithm selects which clusters to merge. There are several

ethods for determining the two closest clusters, such as (a) the
aximum distance between the members of two clusters (com-

lete linkage), (b) the average distance (average linkage), or (c)
he minimum distance (single linkage). According to Anquetil and
ethbridge (1999) complete linkage favors more cohesive clusters;
ingle linkage favors less coupled clusters; and average linkage is
omewhere in-between. As this method is based on class member
ependencies, the cohesion of the newly created classes is expected
o be of a fair or very good level. In other words, as all entities will be
onnected, the algorithm is guaranteed to produce fairly cohesive
lasses. In contrast with cohesion, coupling is an uncontrolled vari-
ble. Thus, we chose to adopt the single linkage method, in order
o lessen the coupling between the newly created class and the
riginal one.

The distance metric used by our algorithm is the Jaccard distance,
hich according to Anquetil and Lethbridge (1999) produces good

esults in software remodularization. To define the Jaccard distance
etween two class members the notion of entity sets is employed,
orrowed by Tsantalis and Chatzigeorgiou (2009).

The entity set of an attribute a contains:

the attribute a itself;
the methods directly accessing a that belong to the same class
with a;
the methods accessing a through public accessors (getter and
setter methods).

The entity set of a method m contains:

the method m itself;
the attributes accessed by m;
the methods accessed by m.

The reason that the entity itself is included in its entity set is
o that the condition dij = 0 if i = j where dij is the Jaccard distance
etween entities i and j is preserved. Without this extension, the
wo different entities that access or were accessed by the same
ther entities (i.e. their entity sets were equal) would have a zero
istance. In this way, we ensure that the “identity of indiscernibles”
ondition, which should hold for a proper metric (Pontryagin and
rkhangel’skii, 1990), is satisfied.

Attributes which are references to other classes are considered
s entities and are also included in the entity set of a method. A
eference is essentially a pipeline through which foreign entities are
ccessed. Since the goal of the methodology is to examine a class as

 closed environment references are considered as local attributes.
tatic attributes and methods are considered as entities and they
re added to entity sets, because, although they are not instance
embers, they can still be accessed by instance methods. Hence,

hey contribute to a concept or to a distinct piece of functionality.
Constructors are neither considered as entities nor are added
n entity sets, since they are special purpose methods used to cre-
te objects of the class they belong to and as such they cannot be
emoved from this class. Getter and setter methods are also nei-
her considered as entities nor added to entity sets, because the
Fig. 1. A synthetic example.

attributes that they provide access to are already added to the
entity set (i.e. we do not include both the attribute and its public
accessors). Delegate methods are neither considered nor added to
entity sets, because the methods to which they delegate are already
added to the entity set (i.e. we do not include both the delegator
and the delegatee methods). Finally, access to attributes or meth-
ods of classes outside the system boundary (e.g. library classes) is
not taken into account, because we want to preserve the similar-
ity between entities with respect to the context of the examined
system.

Based on the definition of the entity sets, the Jaccard distance
between two entities ̨ and ̌ with entity sets A and B respectively
is calculated as follows:

d˛,ˇ = 1 − |A ∩ B|
|A ∪ B| (1)

3.1.2. An illustrative example
To better understand the methodology, we will illustrate its

application on a simple synthetic example, of a class with four
attributes and three methods, shown in Fig. 1.

Table 1 shows the distance matrix for this example and Fig. 2
shows a graphical representation of the class. In this graph, the
squares represent attributes, the circles represent methods and the
edges indicate that a dependency exists between two entities. Fur-
thermore, the length of the edges is proportional to the distances
between the class members. Applying the hierarchical clustering
algorithm on this class we obtained the dendrogram shown in Fig. 3.
It is easy to see that there are 5 merging points (whose height level
is shown with vertical lines) that produced an equal number of
clusters. These clusters are:
• C1 = {name, job} at the merging point with height 0.4;
• C2 = {modifyName(), changeJob()} at the merging point with

height 0.5;

M. Fokaefs et al. / The Journal of Systems and Software 85 (2012) 2241– 2260 2247

Table 1
Distance matrix for the class of Fig. 1.

name job officeAreaCode officeNumber changeJob() modifyName()

job 0.4
officeAreaCode 0.8 0.8
officeNumber 0.8 0.8 0.67
changeJob() 0.6 0.6 1 1
modifyName() 0.6 0.6 1 1 0.5
getTelephoneNumber() 0.71 0.71 0.6 0.6 0.67 0.67

nding

•

•

•

a

F
c

Fig. 2. Graph correspo

C3 = {name, job, modifyName(), changeJob()} at the merging point
with height 0.6;
C4 = {officeAreaCode, getTelephoneNumber()} at the merging point
with height 0.6;
C5 = {officeAreaCode, officeNumber, getTelephoneNumber()} at the
merging point with height 0.67.
Clusters C1 and C2 were later rejected for different reasons that
re going to be discussed in the following sections.

ig. 3. Dendrogram resulting from the application of hierarchical algorithm for the
lass of Fig. 1.
 to the class of Fig. 1.

3.1.3. Detection of extractable concepts
As we have already mentioned, the goal of our methodology

is to identify conceptually similar and meaningful groups of class
members that can be extracted into separate classes. Our approach
for detecting the extractable concepts consists of three main steps:

1. Apply the hierarchical agglomerative clustering algorithm to
get the dendrogram which demonstrates how the clusters were
formed.

2. Get the clusters before the last merging point. The reason for
selecting this particular merging point is that these clusters
have the highest merge distance between them in the den-
drogram. This means that the class members included in these
final clusters access very few common members or none at all.
We call these clusters general concepts, because they constitute
high-level discernible concepts that will eventually be used to
organize the refactoring suggestions. In the dendrogram of the
illustrative example (Section 3.1.2) shown in Fig. 3, the general
concepts are clusters C3 and C5. Our method can split a class in
more than two sub-classes, since there can be more than two
general concepts.

3. For each general concept, examine the corresponding subtree to
identify the extractable concepts, which are the actual refactor-
ing opportunities. The reason for further analyzing the general
concepts, rather than suggesting them as the final refactor-
ing opportunities, is primarily for the purpose of completeness.
To achieve completeness we aim to capture not only the gen-
eral concepts, but also subconcepts that might constitute better
design solutions. Subconcept is a cluster that has been formed at
an earlier stage than the general, describes a meaningful concept
by itself and has more than one element. The subconcepts can be
obtained by iteratively visiting the merging points starting from
the leaf nodes of the subtree up to the root node (representing
the general concept). At each merging point being traversed, we
distinguish two cases:
(a) If at least one of the child clusters forming the parent cluster

(at the merging point) consists of a single class member, then
both child clusters are rejected as not being extractable con-

cepts. The reason we reject the non-single-element cluster
is because, while it fulfills one of the conditions to qualify as
a subconcept (i.e. it has more than one elements), it fails to
fulfill the other condition; it does not constitute a complete

2 tems a

3

a
m
d
s
i

a

•

•

f

•

•

•

•

•

1

248 M. Fokaefs et al. / The Journal of Sys

concept, because a single other class member is sufficiently
related to this cluster, so that it is merged with it in the very
next step.

(b) If each of the merged child clusters consists of two or more
class members, then they are both accepted as extractable
concepts.

Eventually, the extractable concepts include the general con-
cepts and their subconcepts that were identified by the
aforementioned iterative process. In the illustrative example
shown in Fig. 3 (Section 3.1.2), the extractable concepts are the
general concepts represented by clusters C3 and C5 and clusters
C1 and C2 as subconcepts of cluster C3.

.1.4. Eliminating illegal candidate classes
Refactoring is conceived as a code restructuring that does not

ffect its external behavior (Fowler et al., 1999). To this end, our
ethod inspects the classes identified by the clustering as candi-

ates to be extracted to assess (a) whether they have a sufficient
ubstantive functionality and (b) whether the suggested refactor-
ngs would indeed preserve the behavior of the program.

The rules imposed to ensure a certain degree of functionality are
s follows:

The class to be extracted should contain more than one entity. A
single member cannot describe a concept sufficiently enough.
The class to be extracted should contain at least one method.
Data (i.e. attributes) might be sufficient to identify a concept, but
functionality (i.e. methods) is essential for the definition of a class.

The preconditions1 required for behavior preservation are as
ollows:

Abstract methods should not be extracted for two reasons. First, it
can break polymorphic method invocations. Second, the extrac-
tion of an abstract method would force the extracted class to be
declared as abstract. As a result, the field holding a reference to
the extracted class could not be initialized with an object having
the type of the extracted class.
Fields that have a visibility higher than private and are used by
a class other than the source should not be extracted. Since pub-
lic and protected fields can be directly accessed by third classes,
their extraction would require the modification of these classes.
This would violate the local nature of the Extract Class refactoring
(i.e. changes should affect only the original class). Alternatively,
a more complex solution would be to create public accessors in
the original class that delegate to the corresponding accessors in
the extracted class.
Methods that override an abstract or a concrete method of the
super class of the original class should not be extracted. Extracting
a method that overrides an abstract method would cause com-
pilation errors since the original class would no longer provide
an implementation for the abstract method. Similarly, extract-
ing a method that overrides a concrete method would affect the
behavior of the original class and the classes that were using
the extracted method since the source class would inherit the
behavior of the method defined in its super class.
The class to be extracted should not contain a method that makes
any super method invocations.
Methods that are synchronized or contain a synchronized block

should not be extracted since according to Schäfer et al. (2010)
extracting “a synchronized method [. . .] can result in the method
acquiring a different lock when executed”. In the same work, the

1 A formal definition of these preconditions following Opdyke’s notation (Opdyke,
992) can be found in the work by Tsantalis and Chatzigeorgiou (2009).
nd Software 85 (2012) 2241– 2260

authors propose to transform the synchronized method with a
method containing a synchronized block that explicitly refers to
the appropriate lock. This solution deteriorates the understand-
ability of the code.

Violation of the behavior preservation preconditions might
introduce compilation errors to the code or alter the external
behavior of the program. In the example of Section 3.1.2, the first
cluster C1 was rejected because it only contained attributes.

3.2. Ranking and presentation of refactoring opportunities based
on their impact on design quality

Once a set of candidate refactorings has been identified through
the aforementioned clustering and filtering process, they are
ranked according to their potential impact on the system’s design
quality. The ranking of the proposed solutions is important, espe-
cially in the cases of systems presenting a large number of
refactoring opportunities, since it allows the developers to focus
on parts of the software that their design would benefit more from
preventive maintenance activities.

To estimate the anticipated design improvement for each sug-
gested refactoring, we use the Entity Placement (Tsantalis and
Chatzigeorgiou, 2009) metric. The Entity Placement metric com-
bines the notions of coupling and cohesion. It calculates the
distances of the entities belonging to a class from the class itself
(cohesion of the class) divided by the distances of the entities not
belonging to the class from the class itself (the coupling of the
class). The reason we chose the Entity Placement metric over tra-
ditional cohesion and coupling metrics is exactly its compositional
nature. When performing an Extract Class refactoring it is antici-
pated that the cohesion of the system will increase (since a group
of strongly related entities is extracted) and its coupling will dete-
riorate (because a new class with dependencies to other classes is
introduced). A candidate refactoring is a good design solution if the
improvement of cohesion is significantly greater than the deterio-
ration of coupling. Therefore, it is less probable that well-designed
classes are proposed for decomposition. The Entity Placement met-
ric can measure this relative change as it evaluates the overall
design quality of the system in terms of both coupling and cohesion.

The definition of the entity sets used in the calculation of the
Entity Placement and the definition of the entity sets used in the
calculation of the distance metric employed in the clustering algo-
rithm are significantly different. For the Entity Placement we used
the entity sets exactly as defined by Tsantalis and Chatzigeorgiou
(2009), while for the calculation of the distance metric we used the
entity sets as defined in Section 3.1.1. Furthermore, the distance
between an entity and a class is only employed in the calculation
of Entity Placement and not for the purpose of clustering.

The Entity Placement value for a class C (EPC) is the ratio of
its average distance from the entities that belong to class C to its
average distance from the entities that do not belong to the class.

EPC =
∑

ei∈Cdistance(ei, C)/|entities ∈ C|
∑

ei /∈Cdistance(ei, C)/|entities /∈ C| (2)

The Entity Placement value for a system (EPSystem) is the
weighted average of the Entity Placement values of the classes
belonging to the system.

EPSystem =
∑ |entities ∈ Ci|

|all entities| EPCi
(3)
Ci

where e is the entity set of a class member, C is the entity set of a
class and distance(e, C) is the Jaccard distance between entity e and
class C, exactly as defined by Tsantalis and Chatzigeorgiou (2009).

M. Fokaefs et al. / The Journal of Systems a

a
v

1
2

3

4

5

O
f
r
P

a
a
v
r
a
w
f

t
t
s
l
e
i
e
w
(
t
g
t

i
c
e
v
c
a
c
r

3

c
c
e
A

Fig. 4. Presentation of identified refactoring opportunities.

To calculate the Entity Placement value without having to actu-
lly apply the refactoring on the source code, our method adopts a
irtual application procedure.

. First, an empty class entity set is created.

. For each extracted entity, its origin class is changed from the
source class to the new class.

. The entity sets of all the entities that access or are accessed by
the extracted entities are updated.

. The extracted entities are inserted in the entity set of the new
class.

. The extracted entities are removed from the entity set of the
source class.

nce this procedure is completed, the new Entity Placement value
or the system that would result from the application of the specific
efactoring is computed. It should be noted that the lower the Entity
lacement value, the better the resulting design is anticipated to be.

Our methodology may produce multiple suggestions per class
ccording to the number of extractable concepts identified by the
lgorithm. As already mentioned, at a first level, the candidates that
iolate preconditions are eliminated. Second, candidates that dete-
iorate the design quality of the system in terms of Entity Placement
re excluded. In the example of Section 3.1.2, the second cluster C2
as excluded because it produced a worst Entity Placement value

or the system.
Regarding the presentation of the identified refactoring oppor-

unities, we use three levels as shown in Fig. 4. The first level shows
he classes that were suggested to be refactored, the second level
hows the general concepts identified for each class and the third
evel shows all the extractable concepts identified for each gen-
ral concept. The labeling of the general and extractable concepts
s based on term frequency. We tokenize the names of the extracted
ntities and we calculate their frequency. Then, we find the terms
ith the maximum frequency and concatenate them using the plus

+) symbol. The label for an extractable concept is produced from
he entities that are specific to this concept, while the label for a
eneral concept is calculated from the collection of the terms of all
he extractable concepts it contains.

The extractable concepts are sorted in ascending order accord-
ng to their Entity Placement value relatively to their sibling
oncepts within the same general concept. Then, the elements in
ach preceding level are assigned the minimum Entity Placement
alue of the elements they contain, for example, the general con-
ept is assigned the minimum value of its extractable concepts
nd the class is assigned the minimum value of its general con-
epts. Finally, all elements of the table are sorted in ascending order
elatively to the elements of the same level.

.3. Application of the Extract Class refactoring

We used Eclipse’s Java Development Toolkit (JDT) for the appli-

ation of the refactoring. JDT offers the ability to deconstruct the
ode into the corresponding abstract syntax tree (AST). Then it is
asy to manipulate the tree by adding, deleting or changing nodes.
STRewrite, a special JDT class, helps monitor the changes, stores
nd Software 85 (2012) 2241– 2260 2249

them in a queue and then performs them directly on the source
code. We used the Preview Wizard in Eclipse Language Toolkit
(LTK) to preview the changes. The mechanics of the refactoring are
summarized in Algorithm 1.

Algorithm 1. Extract Class mechanics
1: Remove extracted entities from the source class.
2: Create the new class.
3: Add the required import declarations.
4: for all the extracted fields do
5: Add the extracted field in the new class.
6: Create public accessors (getters and setters) for the extracted

fields in the new class.
7: end for
8: Sort the extracted methods according to Algorithm 2.
9: for all the extracted methods do
10: if there exists an assignment of a field of the source class or an

invocation of a method of the source class then
11: Add a parameter of source class type to the extracted class.
12: Replace field assignments with setters.
13: Modify the method invocations to source class so that they are

invoked through the introduced parameter.
14: Replace “this” with the parameter.
15: end if
16: if there exists a source class field access then
17: Add a parameter of the same type as the field.
18: end if
19: Modify invocations of any other extracted method, if necessary.
20: Add the method in the new class.
21: if the method is invoked (normal or super method invocation)

by a class other than the source then
22: Leave a delegate of the method in the source class.
23: end if
24: end for
25: Add a reference of the new class in the source class.
26: Modify the accesses of any member of the new class in the source

class.
27: Provide public accessors for the attributes of the source class and

change the modifiers of the methods of the source class if
necessary.

Algorithm 2. Examination order of extracted methods
1: Set of extracted methods and their invocations to other extracted

methods.
2: for each method that does not invoke any extracted method do
3: Assign a level equal to 0.
4: end for
5: for each method that invokes other extracted methods do
6: Assign a level equal to −1.
7: end for
8: while there exists at least one extracted method having a level

equal to −1 do
9: for each extracted method m having a level equal to −1 do
10: if all the methods invoked by m have a level −1 then
11: Assign to m a level equal to the maximum level of the

invoked methods +1.
12: end if
13: end for
14: end while
15: Sort the extracted methods according to their level in ascending

order.

In the first steps, the algorithm removes the extracted entities
from the source class (line 1) and adds the new class in the same
package as the source class (line 2). Next, the bodies of the extracted
methods and the types of the extracted fields are inspected and the
algorithm adds the required import declarations in the new class
(line 3). The extracted fields are then added in the new class as
private attributes (line 5) with public accessors (line 6), in order to
preserve the encapsulation principle.

Before adding the extracted methods to the new class, a few
steps must be taken (lines 8–24). First, the order according to which

the extracted methods will be examined is significant, since the
existence of call dependencies between extracted methods may
cause additional alterations in their signatures (e.g. if an extracted
method a invokes another extracted method b, it may be required

2250 M. Fokaefs et al. / The Journal of Systems a

F

t
t
e
t
w
A
r
e
a
u
i
h

d
m
a
l
1
d
m
t
a
o
t

e
t
c
e
i
e
o
t
w

m
a
t
t
w
c
i
p
(
t
t
t
m
a

t
e
s
i
e
T
t

the ground truth. We then extracted the precision and the recall
ig. 5. Invocation dependencies among the extracted methods in class Iconkit.

o introduce additional parameters in the signature of a in order
o pass them as arguments to the invocation of b). As a result, the
xtracted methods should be examined in the appropriate order
o ensure that the arguments of the extracted method invocations
ill match the final parameter list of the corresponding methods.
lgorithm 2 describes the algorithm used for determining the cor-
ect examination order of the extracted methods. The algorithm
mploys the notion of level to represent the dependency level of

 given method in a chain of invocations. Level values are actually
sed to determine the examination order of the extracted methods,

n the sense that a method should be examined only if all methods
aving a lower level have been already examined.

For the sake of simplicity, this algorithm presupposes that there
o not exist cyclic invocation dependencies among the extracted
ethods. The existence of cyclic dependencies would cause the

lgorithm to fall into infinite recursion. To overcome this prob-
em, we first identify all strongly connected components (Tarjan,
972) (i.e. cycles) in the directed graph representing the depen-
encies among the methods. In the case an examined edge (i.e.
ethod invocation) connects two nodes (i.e. methods) belonging

o the same strongly connected component, we compute the aver-
ge level of the methods that they depend on and have already
btained a level value, and promote the method corresponding to
he minimum average.

The application of the algorithm will be demonstrated on a real
xample taken from open-source project JHotDraw 5.3. Fig. 5 illus-
rates the invocation dependencies among methods extracted from
lass Iconkit. As it can be observed from this figure, the level of
ach method is equal to the maximum level of the methods that
t invokes plus one. The methods that do not invoke any of the
xtracted methods have a level equal to zero. The extracted meth-
ds should be examined according to their level in ascending order
o ensure that the arguments of the extracted method invocations
ill match the final parameter list of the corresponding methods.

After the extracted methods are sorted, we will examine what
embers they access from the source class. If an extracted method

ssigns a variable or invokes a method of the source class, it is likely
hat it may change the state of the source class instances. Therefore,
he source class must be passed as a parameter to the new method
hen it is added to the newly extracted class, so that the same

hange is feasible in the new system (line 11). On the other hand,
f an attribute of the source class is only read, it suffices to add a
arameter of the type of the accessed attribute in the new method
line 17); in this way, the method does not unnecessarily increase
he coupling between the source and the extracted class. Because
hese changes may alter the method’s signature, the algorithm has
o modify the invocations of this method in the rest of the extracted

ethods (line 19). As the final step, the newly modified methods
re added in the newly extracted class (line 20).

Having dealt with the changes in the new class, it is now time
o change the source class as well. First, the algorithm checks if the
xtracted methods are also invoked by a third class (other than the
ource class or the newly extracted class). If this is true, the orig-
nal source method is turned into a method that delegates to the

xtracted one, so that its public interface does not change (line 22).
hen, a field having the type of the newly created class is added in
he source class (line 25)and it is initialized by invoking the default
nd Software 85 (2012) 2241– 2260

constructor. If the extracted fields are initialized in the source class,
then they should be initialized in the extracted class as well. There
are two cases where the fields can be initialized: if they are initial-
ized where they are declared, then the initialization expression is
extracted along with the declaration to the extracted class; if they
are initialized in the source class constructor, then the assignment
statement is replaced by a setter invocation. The accesses of any
members of the new class are appropriately modified in the source
class, so that they can be accessed by the newly added reference of
the extracted class (line 26). For example, if a method’s signature is
changed, its invocations in the source class need to be modified as
well. Finally, if a member of the source class needs to be accessed
by the extracted class, public accessors (in case of attributes) might
need to be added and modifiers might need to change (in case of
methods) (line 27).

Let us now revisit our example in Section 3.1.2 and apply the
chosen refactoring.

1. The attributes officeAreaCode and officeNumber and the method
getTelephoneNumber() are removed from class Person.

2. The class TelephoneNumber is created.
3. The extracted attributes are added to the new class and public

accessors are created for them.
4. The method getTelephoneNumber() is added to the new class.
5. A parameter of type Person is added to the extracted method,

because it accesses the attributes name and job from class Per-
son.

6. The assignments of attributes name and job are replaced by
setter invocations in the extracted method.

7. In the source class, a reference to the new class is added and it
is initialized.

8. The extracted attribute accesses are changed appropriately
(assignments are replaced with setter invocations and field
accesses with getter invocations).

9. A delegate of the extracted method is left in the source class.
10. Public accessors are added in the source class for the attributes

name and job because the extracted method accesses them.

Fig. 6 shows some of these changes in the source class via the
Preview Wizard. Fig. 7 shows the code for the extracted class.

As of version 3.6, Eclipse allows the user to perform “Extract
Class” refactorings, however, in multiple levels. First, the user must
extract the fields in a new class and then perform a series of “Move
Method” refactorings. This adds to the required human effort to
apply the refactoring. Therefore, we propose our own application
algorithm so that the refactoring can be applied in a single step. Fur-
thermore, Eclipse does not have the ability to automatically identify
Extract Class refactoring opportunities. As a result the proposed
approach provides a more adequate support for all the steps of the
Extract Class refactoring process (identification, behavior preserva-
tion, assessment of impact to the quality, application) This makes
the proposed tool and methodology a more efficient way to perform
such a refactoring.

4. Evaluation

In this section, we present the results of our evaluation for the
proposed technique. We performed three types of evaluations:

1. For the first type, we asked the designers of three systems to
manually identify extractable concepts and used their findings as
of our approach (based only on structural measures as the dis-
tance metric for the clustering) and two alternative approaches
(based only on semantic measures and on a combination of

M. Fokaefs et al. / The Journal of Systems and Software 85 (2012) 2241– 2260 2251

Fig. 6. Changes introduc

context of their research conducted in the Service Systems Research
Fig. 7. The code of class TelephoneNumber.

semantic and structural measures). In this experiment, we had
two objectives. The first one was to see if our methodology can
actually identify new concepts which were improperly embed-

ded in another class. The second was to investigate the effect of
semantic metrics on the results of the identification process of
our methodology.
ed in class Person.

2. In the second type, we applied a series of Extract Class refac-
torings as suggested by our tool to a well-known open-source
project and consulted with an expert quality assessor. In this
experiment, we were interested to know if the suggested refac-
torings would actually be applied by the developer and to
confirm that they have a positive impact on the understandabil-
ity of the code and the design quality of the system once they are
applied.

3. In the third type, we compared the progression of the Entity
Placement metric, after the sequential application of the refac-
torings in the second experiment, with the progression of
traditional cohesion and coupling metrics. In this experiment,
we wanted to evaluate the ability of the Entity Placement met-
ric to quantify the impact of the performed refactorings on the
design quality of the system.

4.1. Evaluation of precision and recall

For the first part of the evaluation, we asked from independent
evaluators to manually identify concepts on software systems that
were developed by each one of them individually. Each evaluator
had knowledge only of her or his own system and was unaware of
our methodology. The concepts identified by the independent eval-
uators were considered as a set of True Occurrences (TO), allowing
the extraction of the precision and recall of our approach.

The three evaluators that participated in this experiment are
graduate students (two MSc students and one PhD candidate). All
three students’ primary research field is Software Engineering and
they have significant experience in object-oriented design (ranging
from 6 to 12 years). The analyzed projects were developed in the
Group in the Department of Computing Science at the University
of Alberta. The students were unaware of the proposed technique
in order to guarantee that there will be no bias in their judgment.

2252 M. Fokaefs et al. / The Journal of Systems a

Table 2
Statistical information for examined systems.

Project CLRServerPack TPMSim CoverFlow
Number of classes 33 161 103
Total number of methods

(static)
242 (27) 1000 (57) 312 (3)

Total number of attributes
(static)

78 (35) 542 (122) 183 (9)

Source lines of code 4652 12,631 3414
Number of classes

suggested to be
refactored

6 35 7

Average source lines of
code per class

141 78 33

Average number of
suggestions per class

5.66 2.74 2.14

T
l
m
b
o
a
f
w
i
a
s
s

1

2

T
E

Running time of the tool
(ms)

484 1763 1076

he first project called CLRServerPack is a an API for a potential col-
aborative PDF annotating client (including a client) and it mainly

anages the data storage in and retrieval from a database. It has
een developed for 8 months and it is in a mature level. The sec-
nd project named TPMSim is a framework for simulating services
ware software and also contains a simulation engine built on that
ramework. It has been developed for 4 years of which the first two
ere the most active. The third project called TAPorWithCoverFlow

s a web-based text analysis environment with integrates some text
nalysis web-services. It has been developed for 6 months and is
till under development. Some statistical information for the three
ystems is presented in Table 2.

The results for this part are presented in three ways:

. Individual calculation of precision and recall for each examined
class in order to assess the accuracy of the tool for each special
case (i.e. examined class). For the calculation of precision and
recall, we need the following definitions:
• True Positive (TP): a concept identified by the independent

expert and also by the proposed technique.
• False Positive (FP): a concept identified by the proposed tech-

nique, but not by the independent expert.
• False Negative (FN): a concept identified by the independent

expert, but not by the proposed technique.
TP, FP and FN are calculated at a coarse-grained level, mean-
ing that the concepts identified by the proposed technique and
by the independent evaluator should exactly match, in terms of
their methods and attributes.

. We report the ratio of failed cases, calculated by (4), out of the
total number of examined classes, where a failure is defined as

a case where only one of the evaluator or the tool identified
at least one an extractable concept for the examined class, but
not the other. Practically, this means that either the tool or the
evaluator identified a class as being problematic, but not both.

able 3
valuation results on CLRServerPack with structural measures.

Class Concepts Ident. time (m:s) TO #
b

1. AnnotationDatabase FindUpdate + delete 2:15 3 3
2. PrivacyManagement.

Notifications
Not found 1:20 0 1

3. PersonsManagement Add Authenticate 0:28 2 2
4. DatabaseController Management Add 1:05 2 1
5. User Not found 0:57 0 2
6. BibTex Title + abstract 0:48 1 12

Average

Failure rate
nd Software 85 (2012) 2241– 2260

Obviously, for this reason, either the precision or the recall can-
not be calculated. In the particular cases where the tool identified
a class as being problematic but the developers did not, the
designers claimed that they were reluctant to decompose these
classes. According to them, this was because these classes were
designed to capture real-world objects. This was evident by the
nature of the systems as they required to define network enti-
ties (like endpoints and servers in TPMSim) or describe entities
that correspond to tables of relational databases (as in the case
of CLRServerPack and CoverFlow).

3. As a successful case, we consider the case where the tool was able
to identify a problematic class, a fact that was also confirmed by
the developer. For the successful cases, we calculated the accu-
racy of the tool (in terms of precision and recall) in identifying
the exact problems of the examined class (in terms of extractable
concepts).

FailureRate = #failures

#total examined classes
(4)

As it can be observed from Table 2, the first and the third projects
are small sized (with respect to lines of code), while the second one
is medium sized. Furthermore, the third project has a large degree
of modularization (33 lines per class) which justifies the low aver-
age number of refactoring suggestions per class. On the contrary
the first project demonstrates a larger number of suggestions per
class as it is evident by the comparatively smaller degree of modu-
larization (141 lines per class). Finally, the second project shows a
medium level of modularization, but we identified a relatively small
number of suggestions per class. The selected projects cover a wide
spectrum of design decisions with respect to modularization, a fact
facilitates the generalization of our findings.

The analysis of these projects has been restricted to a selected
number of classes presenting at least one possible extractable con-
cept (according to the findings of the proposed tool), since the
evaluation of the entire project would have been prohibitive with
respect to time and effort by the evaluators.

4.1.1. Using structural measures as distance metric
The primary goal of this part of the experiment is to assess the

ability of the proposed approach to match the concepts identified
by human expertise to a large extent. A secondary goal is to quan-
tify the difficulty of manually identifying Extract Class refactoring
opportunities and applying the appropriate refactoring in terms
of consumed time. For each identified concept the evaluators had
to provide the entities that the concept comprise. The task of the
authors was to record the findings of the evaluators and the time

that took them to identify all concepts for a specific class.

As it can be observed from Tables 3–5, the tool had a FailureRate
of 33.33% for CLRServerPack, 27.8% for TPMSim and 14.29% for Cov-
erFlow. For the successful cases, the tool had a precision of 77.1%,

Concepts
y tool

TP FN FP Precision (%) Recall (%) Failure

 3 0 0 100 100
 0 0 1 0 N/A

√

 2 0 0 100 100
 1 1 0 100 50
 0 0 2 0 N/A

√
 1 0 11 8.33 100

77.1 87.5
33.3

M. Fokaefs et al. / The Journal of Systems and Software 85 (2012) 2241– 2260 2253

Table 4
Evaluation results on TPMSim with structural measures.

Class Concepts Ident. time (m:s) TO #Concepts by
tool

TP FN FP Precision (%) Recall (%) Failure

1. DocumentRange Range + document + source 1:05 1 1 1 0 0 100 100
2. DocumentModifier Modified + document Log 1:49 2 2 2 0 0 100 100
3. Clock Pause + resume 2:00 1 3 1 0 2 33.33 100
4. JobTracker Endpoint + result 2:58 1 2 1 0 1 50 100
5. Resource Not found 2:59 0 1 0 0 1 0 N/A

√
6. Dashboard Generate + chart 2:49 1 1 0 1 1 0 0
7. NetworkedTPM Job + server 5:21 1 2 1 0 1 50 100
8. NetworkedEndPoint Not found 5:11 0 3 0 0 3 0 N/A

√
9. SimPlayer Graph + series Pie + chart 2:41 2 2 2 0 0 100 100
10. Network Not found 6:21 0 1 0 0 1 0 N/A

√
11. Data Data + remaining 2:11 1 1 1 0 0 100 100
12. NetworkedDepot Not found 2:36 0 1 0 0 1 0 N/A

√
13. Database Connect 2:00 1 3 1 0 2 33.33 100
14. SimulationBuilder XML + parse Object 3:52 2 8 0 2 8 0 0
15. TPMSimulator Table + database 3:10 1 2 1 0 1 50 100
16. NetworkedCDSM Not found 1:31 0 3 0 0 3 0 N/A

√
17. Metrics Listener 1:08 1 2 1 0 1 50 100
18. PlaybackControl Slider 0:38 1 3 1 0 2 33.33 100

Average 53.8 84.6
Failure rate 27.8

Table 5
Evaluation results on CoverFlow with structural measures.

Class Concepts Ident. time (m:s) TO #Concepts by tool TP FN FP Precision (%) Recall (%) Failure

1. File Result 1:04 1 2 1 0 1 50 100
2. Result Change Content 0:43 2 5 1 1 4 20 50
3. Document Change 0:33 1 1 1 0 0 100 100
4. AbstractListWordsForm RadioCombo + box 1:13 2 1 1 1 0 100 50
5. AbstractDateFinderForm Date Display 0:41 2 1 1 1 0 100 50
6. ResultsPanel Catalog 0:58 1 2 1 0 1 50 100
7. CatalogController Not found 0:57 0 1 0 0 1 0 N/A

√

5
a

w
t
d
t
u
a

b
c
c
s
c
m
c
e
c

e
i
a
t
r
p
a
p
p
i

Average

Failure rate

3.8% and 70% in average for the three projects, respectively, and
n average recall of 87.5%, 84.6% and 75%, respectively.

Another interesting observation was that all three evaluators
ere able to identify completely disconnected components from

he rest of the class. These components are usually the best candi-
ates for extraction since they do not bare any dependency from
he rest of the class. The evaluators identified such components by
sing standard tools from Eclipse like the call hierarchy browser
nd the reference search feature.

Finally, our methodology was able to identify concepts only
y using dependency information. We observed that the same
oncepts were also identified by the evaluators based on con-
eptual criteria like similar names. An interesting example of
uch a case is shown in Fig. A.1, where the extractable con-
ept describes functionality about property changes. What is even
ore interesting about this example is that this particular con-

ept is used in two more classes of the system, which means that
xtracting it in a new class would increase the reusability of the
ode.

During the examination of the projects we observed a few inter-
sting cases where the extraction of specific concepts not only
mproved the understandability but also contributed to certain
spects of the design of the system. For example, there was a case
hat our approach successfully grouped all the entities which were
elated with the functionality of the Subject role in an Observer

attern instance (Gamma et al., 1995). The grouped entities were
ctually a field holding the collection of Observers, two methods
laying the role of attach and detach operations, as well as a method
laying the role of notify operation (Gamma et al., 1995). This case

s illustrated in Fig. A.2.
70 75
14.29

Another set of interesting examples includes cases where the
approach successfully managed to separate tangled concerns and
responsibilities. In the example shown in Fig. A.3, the evaluator
confirmed that our tool accurately suggested that the concept con-
cerning the connection to a database be separated from the one
about constructing SQL queries. Moreover, in the example of Fig. A.4
the tool proposed to separate some graphical components from
their controllers. This way we make clear the bounds that separate
the front-end of the application from its back-end.

4.1.2. Using semantic measures as distance metric
The goal of this part of the experiment is to investigate the effect

of semantic measures, if used only by themselves in the identifi-
cation process of our methodology. As the semantic measure, we
use the cosine distance between the term frequency vectors of two
entities (attributes or methods) ei and ej defined as:

dist(ei, ej) = 1 −
�ei · �ej

‖ �ei‖ × ‖ �ej‖
(5)

This measure extends the Conceptual Similarity between Meth-
ods (CSM) by Marcus and Poshyvanyk (2005) in two ways. First,
apart from methods, we also compare the conceptual similarity
between attributes, since they also participate in the identification
process and, second, the term vectors also contain the frequency of
term occurrence in an entity, in order to give additional weight to

recurring terms.

For an attribute, its term vector contains the term or terms
that comprise its name and words from its javadoc documentation
(excluding tags). For a method, its term vector contains its name,

2254 M. Fokaefs et al. / The Journal of Systems and Software 85 (2012) 2241– 2260

Table 6
Evaluation results on CLRServerPack with semantic measures.

Class TO #Concepts by tool TP FN FP Precision (%) Recall (%) Failure

1. AnnotationDatabase 3 2 2 1 0 100 66.7
2. PrivacyManagement. Notifications 0 3 0 0 3 0 N/A

√
3. PersonsManagement 2 4 2 0 2 50 100
4. DatabaseController 2 6 1 1 5 16.7 50
5. User 0 6 0 0 6 0 N/A

√
6. BibTex 1 16 1 0 15 6.25 100

Average 43.2 79.2
Failure rate 33.3

Table 7
Evaluation results on TPMSim with semantic measures.

Class TO #Concepts by tool TP FN FP Precision (%) Recall (%) Failure

1. DocumentRange 1 1 1 0 0 100 100
2. DocumentModifier 2 1 1 1 0 100 50
3. Clock 1 4 1 0 3 25 100
4. JobTracker 1 3 1 0 2 33.3 100
5. Resource 0 2 0 0 2 0 N/A

√
6. Dashboard 1 1 1 0 0 100 100
7. NetworkedTPM 1 2 1 0 1 50 100
8. NetworkedEndPoint 0 4 0 0 4 0 N/A

√
9. SimPlayer 2 1 0 1 1 0 0
10. Network 0 4 0 0 4 0 N/A

√
11. Data 1 0 0 1 0 N/A 0

√
12. NetworkedDepot 0 2 0 0 2 0 N/A

√
13. Database 1 3 1 0 2 33.33 100
14. SimulationBuilder 2 12 0 2 12 0 0
15. TPMSimulator 1 5 0 1 5 0 0
16. NetworkedCDSM 0 3 0 0 3 0 N/A

√
17. Metrics 1 2 1 0 1 50 100
18. PlaybackControl 1 1 1 0 0 100 100

Average 46.5 62.5
Failure rate 33.3

Table 8
Evaluation results on CoverFlow with semantic measures.

Class TO #Concepts by tool TP FN FP Precision (%) Recall (%) Failure

1. File 1 2 1 0 1 50 100
2. Result 2 5 1 1 4 20 50
3. Document 1 1 1 0 0 100 100
4. AbstractListWords 2 0 0 2 0 N/A 0

√
5. AbstractDateFinder 2 1 1 1 0 100 50
6. ResultsPanel 1 0 0 1 0 N/A 0

√
7. CatalogController 0 1 0 0 1 0 N/A

√

t
a
o
c
w
w
n
w
a

s
3
i
p
r

4

t

respect to precision, recall and failure rate. As it can be seen,
structural measures clearly outperform the semantic in all three
measurements. An interesting observation is that the precision of
the tool is negatively affected to greater extent than recall and

Table 9
Comparison between structural and semantic measures.

CLRServerPack TPMSim CoverFlow

Precision (%)
Structural 77.1 53.9 70.0
Semantic 43.2 46.5 43.8
Combined 42.7 31.5 43.8
Recall (%)
Structural 87.5 84.6 75.0
Semantic 79.2 62.5 75.0
Combined 79.2 50.0 75.0
Average
Failure rate

he identifiers of its parameters, accessed fields and declared or
ccessed local variables in its body, the names of the invoked meth-
ds and words from its javadoc documentation (excluding tags). In
ase of complex identifiers (i.e. identifiers that consist of multiple
ords) in the form of camel case strings (e.g. “aLocalVariable”) or
ords separated by underscores (e.g. “A STATIC FIELD”), first, they
eed to be split in simple terms which are then stemmed. Finally,
e exclude from the term vectors stop words, such as prepositions

nd articles.
As it can be observed from Tables 6–8, our approach using

emantic measures had a FailureRate of 33.33% for CLRServerPack,
3.3% for TPMSim and 42.9% for CoverFlow. For the successful cases,

t had a precision of 43.2%, 46.5% and 43.8% in average for the three
rojects, respectively, and an average recall of 79.2%, 62.5% and 75%,
espectively.
.1.3. Comparison between structural and semantic measures
Table 9 provides an overview of the accuracy achieved by the

wo considered distance metrics and a combination of them with
43.8 75
42.9
Failure rate (%)
Structural 33.3 27.8 14.3
Semantic 33.3 33.3 42.9
Combined 33.3 33.3 42.9

tems and Software 85 (2012) 2241– 2260 2255

f
r
t
o
c
t
b
h
e

p
t
t
t
t
i
t
r
C
p
t

a
t
w
A
t
e
w
i

n
fi
a
s
a
e
t

Table 10
Statistical information for JHotDraw 5.3.

Number of classes 249
Number of methods (static) 2254 (78)
Number of attributes (static) 489 (109)
Source lines of code 14,611
Number of classes suggested to be refactored 32
Number of suggestions per class 2.5
Running time of the tool (ms) 2824

T
E

M. Fokaefs et al. / The Journal of Sys

ailure rate, when semantic measures are employed, since they
esult in more extractable concepts. The reason is that the struc-
ural measures, as we have defined them, take into account not
nly dependencies within the examined class but also dependen-
ies with entities from other classes as well. Practically, this means
hat two entities are similar not only if one depends on the other,
ut also if they depend on the same other entities. On the other
and, textual similarity can only be calculated between a pair of
ntities and is not affected by dependencies to third entities.

Within the context of this experiment and the examined
rojects, we can observe that dependency information is sufficient
o find cooperating entities that contribute to a common task. On
he other hand, there are some cases that semantic measures group
ogether entities using or having similar identifiers, but not con-
ributing to the same task. For example, as we can see in Fig. A.5,
n class SimPlayer from project TPMSim, the designer identified
wo concepts: one responsible for drawing graphs and another one
esponsible for drawing charts. However, both methods generate-
harts() and generateGraph() frequently refer to terms such as chart,
lot and generate and as a result, the semantic measures merged the
wo concepts into one.

Apart from the pure use of structural or semantic measures, we
lso tried a combination of them giving both measures equal impor-
ance (i.e. 0.5 weight). As it can be seen from the table, the results
ere worse than when the two measures were used individually.
s we studied the results, we realized that this is because one dis-

ance metric interfered with the results of the other. This produced
xtractable concepts augmented by unnecessary entities or merged
ith other concepts and as a result they did not match the concepts

dentified by the evaluators.
This part of the evaluation showed that structural measures are

ot only necessary to identify extractable concepts but also suf-
cient. This is because naming of identifiers is a critical task (as
lso discussed by Marcus and Poshyvanyk (2005)). Naming is a

ubjective manual task and thus prone to errors. The designer of

 system chooses suitable (to his/her best judgment) names for
ntities at the moment they enter the system. This means that due
o further development and/or software degradation, names may

able 11
valuation results on JHotDraw 5.3.

No. Name of class Extracted entities

1. util.UndoManager redoStack, pushRedo(), i
popRedo()

2. applet.DrawApplet fSimpleUpdate, fUpdate
setSimpleDisplayUpdate

3. samples.net.NodeFigure fConnectors, connectors
initialize()

4. applet.DrawApplet fSleeper, startSleeper(),

5. figures.TextFigure fWidth, fHeight, fSizeIsD
6. contrib.DragNDropTool dragSource, fDragGestur

destroyDragGestureReco
7. applet.DrawApplet fFrameColor, fFilleColor,

createAttributeChoices(
createFontChoice()

8. util.StorableInput fMap, map(), retrieve(),

9. util.FloatingTextField fContainer, createOverla
10. util.StorableOutput fMap, mapped(), map()

11. util.StorableOutput fIndent, incrementInden
12. figures.InsertImageCommand. UndoActivity myAffectedImageFigure

getImageFigure()
13. standard.StandardDrawingView fBackgrounds, fForegrou

addForeground(), remov
14. util.Iconkit fMap, loadImage(), basic
15. application.DrawApplication createEditMenu(), create

createFontMenu(), creat
createFontSizeMenu(), c

16. applet.DrawApplet fDrawing, initDrawing()
readFromObjectInput()
become deprecated and may need to change. On the other hand,
dependency information clearly and at all times shows the pur-
pose of a group of entities with respect to the system’s functionality
(assuming that the system operates as desired).

4.2. Expert assessment

The second part of the evaluation was performed on the JHot-
Draw system (version 5.3), which is a very well-known open-source
system with complete and extensive documentation. Some statis-
tical information for this system is presented in Table 10. We used
our tool to identify refactoring opportunities for the initial version
of the system. Next, for the class that was ranked as top (based
on the sorting mechanism described in Section 3.2) we examined
all suggested extractable concepts for that particular class and
selected the most meaningful one to be refactored. After the appli-
cation of each refactoring, this process was repeated on the new
resulting version of the system. Eventually, we applied 16 of the
suggested refactorings and contacted a professional in the busi-
ness of software quality assessment, to provide his expert opinion.
The professional had three years of experience in evaluating the
software quality of industrial systems in the context of the ser-
vices offered by an organization active in the domain of software

quality assurance and certification (Deursen et al., 2003; Kuipers
and Visser, 2004). The evaluator was asked to answer the following
three questions for each applied refactoring.

Q1 Q2 Q3

sRedoable(), peekRedo(), getRedoSize(), Yes Yes No

Button, createButton(),
(), setBufferedDisplayUpdate()

Yes Yes Yes

(), createConnectors(), findConnector(), No No No

stopSleeper() No No No
irty, textExtent(), markDirty() Yes Yes Yes
eRecognizers, createDragGestureRecognizer(),
gnizer()

Yes No No

 fTextColor, fArrowChoice, fFontChoice,
), createColorChoice(), setupAttributes(),

Yes Yes Yes

readStorable() Yes No No
y(), endOverlay() Yes Yes Yes

Yes No No
t(), decrementIndent() Yes Yes Yes
, myAffectedImageName, setImageFigure(), Yes Yes Yes

nds, addBackground(), removeBackground(),
eForeground()

Yes No Yes

GetImage() Yes Yes Yes
ColorMenu(), createArrowMenu(),

eAlignmentMenu(), createFontStyleMenu(),
reateDebugMenu()

No Yes Yes

, loadDrawing(), readFromStorableInput(), No No No

2256 M. Fokaefs et al. / The Journal of Systems and Software 85 (2012) 2241– 2260

Fig. 8. The two methods, popRedo (suggested to be extracted) and popUndo, are
a

1
2

3

t
t
d
t
t
A
b
a
b
h
m
c
9
h

o
e
e
f
s
e
a
m
c
c
b
c
t
t
a
r

t
I
o
t
i
a
r

lmost identical.

 Q1: Does the extracted class describe a new entity?
 Q2: Would you actually perform this refactoring, if a tool sug-
gested it?

 Q3: Does it improve the understandability of the code?

Table 11 summarizes the expert assessment for the 16 refac-
orings applied on JHotDraw 5.3. In 12 of the total 16 cases (75%),
he evaluator confirmed that the classes suggested to be extracted
escribe a separate concept or entity. An interesting point here was
hat the expert identified, on top of the 13 cases, two more classes
hat could be used as utility or helper classes (cases 15 and 16).
lthough, they do not actually describe a new concept they can still
e extracted as new classes. In 9 of the 16 cases (56.25%), the expert
greed that he would perform the refactoring if it was suggested
y a tool. Interestingly, in 3 cases he claimed that he would not
ave been able to identify the refactoring opportunities manually,
ainly due to the fact that the dependencies between the extracted

lass members were not easy to identify by manual inspection. In
 out of 16 cases, the expert notes that the performed refactorings
ave a positive impact on the understandability of the system.

During the evaluation, we discovered a few by-products
f the method. In some cases, the code suggested to be
xtracted was duplicated in the same or other classes. For
xample, the class UndoManager contains “undo” and “redo”
unctionality. The code for both activities is exactly the
ame. Fig. 8 illustrates this example. The tool suggests two
xtractable concepts: one for the undo and one for the redo
ctivity. A better approach would be to extract one of the

 in a new class and replace both instances of the duplicated
ode with references to the extracted class. This type of dupli-
ation detection is outside the scope of this tool at this point,
ut we are considering it as a potential extension. The proposed
hanges can be manipulated further by the user to achieve bet-
er results. In another interesting case, the extracted code was
otally disconnected from the rest of the class and was not used
nywhere else, indicating possibly dead code that needs to be
emoved.

Interestingly, we noticed that for a specific class (DrawApplet)
here were more than one refactorings accepted by the evaluator.
ndeed, this class seems to be a problematic one as it has 42 meth-
ds. The expert’s opinion on the three refactorings was: “Overall, the

hree refactorings have helped in reducing the complexity and improv-
ng the readability of the DrawApplet class. After these refactorings are
pplied, it is easier to start improving the code by (for example) also
emoving the circular dependencies on the DrawingViewHandle class.
Fig. 9. Evolution of metrics when applying successive refactorings on JHotDraw 5.3.

Although not all refactorings are perfect, they are very valuable in start-
ing up the refactoring of the complete class. The remaining work can
now be done by a novice developer, something which was not possible
with the original DrawApplet class”.

4.3. Metrics comparison for JHotDraw 5.3

In this part of the evaluation, we measure the impact of the
16 performed refactorings on JHotDraw 5.3 in terms of coupling
and cohesion using the message-passing coupling (MPC) (Li and
Henry, 1993) metric and the Connectivity (Briand et al., 1998) met-
ric respectively. The values of these metrics were then compared
to Entity Placement, which is a metric based on Jaccard distance
that captures both cohesion and coupling (as already described in
Section 3.2).

The MPC for a class C is defined as the number of invocations

of methods not implemented in class C by the methods of class C.
Connectivity for a class C is defined as the number of method pairs
of class C where one method invokes the other or both access a

M. Fokaefs et al. / The Journal of Systems a

Table 12
Correlation between Entity Placement and MPC and Connectivity.

EP-Conn EP-MPC

−0.99356 0.88702

c
o

q
p
F
a
v
d
d
t
c
n
(
i
d
c

i
t
O
M
o
i
s

r
c
fi
r
s
t
t

t
i
o
u
t
t
o
s
s
c

m
c
s
w
m
r

4

4

k
i

ommon attribute of class C, over the total number of method pairs
f class C.

Although the aforementioned metrics capture the same design
uality characteristics as the Entity Placement metric, namely cou-
ling and cohesion, they have major differences in their definitions.
irstly, the MPC metric is based on an absolute count of messages
nd it is not normalized over a range of minimum and maximum
alues. On the other hand, Entity Placement is calculated based on
istances which are normalized by definition and furthermore, it
oes not use absolute counts of dependencies since it is employing
he notion of sets. Secondly, the Connectivity metric has a dis-
rete binary nature: it considers two methods as either cohesive or
ot cohesive. On the contrary, Entity Placement has a continuous
within a range) nature, since it captures the degree of similar-
ty between a method and the class it belongs to. Due to these
ifferences, it is not naturally expected for these metrics to be
orrelated.

Our motivation behind the selection of the MPC metric is that
t captures coupling at a more fine-grained level (method interac-
ions) in contrast to other metrics such as CBO (Coupling Between
bjects) and Coupling Factor that capture coupling at the class level.
oreover, Connectivity was chosen because it considers two meth-

ds as cohesive not only if they access common attributes but also
f they invoke each other in contrast to traditional cohesion metrics
uch as LCOM (Lack of Cohesion Of Methods).

Fig. 9 presents the progression of the Entity Placement met-
ic, MPC (coupling) and Connectivity (cohesion). The x-axis in each
hart corresponds to the refactored versions of JHotDraw 5.3. The
rst value on each chart represents the value of the respective met-
ic on the initial system. All metrics have been calculated at the
ystem level. To improve the design quality of a system, the goal is
o reduce the coupling and the Entity Placement value and increase
he cohesion of the system.

From the charts, it can be seen that all three metrics follow the
rends expected assuming that overall quality of the system was
mproved. However, for coupling, a few unexpected values can be
bserved. As far as MPC is concerned, there are two possible sit-
ations. First, entities which still bear some dependencies with
he rest of the source class might be suggested for extraction. In
his case, the coupling is expected to increase (cases 1 and 2). Sec-
nd, entities that are completely disconnected from the rest of the
ource class may be extracted. In this case, the coupling will stay the
ame, but because the number of classes will increase the average
oupling of the system will decrease.

We compared the two metrics with the Entity Placement
etric in terms of correlation (Table 12). A strong negative

orrelation between Entity Placement and connectivity and a
trong positive correlation between Entity Placement and MPC
ere observed. Thus, it can be argued that the Entity Place-
ent metric is sufficient to evaluate the effect of Extract Class

efactorings.

.4. Threats to validity
.4.1. Threats to internal validity
A threat to the internal validity of our study is related to the

nowledge and expertise of the human evaluators on the exam-
ned systems. Inadequate knowledge could lead to limited ability
nd Software 85 (2012) 2241– 2260 2257

to distinguish the existing concepts within a class and to assess the
impact of the suggested refactorings on the maintainability and
understandability of the systems. This threat has been partially
mitigated by selecting evaluators who were the actual develop-
ers of the examined systems in the evaluation of precision and
recall (Section 4.1) and by selecting an experienced professional
on software quality assessment to provide his expert opinion on
a very well-known and well-documented project (JHotDraw) in
Section 4.2.

4.4.2. Threats to external validity
Since the experiments have been conducted employing a limited

number of evaluators and a limited number of projects, our study
lacks the ability of generalizing its findings beyond the selected
experimental setup. This threat was partially alleviated by con-
ducting two different types of experiments. In the first type, the
evaluators were asked to manually identify extractable concepts
without neither having knowledge of our methodology nor hav-
ing the assistance of our tool. Next, we compared their findings
with the tool’s suggestions in order to extract the precision and
recall of our approach. This allowed us to assess the ability of
our approach to conform with human expertise. In the second
type, we provided the evaluator, who is a professional in soft-
ware quality assessment, with a set of already applied refactorings
and ask him to provide his expert opinion on whether the newly
created classes constituted meaningful and valid concepts and if
the applied refactorings improved the understandability of the
code. The purpose of this experiment was to assess the concep-
tually integrity of the refactoring suggestions produced by our
approach.

These two different types of experiments covered all essen-
tial aspects of the refactoring process, which are adherence to
human decisions, improvement of design quality and code under-
standability, satisfaction of human intuition on what a meaningful
concept is.

5. Conclusions and future work

In this work, we proposed a novel method to improve the
design quality of an object-oriented system by applying Extract
Class refactorings. To identify the refactoring opportunities, a hier-
archical agglomerative clustering algorithm was used based on the
Jaccard distance between class members, because of the ability
of clustering algorithms to identify conceptually related groups of
entities. The resulted suggestions are ranked according to the Entity
Placement metric. The mechanics of the Extract Class refactoring
was also described so that it preserves the system’s behavior and
its syntactical correctness.

We implemented our method as an extension for the JDeodorant
Eclipse plugin. The tool shows the developer the candidate entities
for extraction by highlighting them in the Java editor and illustrates
the changes that will be performed using a Preview Wizard. The use
of the tool comprises simple steps and the interface design follows
the conventions of Eclipse, which should make it intuitive enough
to most developers. The input required is minimal, which makes
the tool suitable to novice developers as well.

We evaluated the proposed methodology on various systems
in terms of precision and recall (using structural, semantic and a
combination of these measures as a distance metric), assessment
by an expert and metrics. Through this process, we demonstrated
that our method can produce meaningful and conceptually correct

suggestions and extract classes that developers would recognize as
meaningful concepts. We also showed that structural metrics (such
as dependency between class members) are a necessary and suffi-
cient criterion for the identification of extractable concepts from a

2 tems and Software 85 (2012) 2241– 2260

c
t
t
s
o
m
t

i
w
b
c
t
o
g
o
v
p
m
t
t
t
s

A

N
S
a
p

A

Fig. A.2. The Subject role of an Observer pattern as identified by the tool.
258 M. Fokaefs et al. / The Journal of Sys

lass. Furthermore, the expert confirmed that a good percentage of
he proposed refactorings were good solutions that also improved
he understandability of the code. Finally, we demonstrated that the
uggested refactorings improve the design of the system in terms
f coupling and cohesion and that the Entity Placement is a good
etric for evaluating the impact of the performed refactorings to

he design of the system.
In the future, we would like to explore the possibility of refin-

ng our refactoring identification method. In some cases, as it
as seen in the evaluation process, the suggestions could have

een better and more complete if the clustering algorithm was
ombined with other methods, like code duplication detection
echniques. This would enable the method to identify identical
r similar extractable concepts even across classes and suggest a
lobal solution to improve the design of more than one class at
nce. Finally, we also plan to improve the interface of the tool with
isualizations to increase the awareness of the developer of the
roposed change and its impact to the system. At the moment, the
ethodology is a black box to the user. We would like to change

hat by visualizing the classes as graphs where the distances and
he members suggested to be extracted will be shown, so that
he user can better understand why each extractable concept is
uggested.

cknowledgements

The authors wish to acknowledge the generous support of
SERC, iCORE and IBM. The authors would also like to thank the
oftware Improvement Group, and more specifically Eric Bouwers
nd Yiannis Kanellopoulos, for their participation in the evaluation
rocess.

ppendix A.
Fig. A.1. Extraction of property change concept.

Fig. A.3. Separating the database connection task from the query construction task
as identified by the tool.

M. Fokaefs et al. / The Journal of Systems a

Fig. A.4. Separating view from control as suggested by the tool.

Fig. A.5. Semantic measures erroneously grouping together two different tasks due
to the common use of terms chart, plot and generate.
nd Software 85 (2012) 2241– 2260 2259

References

Anquetil, N., Lethbridge, T., 1999. Experiments with clustering as a software remod-
ularization method. In: 6th Working Conference on Reverse Engineering.

Bavota, G., De Lucia, A., Marcus, A., Oliveto, R.,2010. A two-step technique
for extract class refactoring. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering. ACM, New York, NY, USA,
pp. 151–154.

Bavota, G., Oliveto, R., De Lucia, A., Antoniol, G., Guéhéneuc, Y.G., 2010. Playing with
refactoring: identifying extract class opportunities through game theory. In:
Early Research Achievement Track of the 26th IEEE International Conference
on Software Maintenance (ICSM’2010), Timisoara, Romania.

Bavota, G., De Lucia, A., Oliveto, R., 2011. Identifying extract class refactoring oppor-
tunities using structural and semantic cohesion measures. Journal of Systems
and Software 84, 397–414.

Briand, L.C., Daly, J.W., Wüster, J., 1998. A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineering 3,
65–117.

Chatzigeorgiou, A., 2003. Mathematical assessment of object-oriented design qual-
ity. IEEE Transactions on Software Engineering 29, 1050–1053.

Chatzigeorgiou, A., Xanthos, S., Stephanides, G.,2004. Evaluating object-oriented
designs with link analysis. In: Proceedings of the 26th International Confer-
ence on Software Engineering. IEEE Computer Society, Washington, DC, USA,
pp. 656–665.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Introduction to Algorithms.
The MIT Press, New York.

Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H., 2009. The complexity of comput-
ing a Nash equilibrium. Communications of the ACM 52, 89–97.

De Lucia, A., Oliveto, R., Vorraro, L., 2008. Using structural and semantic metrics
to improve class cohesion. In: 24th IEEE International Conference on Software
Maintenance, Beijing, China.

Demeyer, S., Ducasse, S., Nierstrasz, O.M., 2002. Object-oriented Reengineering Pat-
terns. Morgan Kaufman Publishers.

van Deursen, A., Kuipers, T., 1999. Identifying objects using cluster and concept
analysis. In: 21st International Conference Software Engineering, pp. 246–255.

Deursen, A.v., Kuipers, T.,2003. Source-based software risk assessment. In: ICSM’03:
Proceedings of the International Conference on Software Maintenance. IEEE
Computer Society.

Doval, D., Mancoridis, S., Mitchell, B.S., 1999. Automatic clustering of software sys-
tems using a genetic algorithm. In: 5th International Conference on Software
Tools and Engineering Practice, Pittsburgh, PA.

DuBois, B., Demeyer, S., Verelst, J.,2004. Refactoring – improving coupling and cohe-
sion of existing code. In: 11th Working Conference on Reverse Engineering. Delft
University of Technology, The Netherlands, pp. 144–151.

Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based algorithm for discov-
ering clusters in large spatial database with noise. In: International Conference
on Knowledge Discovery in Databases and Data Mining, Portland, OR.

Fokaefs, M., Tsantalis, N., Stroulia, E., Chatzigeorgiou, A., 2009. Decomposing object-
oriented class modules using an agglomerative clustering technique. In: 25th
IEEE International Conference on Software Maintenance (ICSM’2009), Edmon-
ton, AB, Canada.

Fokaefs, M., Tsantalis, N., Stroulia, E., Chatzigeorgiou, A., 2011. JDeodorant: identifi-
cation and application of extract class refactorings. In: Proceedings of the 33rd
International Conference on Software Engineering.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., 1999. Refactoring Improving
the Design of Existing Code. Addison-Wesley, Boston, MA.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Boston, MA.

Holzrichter, M., Oliveira, S., 1999. A graph based method for generating the Fiedler
vector of irregular problems. In: IPPS/SPDP Workshops.

Jolliffe, I., 1986. Principal Component Analysis. Springer Verlag.
Joshi, P., Joshi, R.K., 2009. Concept analysis for class cohesion. In: 13th European Con-

ference on Software Maintenance and Reengineering, Kaiserslautern, Germany,
pp. 237–240.

Khomh, F., Vaucher, S., Guéhéneuc, Y.G., Sahraoui, H., 2009. A Bayesian approach for
the detection of code and design smells. In: Proceedings of the 2009 Ninth Inter-
national Conference on Quality Software, Washington, DC, USA. IEEE Computer
Society, pp. 305–314.

Kuipers, T., Visser, J.,2004. A tool-based methodology for software portfo-
lio monitoring. In: Software Audit and Metrics, Proceedings of the 1st
International Workshop on Software Audit and Metrics. INSTICC Press,
pp. 118–128.

Li, W., Henry, S., 1993. Object-oriented metrics that predict maintainability. Journal
of Systems and Software 23, 111–122.

Maletic, J.I., Marcus, A.,2001. Supporting program comprehension using semantic
and structural information. In: Proceedings of the 23rd International Confer-
ence on Software Engineering. IEEE Computer Society, Washington, DC, USA,
pp. 103–112.

Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.,1998. Using automatic
clustering to produce high-level system organizations of source code. In: 6th
International Workshop on Program Comprehension. IEEE Computer Society

Press, pp. 45–52.

Marcus, A., Poshyvanyk, D.,2005. The conceptual cohesion of classes. In: Proceed-
ings of the 21st IEEE International Conference on Software Maintenance. IEEE
Computer Society, Washington, DC, USA, pp. 133–142.

2 tems a

M

M

M

M

O
P

S

S

S

S

T

T

T

T

T

T

260 M. Fokaefs et al. / The Journal of Sys

arinescu, R.,2004. Detection strategies: metrics-based rules for detecting design
flaws. In: Proceedings of the 20th IEEE International Conference on Software
Maintenance. IEEE Computer Society, Washington, DC, USA, pp. 350–359.

artin, R.C., 2003. Agile Software Development: Principles, Patterns and Practices.
Prentice Hall, Upper Saddle River, NJ.

oha, N., Gueheneuc, Y.G., Duchien, L., Meur, A.F.L., 2010. Decor: a method for
the specification and detection of code and design smells. IEEE Transactions
on Software Engineering 36, 20–36.

unro, M.J.,2005. Product metrics for automatic identification of “bad smell” design
problems in java source-code. In: Proceedings of the 11th IEEE International
Software Metrics Symposium. IEEE Computer Society, Washington, DC, USA, p.
15.

pdyke, W.F., 1992. Refactoring object-oriented frameworks. Ph.D. Dissertation.
ontryagin, L., Arkhangel’skii, A., 1990. General Topology I: Basic Concepts and Con-

structions, Dimension Theory. Springer, Heidelberg.
artipi, K., Kontogiannis, K., 2001. Component clustering based on maximal associ-

ation. In: Proceedings of the IEEE Working Conference on Reverse Engineering,
Stuttgart, Germany.

chäfer, M., Dolby, J., Sridharan, M., Torlak, E., Tip, F.,2010. Correct refactoring
of concurrent java code. In: Proceedings of the 24th European Conference
on Object-oriented Programming. Springer-Verlag, Berlin, Heidelberg, pp.
225–249.

hokoufandeh, A., Mancoridis, S., Denton, T., Maycock, M., 2005. Spectral and meta-
heuristic algorithms for software clustering. Journal of Systems and Software
77, 213–223.

imon, F., Steinbruckner, F., Lewrentz, C., 2001. Metrics based refactoring. In: 5th
European Conference on Software Maintenance and Reengineering, Lisbon,
Portugal, pp. 30–38.

ahvildari, L., Kontogiannis, K., 2003. A metric-based approach to enhance
design quality through meta-pattern transformations. In: 7th European
Conference on Software Maintenance and Reengineering, Benevento, Italy,
pp. 183–192.

an, P.N., Steinbach, M., Kumar, V., 2005. Introduction to Data Mining. Addison-
Wesley.

arjan, R.E., 1972. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 146–160.

rifu, A., Marinescu, R., 2005. Diagnosing design problems in object oriented systems.

In: 12th Working Conference on Reverse Engineering.

santalis, N., Chatzigeorgiou, A., 2009. Identification of move method refactoring
opportunities. IEEE Transactions on Software Engineering 35, 347–367.

zerpos, V., Holt, R.C., 1998. Software botryology: automatic clustering of software
systems. In: International Workshop on Large-scale Software Composition.
nd Software 85 (2012) 2241– 2260

Van Emden, E., Moonen, L.,2002. Java quality assurance by detecting code
smells. In: Proceedings of the Ninth Working Conference on Reverse
Engineering (WCRE’02). IEEE Computer Society, Washington, DC, USA,
pp. 97–106.

Vaucher, S., Khomh, F., Moha, N., Gueheneuc, Y.G., 2009. Tracking design smells:
lessons from a study of god classes. In: Working Conference on Reverse Engi-
neering, pp. 145–154.

Wiggerts, T.A., 1997. Using clustering algorithms in legacy systems remodulariza-
tion. In: 4th Working Conference on Reverse Engineering.

Xanthos, S., 2006. Clustering Object-oriented Software Systems using Spectral Graph
Partitioning. ACM Student Research Competition.

Zaidman, A., Demeyer, S., 2008. Automatic identification of key classes in a soft-
ware system using webmining techniques. Journal of Software Maintenance
and Evolution: Research and Practice 20, 387–417.

Marios Fokaefs is a PhD candidate in the Department of Computing Science at the
University of Alberta, Greece. He received his BSc from the Department of Applied
Informatics at the University of Macedonia, Greece in 2008 and his MSc from the
Department of Computing Science at the University of Alberta, Canada in 2010. His
research interests include object-oriented and service-oriented design and mainte-
nance. Hi is a member of the IEEE.

Nikolaos Tsantalis received the BS, MS and PhD degrees in applied informatics from
the University of Macedonia, Greece, in 2004, 2006 and 2010, respectively. He is cur-
rently a Postdoctoral Fellow at the Department of Computing Science, University of
Alberta, Canada. His research interests include design pattern detection, identifica-
tion of refactoring opportunities, and design evolution analysis. He is a member of
the IEEE and the IEEE Computer Society.

Eleni Stroulia is a Professor and NSERC/iCORE Industrial Research Chair on Service
Systems Management (w. support from IBM) with the Department of Comput-
ing Science at the University of Alberta, Canada. She holds M.Sc. and Ph.D.
degrees from Georgia Institute of Technology. Her research addresses industri-
ally relevant software-engineering problems with automated methods, based on
artificial-intelligence techniques. She is a member of ACM, and IEEE.

Alexander Chatzigeorgiou is an assistant professor of software engineering in the
Department of Applied Informatics at the University of Macedonia, Thessaloniki,

Greece. He received the Diploma in electrical engineering and the PhD degree in
computer science from the Aristotle University of Thessaloniki, Greece, in 1996
and 2000, respectively. From 1997 to 1999, he was with Intracom, Greece, as
a telecommunications software designer. His research interests include object-
oriented design, software maintenance and evolution. He is a member of the IEEE.

	Identification and application of Extract Class refactorings in object-oriented systems
	1 Introduction
	2 Related work
	2.1 Code smell detection methods
	2.2 Software remodularization
	2.3 Identification of “God Classes”
	2.4 Identification of Extract Class opportunities

	3 Methodology
	3.1 Identification of Extract Class opportunities
	3.1.1 Clustering algorithm and distance metric
	3.1.2 An illustrative example
	3.1.3 Detection of extractable concepts
	3.1.4 Eliminating illegal candidate classes

	3.2 Ranking and presentation of refactoring opportunities based on their impact on design quality
	3.3 Application of the Extract Class refactoring

	4 Evaluation
	4.1 Evaluation of precision and recall
	4.1.1 Using structural measures as distance metric
	4.1.2 Using semantic measures as distance metric
	4.1.3 Comparison between structural and semantic measures

	4.2 Expert assessment
	4.3 Metrics comparison for JHotDraw 5.3
	4.4 Threats to validity
	4.4.1 Threats to internal validity
	4.4.2 Threats to external validity

	5 Conclusions and future work
	Acknowledgements
	References

