
Unification and Refactoring of Clones
Giri Panamoottil Krishnan, Nikolaos Tsantalis

Department of Computer Science and Software Engineering
Concordia University, Montreal, Quebec, Canada

giri.krishnan@concordia.ca, nikolaos.tsantalis@concordia.ca

Abstract—Code duplication has been recognized as a poten-
tially serious problem having a negative impact on the maintain-
ability, comprehensibility, and evolution of software systems. In
the past, several techniques have been developed for the detection
and management of software clones. Existing code duplication
can be eliminated by extracting the common functionality into
a single module. However, the unification and refactoring of
software clones is a challenging problem, since clones usually
go through several modifications after their initial introduction.
In this paper we present an approach for the unification and
refactoring of software clones that overcomes the limitations
of previous approaches. More specifically, our approach is able
to detect and parameterize non-trivial differences between the
clones. Moreover, it can find an optimal mapping between the
statements of the clones that minimizes the number of differences.
We compared the proposed technique with a competitive clone
refactoring tool and concluded that our approach is able to find
a significantly larger number of refactorable clones.

I. INTRODUCTION

Code duplication has been recognized as a potentially
serious problem in software systems [1]. There is empirical
evidence that duplicated code increases significantly the main-
tenance effort and cost [2], is associated with error-proneness
due to the inconsistent changing of clones [3], and is more
unstable than non-duplicated code [4]. Over the past years,
the software clone research community has mainly focused on
developing techniques for the detection of duplicated code [1]
and creating tools for the management of detected clones, such
as clone tracking, clone evolution and consistency analysis,
and incremental clone detection [5]. However, the corrective
aspect of clone management [6] (i.e., activities to remove
clones from a system through refactoring) has not received
as much attention from researchers.

In a previous work [7], we presented some limitations of
existing clone refactoring tools. The first major limitation
is that current tools can parameterize only a small subset
of the differences that can be found in clones. The second
limitation is that current approaches may return a non-optimal
mapping between the statements of the clones. To facilitate
the refactoring of duplicated code, an optimal mapping should
not only contain the maximum number of possible mapped
statements, but also the minimum number of differences
between them. The minimization of the differences is of
key importance for the refactoring of clones, since it directly
affects the number of parameters that have to be introduced
in the extracted method containing the common functionality,
as well as the feasibility of the refactoring transformation.
However, the current approaches focus only in maximizing the

number of mapped statements and do not explore the entire
search space of possible matches (i.e., they usually select the
“first” or the “best” match based on a similarity function).

In this paper, we present a technique for the refactoring
of software clones in Java programs that tackles the afore-
mentioned limitations. Our approach takes as input two code
fragments or even entire methods that have been detected
as clones by clone detection tools and applies three steps
to determine whether the clones or parts of them can be
safely refactored. In the first step, it tries to find identical
control dependence structures within the clones that will
serve as candidate refactoring opportunities. In the second
step, it applies a mapping approach that tries to maximize
the number of mapped statements and at the same time
minimize the number of differences between them. Finally,
in the last step, the differences detected in the previous step
are examined against a set of preconditions to determine
whether they can be parameterized without changing the
program behavior. Our technique supports the refactoring
of Type-1 clones (i.e., identical code fragments except for
variations in whitespace, layout, and comments [1]), Type-
2 clones (i.e., structurally/syntactically identical fragments
except for variations in identifiers, literals, types, layout and
comments [1]), and Type-3 clones (i.e., copied fragments with
statements changed, added or removed in addition to variations
in identifiers, literals, types, layout and comments [1]). Our
statement matching approach is described in Section III. The
proposed technique builds on top of a previous work [8], in
which we presented our initial ideas on treating the unification
of clones as an optimization problem. Apart from Section
IV-B, all other sections contain new and unpublished material.
Additionally, there have been made some improvements in the
algorithms presented in Section IV-B.

To evaluate our approach, we compared it with CeDAR
[9], a state-of-the-art tool in the refactoring of Type-2 clones.
We repeated the same experiment that they performed on the
clones detected by Deckard [10]. The results have shown that
our approach is able to find 83% more refactorable clones than
CeDAR in the 7 Java open-source projects examined.

In summary, the contributions of the proposed technique are
the following:
- It supports the detection and parameterization of non-trivial
differences between duplicated code fragments.
- It can process clones detected from any clone detection
tool even if they do not have an identical control dependence
structure, or they do not expand over a valid block region.

978-1-4799-3752-3/14 c© 2014 IEEE CSMR-WCRE 2014, Antwerp, Belgium

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

104

- It treats the problem of finding a mapping between the
statements of two clones as an optimization problem with
two objectives, namely maximizing the number of mapped
statements and at the same time minimizing the number of
differences between the mapped statements.
- It defines preconditions that can be used to determine whether
a clone group is safe to be refactored.

II. PRELIMINARIES

The core of our approach is built around the mapping of
the Program Dependence Graphs (PDGs) corresponding to
duplicated code fragments. The PDG [11] is a directed graph
with multiple edge types, in which the nodes represent the
statements of a function or method, and the edges represent
control and data flow dependences between statements. A
control dependence edge denotes that the execution of the
statement at the end point of the edge depends on the control
conditions of the control predicate statement (e.g., if, for) at
the start point of the edge. A data dependence edge is always
labeled with a variable v and denotes that the statement at the
end point of the edge is using the value of v, which has been
modified by the statement at the start point of the edge. If the
data dependence is carried through a loop node l, then it is
considered as a loop-carried dependence.

The PDG representation used in this paper is extended
in two ways. First, we introduce composite variables [12]
representing the state of the objects being referenced within
the body of a method, and create additional data dependences
for these variables by analyzing method calls that may modify
or use the state of the referenced objects. Second, we add
two more types of edges in the PDG, which are used in
the examination of preconditions (Subsection IV-C). These
edges are anti-dependences and output-dependences. An anti-
dependence edge due to variable v denotes that the statement
at the end point of the edge is modifying the value of v, which
has been used by the statement at the start point of the edge
(i.e, the opposite of a data dependence). An output-dependence
edge due to variable v denotes that both statements at the start
and end points of the edge modify the value of v.

Additionally, in a previous work [8], we introduced the
Control Dependence Tree (CDT) in order to represent the
control dependence structure of the duplicated code fragments.
A CDT has the same structure as the Control Dependence
Graph (CDG) [11] with the only difference being that it
includes only the control predicate nodes of the PDG, while
a CDG contains all nodes of the PDG.

III. PDG NODE AND EDGE COMPATIBILITY

In this section, we describe our statement matching function
that is based on the analysis of the Abstract Syntax Tree
(AST) structure. This function is used in all our algorithms
(see function compatibleAST) to examine if two statements
are compatible and can be matched. In our approach we
consider two PDG nodes as compatible, if they correspond
to the same AST statement type and have a matching AST
structure. However, we provide a high degree of freedom in the

matching of expressions within the statements in order to make
more flexible the unification of duplicated code with non-
trivial differences. In the past, Tairas and Gray [9] extended
the Eclipse IDE refactoring engine for duplicated code, which
supports only the parameterization of differences in local
variable identifiers, by allowing the matching of differences
in field accesses, string literals, and method calls without
arguments. The evaluation on the Type-2 clones detected in
9 open-source projects using Deckard [10] has shown that the
aforementioned changes in the matching of duplicated code
increased the percentage of refactorable clones from 10.6% to
18.7% on average. In our AST matching implementation, we
have significantly increased the number of expression types
that could be parameterized, and additionally we allow the
matching of different types of expressions. Table I contains the
complete list of supported expression types. Any expression
type in that list can be replaced with any other expression type
as long as both expressions return the same class/primitive type
or types being subclasses of a common superclass (excluding
Object). In the case of control predicate nodes (e.g., if, for
statements), the part of the AST structure being compared is
only their conditional expression(s).

TABLE I
SUPPORTED EXPRESSION TYPES IN AST MATCHING

Expression Type Example

Method Invocation expr.method(arg0, arg1,...)
Super Method Invocation super.method(arg0, arg1,...)
String Literal "string"
Character Literal ‘c’
Boolean Literal true or false
Number Literal 5.6
Null Literal null
Type Literal Type.class
Class Instance Creation new Type(arg0, arg1,...)
Array Creation new Type[expr]
Array Access array[index]
Field Access this.identifier
Super Field Access super.identifier
Parenthesized Expression (expr)
Simple Name identifier
Qualified Name Type.identifier
Cast Expression (Type)expr
This Expression this
Prefix Expression -expr
Infix Expression expr1 + expr2

* we also support the matching of an assignment expression, where
the left-hand side is a field access, e.g., field = value, with the
corresponding setter method invocation, e.g., setField(value).

Our AST matching algorithm has been implemented by
extending the ASTMatcher superclass provided in Eclipse
JDT framework. Our implementation also returns a list of the
differences detected between the matched PDG nodes that is
used in the examination of preconditions (Subsection IV-C).
Table II shows the difference types which are reported by
our AST matching algorithm. The last two difference types,
namely operator and variable type mismatches (with the ex-
ception of generic types) cannot be parameterized. In the cases
where a difference refers to a property of a primary expression
(e.g., method name mismatch, argument number mismatch,

105

missing caller expression), the entire primary expression (e.g.,
method invocation) should be parameterized.

TABLE II
DETECTED DIFFERENCES BETWEEN MATCHED NODES

Difference Type Example

Variable Identifier int x = y; int x = z;
Literal Value String s = "s1"; String s = "s2";
Method Name expr.foo(arg); expr.bar(arg);
Argument Number foo(arg0, arg1); foo(arg0);
Caller Expression expr.foo(arg); foo(arg);
Array Dimension int x = a[i]; int x = a[i][j];
AST Compatible int x = foo(); int x = 5;

Operator int x = y + z; int x = y - z;
Variable Type int x = 5; double x = 5;

Regarding PDG edge compatibility, two PDG edges are con-
sidered compatible if they connect nodes which are compatible
(i.e., the nodes in the starting and ending points of the edges,
respectively, should be compatible with each other) and they
have the same dependence type (i.e., they are both control or
data flow dependences). In the case of control dependences,
both should have the same control attribute (i.e., True or False).
In the case of data dependences, the data attributes should
correspond to variables having the same name, or to variables
detected as renamed during the AST compatibility check of
the attached nodes. Finally, if both data dependences are loop-
carried, then the loop nodes through which they are carried
should be compatible too.

IV. TECHNIQUE

The proposed technique comprises three major steps, which
will be presented in detail in the following sections.

A. Input

The proposed technique is able to process two different
forms of input:

1) Two code fragments within the body of the same
method, or different methods, reported as clones by a
clone detection tool.

2) Two method declarations considered to be duplicated or
containing duplicate code fragments.

Our goal is to find isomorphic CDTs within the duplicated
code fragments. In the first case, we are constructing the
control dependence subtrees corresponding to each code frag-
ment, while in the second case we are constructing the CDTs
corresponding to each method declaration. However, there is
no guarantee that the constructed CDTs will be isomorphic
in either case. As a result, we developed an algorithm that
takes as input two CDTs and finds all non-overlapping largest
common subtrees [13] within the CDTs. Each resulting subtree
match will be further investigated as a separate clone refac-
toring opportunity. Initially, we collect from the two CDTs all
leaf nodes, which either do not have siblings, or all of their
siblings are also leaf nodes. Next, we extract all matching
(i.e., AST compatible) pairs between the collected leaf nodes

from the two CDTs. Each leaf node pair is given as input to
Algorithm 1, which returns a subtree match as a solution.

In a nutshell, the algorithm first compares the sibling nodes
of the node pair given as input to find matching sibling pairs.
For each matching sibling pair it performs a top-down tree
match and examines if the resulting subtree match is “exactly
paired” (Algorithm 1, line 13). Two subtrees are considered
as exactly paired if there is a one-to-one correspondence
between their nodes (i.e., a bijection). In set theory, there is
a bijection from set X to set Y when every element of X is
paired with exactly one element of Y, and every element of
Y is paired with exactly one element of X. If all matching
sibling pairs lead to exactly paired top-down subtree matches,
then the parent nodes of the node pair given as input are
visited. Finally, if the parent nodes match, then Algorithm 1 is
recursively executed with the new parent node pair as input.
The proposed algorithm essentially applies a combination of
bottom-up and top-down tree matching techniques [13] and
guarantees that the returned subtree match will be exactly
paired. We designed the algorithm to return only exactly paired
subtree matches in order to avoid inconsistencies or gaps in
the control dependence structure of the matched subtrees.

B. PDG Mapping

In the previous step of our approach, we described an
algorithm that extracts isomorphic subtrees from the CDTs
of the clones given as input. In the current step, we present an
approach for the optimal mapping of the PDGs corresponding
to the extracted CDTs.

But first, we will use an example to motivate the need
for optimizing the mapping of PDGs, so that the number
of differences between the mapped PDG nodes is mini-
mum. Figure 1 illustrates two code fragments taken from
methods drawDomainMarker and drawRangeMarker,
respectively, found in class AbstractXYItemRenderer
of the JFreeChart open-source project (version 1.0.14). These
two methods contain over 90 duplicated statements extending
through their entire body. However, for the sake of simplicity,
we have included only a small portion of the duplicated
code. Figure 1 depicts a possible mapping of the statements
as obtained from the PDG-based clone detection approaches
discussed in section VI-A. These techniques always select one
match in the case of multiple possible node matches (e.g.,
statement 67 on the left side can be mapped to statements
68, 71, 80, and 83 on the right side), which, in the mapping
of Figure 1, coincides with the ‘first’ match according to the
actual order of the statements. As it can be observed from
Figure 1, the mapping is maximum, since all 25 statements
have been successfully mapped; however, it contains a large
number of differences between the mapped statements. The
minimization of the differences is of key importance for the
refactoring of clones, since it directly affects the number of
parameters that have to be introduced in the extracted method
containing the common functionality, as well as the feasibility
of the refactoring transformation. Figure 2 depicts the optimal
mapping, which is again maximum in terms of the number

106

1 Function bottomUpMatch(nodePair, solution)
Data: nodePair represents a pair of matching CDT

nodes (nodei, nodej)
Result: solution contains a set of CDT node pairs

representing a complete subtree match
2 append nodePair to solution
3 siblingsi ← nodePair.nodei.siblings
4 siblingsj ← nodePair.nodej .siblings
5 matchedSiblings ← ∅
6 tempSolution ← ∅
7 foreach siblingi ∈ siblingsi do
8 foreach siblingj ∈ siblingsj do
9 if compatibleAST(siblingi, siblingj) and

10 not alreadyMatched(siblingj) then
11 pair ← (siblingi, siblingj)
12 pairs ← topDownMatch(pair)
13 if exactlyPairedSubtrees(pairs) then
14 add pair → matchedSiblings
15 append pairs to tempSolution
16 break // first-match
17 end if
18 end if
19 end foreach
20 end foreach
21 if |matchedSiblings| = |siblingsi| = |siblingsj |

then
22 append tempSolution to solution
23 parenti ← nodePair.nodei.parent
24 parentj ← nodePair.nodej .parent
25 if compatibleAST(parenti, parentj) then
26 pair ← (parenti, parentj)
27 bottomUpMatch(pair, solution)
28 end if
29 end if
30 end

Algorithm 1: Recursive function returning the maximum
exactly paired subtree match starting from a given node pair.

of mapped statements, but it has also the minimum number
of differences between the mapped statements. Clearly, the
bodies of the if/else if statements in the left and right
side of Figure 2 are ‘symmetrical’ to each other. Consequently,
parameterizing the differences in the conditional expressions
of the ‘symmetrical’ if/else if statements makes easier
the refactoring of the clones and introduces less parameters to
the extracted method.

The core of our PDG mapping technique is a divide-and-
conquer algorithm that breaks the initial mapping problem into
smaller sub-problems based on the control dependence struc-
ture of the isomorphic CDTs extracted in the previous step.
In a nutshell, Algorithm 2 performs a bottom-up processing
of every level in the CDTs. At each level it uses all possible
pairwise combinations of the matching control predicate nodes
as starting points for a Maximum Common Subgraph (MCS)
algorithm that is restricted in mapping the PDG subgraphs

Fig. 1. Non-optimal mapping with 25 mapped nodes and 24 differences.

Fig. 2. Optimal mapping with 25 mapped nodes and 2 differences.

containing the nodes nested under the currently processed
pair of control predicate nodes. After the examination of all
possible matching combinations the best sub-solution (i.e., the
solution with the maximum number of mapped nodes and the
minimum number of differences between them) is appended
to the final solution.

The detection of the Maximum Common Subgraph is a well
known NP-complete problem for which several optimal and
suboptimal algorithms have been proposed in the literature.
Conte et al. [14] compared the performance of the three most
representative optimal algorithms, which are based on depth-
first tree search. All three algorithms have a factorial worst
case time complexity with respect to the number of nodes in
the graphs, in the order of (N2+1)!

(N2−N1+1)! , where N1 and N2 are
the numbers of nodes in graphs G1 and G2, respectively [14].
The differences among the three algorithms actually lie only
in the information used to represent each state of the search
space, and in the kind of the heuristic adopted for pruning
search paths [14].

The reason we apply this divide-and-conquer approach
is that the direct application of a MCS algorithm on the
original problem (i.e., the complete graphs) is likely to cause

107

1 Function PDGMapping(CDTi, CDTj)
Data: Two isomorphic CDTs
Result: The final mapping solution as finalSolution

2 leveli ← CDTi.maxLevel
3 levelj ← CDTj .maxLevel

/* an initially empty solution */
4 finalSolution ← ∅
5 while leveli ≥ 0 and levelj ≥ 0 do
6 cpNodesi ← nodes at leveli of CDTi

7 cpNodesj ← nodes at levelj of CDTj

8 foreach cpi ∈ cpNodesi do
9 mcsStates ← ∅

10 foreach cpj ∈ cpNodesj do
11 if compatibleAST(cpi.parent, cpj .parent)
12 and compatibleAST(cpi, cpj) then
13 mapping ← (cpi, cpj)
14 root ← createState(mapping)
15 search(root, mapping)
16 get the maximum common subgraph

from root & add it to mcsStates
17 end if
18 end foreach
19 select the best state from mcsStates &

append it to finalSolution
20 end foreach
21 decrement leveli
22 decrement levelj
23 end while
24 end

Algorithm 2: A divide-and-conquer PDG mapping process
based on control dependence structure.

a combinatorial explosion. As the number of possible matches
for the nodes increases, the width of the search tree constructed
by the MCS algorithm grows rapidly as a result of the numer-
ous combinatorial considerations to be explored. In order to
reduce the risk of combinatorial explosion, we decided to take
advantage of the control dependence structure of the duplicated
code fragments.

Figure 3 shows the CDTs for the duplicated code fragments
of Figure 1. In level 2 of the CDTs, node 67 on the left
side can be mapped to nodes 68, 71, 80, and 83 on the right
side. Consequently, there are four possible matching nodes
for node 67 and four node pairs to be used as starting points.
All sub-solutions resulting from the aforementioned starting
points have the same number of mapped nodes, but only the
sub-solution generated from starting point (67, 80) has the
minimum number of differences (equal to zero).

For the implementation of our MCS search technique (Al-
gorithm 3), we have adopted the McGregor algorithm [15],
because it is simpler to implement and has a lower space
complexity, in the order of O(N1), since only the states
associated to the nodes of the currently explored path need
to be stored in memory. The other two algorithms require the
construction of the association graph between the two given

Fig. 3. The Control Dependence Trees for the code fragments of Figure 1.

1 Function search(pState, nodeMapping)
Data: pState represents a parent state in the tree
nodeMapping represents a pair of PDG nodes
(nodei, nodej) that have been already mapped
Result: Builds recursively a search tree.
The leaf nodes in the deepest level are states
corresponding to maximum common subgraphs
/* get incoming & outgoing edges */

2 Edgesi ← nodei.inEdges ∪ nodei.outEdges
3 Edgesj ← nodej .inEdges ∪ nodej .outEdges
4 foreach edgei ∈ Edgesi do
5 if edgei 6∈ pState.visitedEdges then
6 add edgei → pState.visitedEdges
7 foreach edgej ∈ Edgesj do
8 if compatibleEdges(edgei, edgej) then
9 vNi ← edgei.otherEndPoint

10 vNj ← edgej .otherEndPoint
11 if compatibleAST(vNi, vNj) and
12 not alreadyMapped(vNi) and
13 not alreadyMapped(vNj) then
14 mapping ← (vNi, vNj)
15 state ← createState(mapping)
16 if not pruneBranch(state) then
17 add state → pState.children
18 search(state, mapping)
19 end if
20 end if
21 end if
22 end foreach
23 end if
24 end foreach
25 end

Algorithm 3: Recursive function building a search tree.

graphs, which in the worst case can be a complete graph with
a space complexity in the order of O(N1 · N2). Given two
PDGs, namely PDGi and PDGj , Algorithm 3 enforces the
following constraints:

1) An edge of PDGi is traversed only once in each path
of the search tree (line 5).

2) A node from PDGi is mapped to only one node from
PDGj in each path of the search tree (lines 12 and 13).

108

Algorithm 3 builds recursively a search tree by visiting the
pairs of mapped PDG nodes in depth-first order. Each node in
the search tree is created when a new pair of PDG nodes is
mapped and represents a state of the search space. Each state
keeps track of all visited edges and mapped PDG nodes in its
path starting from the root state (function createState copies
the visited edges and mapped nodes from the parent state to
the child state). Function pruneBranch (line 16) examines the
existence of other leaf states in the search tree that already
contain the node mappings of the newly created state. In such
a case, the branch starting from the newly created state is
pruned (i.e., not further explored). The reason we added this
condition is because we realized that in several cases the search
algorithm was building branches containing exactly the same
node mappings, but in different order. The leaf states in the
deepest level of the search tree correspond to the maximum
common subgraphs.

C. Examined Preconditions

After the completion of the matching process, we need
to determine whether the duplicated code can be safely
extracted into a common method. According to Opdyke
[16], each refactoring should be accompanied with a set of
preconditions, which ensure that the behavior of a program
is preserved by the refactoring. If any of the preconditions
is violated, then the refactoring is not applicable, or its
application would cause a change in the program behavior.
In this section, we define a set of preconditions that should
be examined before the refactoring of duplicated code.�
�

�
�

Precondition 1: The parameterization of differences
between the matched statements should not break existing
data-, anti-, and output-dependences.

In order to extract the duplicated code into a common
method, the differences between the matched statements
should be parameterized. Essentially, this means that the
expressions being different should be passed as arguments
to the extracted method call, and therefore these expressions
will be evaluated (or executed) before the execution of
the extracted duplicated code. Obviously, a change in the
evaluation or execution order of the parameterized expressions
could cause a change in the program behavior.

In Figure 4(a), methods m1 and m2 in class B contain
exactly the same code with the exception of a difference in
method calls a.foo() and a.bar(). In the first statement,
both methods call a.getX() to read attribute x from object
reference a. In the next statement, the value of attribute x
is modified through method calls a.foo() and a.bar(),
respectively. As a result, there exists an anti-dependence
due to variable a.x from the first to the second statement
of methods m1 and m2, respectively. In order to merge the
duplicated code, the common statements are extracted in
method ext(), as shown in Figure 4(b), and expressions
a.foo() and a.bar() are passed as arguments in the
calls of the extracted method. This transformation breaks
the previously existing anti-dependence, since after the

(a) Before refactoring (b) After refactoring

Fig. 4. Parameterization of a difference breaking an existing anti-dependence.

refactoring, variable a.x is first modified and then read. As
a matter of fact, a new inter-procedural data-dependence due
to variable a.x is introduced after refactoring. The breaking
of the original anti-dependence is causing a change in the
behavior of the program. In the original version in Figure
4(a), the execution of method test results in m1 printing 0
and m2 printing 1, while in the refactored version in Figure
4(b) the execution of method test results in m1 printing
1 and m2 printing 6. In a similar manner, the breaking of
data-dependences or output-dependences could also cause a
change in the program behavior.�
�

�
�

Precondition 2: The unmatched statements should be
movable before or after the matched statements without
breaking existing data-, anti-, and output-dependences.

Obviously, the statements within the duplicated code
fragments that have not been matched cannot be extracted
along with the matched statements. As a result, they have
to be moved either before or after the execution of the
extracted method. The move of unmatched statements should
not break existing data-, anti-, and output dependences, as
in the case of Precondition #1. Under certain circumstances,
the unmatched statements could remain in their original
position by applying the Template Method design pattern
[17]. However, this is applicable only when the duplicated
code fragments belong to subclasses of the same superclass,
the unmatched statements are “symmetrically” placed in the
same level within the control structures of the duplicated

109

code fragments, and the unmatched statements can form
a method returning at most one variable of the same type [18].�

�
	Precondition 3: The duplicated code fragments should

return at most one variable of the same type.

In Java a method can return the value of one variable
at most, since all method arguments are passed by value.
As a result, the duplicated code fragments should return at
most one variable to the original method from which they
are extracted. In the case of multiple variables being returned
by the duplicated code fragments, an alternative approach for
refactoring could be to decompose the original clones into
sub-clones having a distinct functionality [12] (i.e., each sub-
clone contains the statements required for the computation
of a single variable). However, this kind of decomposition
might not eliminate completely the duplication, since some
statements may be required for the computation of multiple
variables.�
�

�
�

Precondition 4: Matched branching (break, continue)
statements should be accompanied with corresponding
matched loop statements.

In Java the unlabeled break statement is used to terminate
the innermost for, while, or do-while loop. The
unlabeled continue statement is used to skip the current
iteration of the innermost for, while, or do-while loop.
As a result, when two branching statements are matched the
corresponding loops should be also matched. Otherwise the
extraction of a branching statement without the corresponding
loop would cause a compilation error.

V. EVALUATION

To evaluate the effectiveness of our approach on the unifica-
tion and refactoring of clones, we compared it against CeDAR
[9], a state-of-the-art clone refactoring tool. Tairas and Gray
[9] created a benchmark containing the Type-2 clones detected
in 9 open-source projects by Deckard [10]. In their evaluation,
they compared CeDAR against Eclipse IDE on a subset of
the clone groups detected by Deckard. More specifically, they
considered only the clone groups in which all clones of the
group belong to the same Java file. The reason behind the
exclusion of the clone groups in which the clones are scattered
in different classes is that CeDAR essentially extends the
refactoring engine of Eclipse, which supports only the basic
Extract Method refactoring (i.e., the extraction of a duplicated
code fragment from methods in the same class) and not more
advanced refactorings, such as the extraction of a duplicated
code fragment from methods in different subclasses and its
move to a new method in the common superclass (Extract
and Pull Up Method refactoring).

For the sake of a fair comparison, we will divide our
evaluation in two parts. In the first part, we will focus only
on the clone groups in which all clones belong to the same
file, to make possible a direct comparison with CeDAR. In
the second part, we will report the results of our approach for

the clone groups in which the clones are scattered in different
files.

Within the context of the experiment we applied the fol-
lowing work flow. For each clone group reported by Deckard
and for each clone within the group we generated the CDT
representing its control dependence structure. The first step
of our approach (i.e., finding isomorphic subtrees within the
original CDTs given as input) was skipped, since Deckard
always returns clones having an identical control dependence
structure. Next, we applied the two subsequent steps of our
approach, namely the mapping of the Program Dependence
Subgraphs corresponding to the clones (Section IV-B), and
the examination of preconditions (Section IV-C). In the case
where a clone group had more than two clones, then the
aforementioned work flow was applied to all possible pairs
of clones within the group. A clone group was considered
refactorable if the total list of violated preconditions resulting
from all possible pairs of clones within the group was empty.

Table III presents the number of clone groups assessed as
refactorable by CeDAR and JDeodorant (the tool implement-
ing the proposed technique), respectively. Projects Hibernate
3.3.2 and Squirrel-SQL 3.0.3 have been excluded from the
analysis, because the Deckard clone detection results provided
by [9] did not correspond to the source code of the afore-
mentioned versions. We have contacted the authors about this
issue, but they were not able to provide the actual source
code versions from which the clone detection results were
derived. Table IV presents additional clone groups (in which
clones belong to different Java files) assessed as refactorable
by JDeodorant.

TABLE III
REFACTORABLE CLONE GROUPS FOUND BY CEDAR, AND JDEODORANT

Project CG1
* CeDAR JDeodorant ∆

Apache Ant 1.7.0 120 28 (23%) 50 (42%) +79%
Columba 1.4 88 30 (34%) 41 (47%) +37%
EMF 2.4.1 149 14 (9%) 54 (36%) +286%
JMeter 2.3.2 68 11 (16%) 20 (29%) +82%
JEdit 4.2 157 20 (13%) 57 (36%) +185%
JFreeChart 1.0.10 291 62 (21%) 87 (30%) +40%
JRuby 1.4.0 81 23 (28%) 35 (43%) +52%

Total 954 188 (20%) 344 (36%) +83%
* column CG1 refers to the total number of clone groups in which

all clones belong to the same Java file.

TABLE IV
ADDITIONAL REFACTORABLE CLONE GROUPS FOUND BY JDEODORANT

Project CG2
* JDeodorant

Apache Ant 1.7.0 211 42 (20%)
Columba 1.4 275 66 (24%)
EMF 2.4.1 58 12 (21%)
JMeter 2.3.2 225 68 (30%)
JEdit 4.2 101 21 (21%)
JFreeChart 1.0.10 337 121 (36%)
JRuby 1.4.0 181 43 (24%)

Total 1388 373 (27%)
* column CG2 refers to the total number of clone groups in which

clones belong to different Java files.

110

A. Discussion

As it can be observed in Table III, JDeodorant was able
to find a significantly larger number of refactorable clone
groups compared to CeDAR in all examined projects. More
specifically, on average JDeodorant found as refactorable 36%
of the clone groups in which clones belong to the same file,
while CeDAR found only 19.7%. This corresponds to an
overall increase of 83% over CeDAR. In particular projects,
such as EMF, JDeodorant found almost 3 times more refac-
torable clones than CeDAR. It should be noted that there
was no case found by CeDAR that could not be found by
JDeodorant. This significant increase in the percentage of
refactorable clone groups can be mainly attributed to the
applied AST matching mechanism, which enabled a more
flexible unification of duplicated statements with non-trivial
differences. Additionally, in some cases the minimization of
differences in the mapping of the duplicated statements led to
the elimination of precondition violations.

Table IV presents the number of additional clone groups
that were found as refactorable by JDeodorant. These cases
refer to clone groups in which clones belong to different Java
files. On average, JDeodorant assessed as refactorable 27% of
these clones groups. The difference in the percentage of clones
within the same and different files found as refactorable (36%
vs. 27%) probably indicates that the clones within the same
files have a stronger similarity and their unification is easier.

Another interesting insight, presented in Table V, is that
7% of the total non-refactorable clone groups violate only
precondition #3 (i.e., the duplicated code fragments return
more than one variable). All these cases can be actually
refactored by decomposing the original clones into sub-clones
[12], where each sub-clone contains the statements required
for the computation of a single returned variable. If these
cases were considered as refactorable, the total percentage of
refactorable clone groups found by JDeodorant would be equal
to 36% (837 out of 2342 clone groups in total).

TABLE V
NON-REFACTORABLE CLONE GROUPS VIOLATING ONLY PRECOND. #3

Project NR* Violations

Apache Ant 1.7.0 239 27 (11%)
Columba 1.4 256 7 (3%)
EMF 2.4.1 141 6 (4%)
JMeter 2.3.2 205 6 (3%)
JEdit 4.2 180 14 (8%)
JFreeChart 1.0.10 420 55 (13%)
JRuby 1.4.0 184 5 (3%)

Total 1625 120 (7%)
* column NR refers to the total number of non-refactorable clone

groups, which is equal to (CG1 + CG2) minus the total number
of refactorable clone groups found by JDeodorant.

B. Threats to Validity

A major threat to the external validity of the study is related
to the use of a single clone detection tool (i.e., Deckard) for
the collection of clones. It is reasonable to expect that other
clone detection tools might be able to detect more advanced

clones, which are possibly harder to refactor. Additionally, we
cannot assume that the clones reported by Deckard constitute
representative cases that would be detected by the majority
of the clone detection tools. However, the reason we selected
this particular tool was to make possible a direct comparison
with a competitive clone refactoring tool (i.e., CeDAR) on the
same dataset that was used for its evaluation [9].

Another possible threat to the external validity of the study
is the inability to generalize our findings beyond the examined
open-source systems. The systems used in the evaluation of
our technique exhibit a variation in both their size, ranging
from 50 to 120 KLOC, as well as in their application domain,
including a build tool (Ant), an email client (Columba), a
modeling framework (EMF), a server performance testing tool
(JMeter), a text editor (JEdit), a chart library (JFreeChart), and
a programming language (JRuby). These two variation points
certainly affect the characteristics of the detected clones with
respect to their size and domain-specificity, allowing for more
generalizable results.

VI. RELATED WORK

We organized related work in two groups, namely PDG
mapping techniques and clone refactoring techniques, since
the proposed approach deals with both research problems.

A. PDG Mapping Techniques

Komondoor and Horwitz [19] apply slicing on PDGs to find
isomorphic subgraphs that represent code clones. The advan-
tage of this approach is the detection of non-contiguous clones
(i.e., clones with gaps), clones with re-ordered statements, and
clones intertwined with each other. Two nodes are matched if
the corresponding statements are syntactically identical (i.e.,
their AST representation has the same structure) allowing only
differences in variable names and literal values.

Krinke [20] proposed an approach to identify code clones
by finding the maximal similar subgraphs in two PDGs by
induction from a pair of starting vertices. To reduce the
complexity of the algorithm, he considers only a subset of
vertices (i.e., predicate vertices) as starting points, and restricts
the maximum length of the explored paths using a k-limit. One
important limitation is that the running time of the algorithm
explodes as k-limit increases. Another limitation is that the
use of k-limit may lead to an incomplete solution (i.e., the
selected k-limit may be insufficient for detecting all possible
matching vertices).

Shepherd et al. [21] implemented an automated aspect
mining technique exploiting the PDG and AST representations
of a program. The proposed algorithm, inspired by [20] and
[19], starts by matching the control dependence subgraphs of
two compared PDGs to extract all possible matching solutions.
Next, it filters out the undesirable matching solutions based on
data dependence information. A limitation is that the algorithm
always starts from the method entry nodes, and thus will fail to
match control dependence subgraphs nested in different levels.

Higo and Kusumoto [22] improved Komondoor’s technique
[19] by extending the PDG representation and introducing

111

some heuristics to enhance code clone detection. More specif-
ically, they introduced new edges called execution-next links
to improve the ability to detect contiguous code, and merged
the directly-connected equivalence nodes in order to reduce
the computational cost of identifying isomorphic subgraphs.

Speicher and Bremm [23] propose a stepwise unification
process of Type-3 clones based on PDG mapping. They
also suggest that differences in expression operators can be
parameterized using lambda expressions (a feature introduced
in Java 8). The process of statement unification allows for
differences in the identifiers of local variables, parameters,
fields, and method calls, differences in literals, differences in
the types of declared objects, and finally, differences in the
order of parameters in method calls.

The common limitation of all aforementioned techniques is
that they do not explore the entire search space of possible
solutions and therefore may return a non-optimal solution. In
contrast to MCS approach that builds a search tree examining
all possible combinations in the case of multiple node matches,
the aforementioned techniques always select one match for
each node, essentially exploring only a single path of the entire
search tree. In addition, the applied node matching process
allows only for differences in variable names and literal values,
thus missing potential node matches that would lead to a better
solution.

B. Clone Refactoring Techniques

Higo et al. [24] proposed a metric-based approach to suggest
refactoring opportunities for software clones. The proposed
metrics take as input a set of clones and quantify properties
such as the degree of coupling in terms of the number of
referenced and assigned variables within the clones, and the
dispersion of the clones in the class hierarchy. The refactoring
opportunities (Extract or Pull Up Method) are suggested by
checking some conditions, which compare the metric values
with some fixed thresholds.

Choi et al. [25] proposed a method combining clone metrics
to extract code clones for the purpose of refactoring. These
metrics take as input a set of clones and compute the average
length of token sequences within the clones, the size of the
clone set, and the ratio of non-repeated token sequences within
the clones. The metric values are combined in order to rank
the clone sets detected in a system. The top ranked clone sets
constitute more interesting refactoring opportunities according
to a case study.

Tairas and Gray [9] extended the Eclipse refactoring en-
gine to enable the processing of more types of differences
among duplicated code fragments, such as differences in field
accesses, string literals, and method calls without arguments,
in addition to differences in local variable identifiers. The
evaluation on the Type-2 clones detected in 9 open-source
projects using the Deckard clone detection tool [10] revealed
that the aforementioned enhancements in the matching of
duplicated code increased the percentage of refactorable clones
from 10.6% to 18.7% on average. The authors mention as fu-
ture extensions the addition of more parameterized differences

(e.g., local variable identifiers replaced with method calls), the
support of additional types of refactorings for clones belonging
in different classes, and the creation of a mechanism for the
refactoring of sub-clones.

Hotta et al. [18] proposed an approach to refactor Type-
3 clones by introducing an instance of the Template Method
design pattern [17]. Their technique detects isomorphic sub-
graphs in the PDGs of two methods containing the clones.
Next, the isomorphic subgraphs that constitute the common
process of the examined methods are pulled up in a method
of the base class. The remaining code fragments that do not
belong to the detected isomorphic subgraphs (i.e., unmatched
statements) constitute the unique processes and are extracted
into methods within each derived class. For each pair of unique
processes introduced in the derived classes an abstract method
is created in the base class that is called from the common
process at the point where the corresponding unmatched
statements were found.

Bian et al. [26] proposed SPAPE, a semantic-preserving
amorphous procedure extraction technique, for the automatic
refactoring of Type-3 (near-miss) clones. SPAPE applies amor-
phous transformation on the PDGs of the clones in order
to replicate if predicates and partition loop structures. The
unmatched statements are merged by inserting control vari-
ables and conditional statements in the AST of the extracted
procedure. SPAPE supports procedural code written in the C
programming language.

Goto et al. [27] proposed an approach based on slice-based
cohesion metrics for the merging of clones. Their approach
takes as input a pair of similar methods and first detects
syntactic differences between them through AST differencing.
Next, it finds pairs of code fragments within the methods that
constitute valid Extract Method candidates (the validation is
performed by examining a set of preconditions). Finally, the
detected candidates are ranked based on slice-based cohesion
metrics. Highly cohesive candidates can be extracted as mod-
ules implementing a single feature.

VII. CONCLUSIONS AND FUTURE WORK

This work is the first step towards a broader research
goal, namely assisting developers in the refactoring of clones.
To this end, we developed a clone unification and refac-
toring technique that overcomes the limitations of previous
approaches. More specifically, the proposed technique can
detect and parameterize a larger set of non-trivial differences
between the clones, it can process clones that do not have an
identical control dependence structure or do not expand over
a valid block region, it can find an optimal mapping between
the statements of the clones that minimizes the number of
differences in the mapped statements, and finally it examines a
set of preconditions to determine whether a clone group can be
safely refactored without altering program behavior. Currently,
we are working on an interactive visualization of clone pairs,
where the developer can be informed about the differences
between the clones causing precondition violations (i.e., the
differences hindering the safe refactoring of the clones), and

112

also get suggestions about changes that could be applied in
order to make the clones refactorable.

In the evaluation of our approach, we performed a direct
comparison with CeDAR [9], a tool specialized in the refac-
toring of Type-2 clones, on a set of 2342 clone groups detected
in 7 open-source projects. Our technique managed to find 83%
more refactorable clone groups than CeDAR, and additionally
assessed as refactorable 27% of the clone groups in which
clones belong to different Java files (a feature not supported
by CeDAR). Furthermore, the study revealed that 36% of
the clone groups in the examined projects can be refactored
directly or in the form of sub-clones (Section V-A). This
result is an encouraging starting point for further research
developments in the refactoring of clones.

As future work we are planning to extend the evaluation of
the proposed technique on more challenging cases of Type-3
clones. To achieve this goal, we will first create a refactoring
benchmark of Type-3 clones in open-source projects using
state-of-the-art tools specialized in the detection of Type-3
clones [28]. Next, we will develop a decision tree to deter-
mine the most appropriate refactoring strategy based on the
particular characteristics of the unmatched statements in gaps.
For example, if the statements in the gaps cannot be moved
before or after the clones, then we should consider more
complex refactoring transformations, such as the introduction
of the Template Method design pattern. Additionally, we are
planning to extend our AST matching mechanism in order to
support the matching of different types of control predicate
statements. For example, there may exist clones in which a
traditional for loop has been replaced with an equivalent
enhanced for or a while loop, or a chain of if/else if
conditional statements has been replaced with an equivalent
switch statement. Finally, we are also planning to apply
expression transformation techniques [29] in order to support
the unification of semantically equivalent expressions that have
a different syntax. In this way, we could further reduce the
number of expressions that require parameterization.

ACKNOWLEDGMENT

The authors would like to thank NSERC and the Faculty of
Engineering and Computer Science at Concordia University
for their generous support.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” School of Computing, Queens University, Tech. Rep., 2007.

[2] A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in Proceedings of the 24th IEEE International Confer-
ence on Software Maintenance, 2008, pp. 227–236.

[3] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proceedings of the 31st International Conference on
Software Engineering, 2009, pp. 485–495.

[4] M. Mondal, C. K. Roy, and K. A. Schneider, “An empirical study on
clone stability,” SIGAPP Appl. Comput. Rev., vol. 12, no. 3, pp. 20–36,
Sep. 2012.

[5] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Clone management for evolving software,” IEEE Transactions
on Software Engineering, vol. 38, no. 5, pp. 1008–1026, 2012.

[6] R. Koschke, “Frontiers of software clone management,” in Frontiers of
Software Maintenance, 2008, pp. 119–128.

[7] N. Tsantalis and G. Panamoottil Krishnan, “Refactoring clones: A
new perspective,” in Proceedings of the 7th International Workshop on
Software Clones, 2013, pp. 12–13.

[8] G. Panamoottil Krishnan and N. Tsantalis, “Refactoring clones: An
optimization problem,” in Proceedings of the 29th IEEE International
Conference on Software Maintenance ERA Track, 2013.

[9] R. Tairas and J. Gray, “Increasing clone maintenance support by unifying
clone detection and refactoring activities,” Inf. Softw. Technol., vol. 54,
no. 12, pp. 1297–1307, Dec. 2012.

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones,” in Proceedings of
the 29th International Conference on Software Engineering, 2007, pp.
96–105.

[11] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, Jul. 1987.

[12] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods,” J. Syst.
Softw., vol. 84, no. 10, pp. 1757–1782, Oct. 2011.

[13] G. Valiente, Algorithms on Trees and Graphs. Springer-Verlag, 2002.
[14] D. Conte, P. Foggia, and M. Vento, “Challenging complexity of maxi-

mum common subgraph detection algorithms: A performance analysis
of three algorithms on a wide database of graphs,” J. Graph Algorithms
Appl., vol. 11, no. 1, pp. 99–143, 2007.

[15] J. J. McGregor, “Backtrack search algorithms and the maximal common
subgraph problem,” Software: Practice and Experience, vol. 12, no. 1,
pp. 23–34, 1982.

[16] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, IL, USA, 1992.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[18] K. Hotta, Y. Higo, and S. Kusumoto, “Identifying, tailoring, and sug-
gesting form template method refactoring opportunities with program
dependence graph,” in Proceedings of the 16th European Conference
on Software Maintenance and Reengineering, 2012, pp. 53–62.

[19] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in Proceedings of the 8th International Symposium on
Static Analysis, 2001, pp. 40–56.

[20] J. Krinke, “Identifying similar code with program dependence graphs,”
in Proceedings of the Eighth Working Conference on Reverse Engineer-
ing, 2001, pp. 301–307.

[21] D. Shepherd, E. Gibson, and L. L. Pollock, “Design and evaluation of
an automated aspect mining tool,” in Proceedings of the International
Conference on Software Engineering Research and Practice, 2004, pp.
601–607.

[22] Y. Higo and S. Kusumoto, “Code clone detection on specialized PDGs
with heuristics,” in Proceedings of the 15th European Conference on
Software Maintenance and Reengineering, 2011, pp. 75–84.

[23] D. Speicher and A. Bremm, “Clone removal in java programs as a
process of stepwise unification,” in Proceedings of the 26th Workshop
on Logic Programming, 2012.

[24] Y. Higo, S. Kusumoto, and K. Inoue, “A metric-based approach to
identifying refactoring opportunities for merging code clones in a java
software system,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 20, no. 6, pp. 435–461, 2008.

[25] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano, “Extracting
code clones for refactoring using combinations of clone metrics,” in
Proceedings of the 5th International Workshop on Software Clones,
2011, pp. 7–13.

[26] Y. Bian, G. Koru, X. Su, and P. Ma, “SPAPE: A semantic-preserving
amorphous procedure extraction method for near-miss clones,” Journal
of Systems and Software, vol. 86, no. 8, pp. 2077–2093, 2013.

[27] A. Goto, N. Yoshida, M. Ioka, E. Choi, and K. Inoue, “How to extract
differences from similar programs? A cohesion metric approach,” in
Proceedings of the 7th International Workshop on Software Clones,
2013.

[28] R. Tiarks, R. Koschke, and R. Falke, “An extended assessment of type-3
clones as detected by state-of-the-art tools,” Software Quality Journal,
vol. 19, no. 2, pp. 295–331, 2011.

[29] M. Harman, L. Hu, M. Munro, X. Zhang, D. Binkley, S. Danicic,
M. Daoudi, and L. Ouarbya, “Syntax-directed amorphous slicing,”
Automated Software Engineering, vol. 11, no. 1, pp. 27–61, 2004.

113

