
JDeodorant: Identification and Application of Extract
Class Refactorings

Marios Fokaefs
Department of Computing

Science
University of Alberta

Edmonton, AB, Canada
fokaefs@ualberta.ca

Nikolaos Tsantalis
Department of Applied

Informatics
University of Macedonia

Thessaloniki, Greece
nikos@java.uom.gr

Eleni Stroulia
Department of Computing

Science
University of Alberta

Edmonton, AB, Canada
stroulia@ualberta.ca

Alexander
Chatzigeorgiou

Department of Applied
Informatics

University of Macedonia
Thessaloniki, Greece

achat@uom.gr

ABSTRACT
Evolutionary changes in object-oriented systems can result
in large, complex classes, known as “God Classes”. In this
paper, we present a tool, developed as part of the JDeodor-
ant Eclipse plugin, that can recognize opportunities for ex-
tracting cohesive classes from “God Classes” and automati-
cally apply the refactoring chosen by the developer.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering

General Terms
Design

Keywords
refactoring, software reengineering, object-oriented program-
ming, clustering

1. INTRODUCTION
Software is being developed throughout its life cycle and

may constantly change even well after its release. Changes
usually include bugs being corrected, new features being
added, the code base being modified and extended, the de-
sign being adjusted, the development team and its practices
evolving. This often results in complex, unwieldy, inelegant,
difficult to understand and maintain modules, which in the

Copyright is held by the author/owner(s).
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

case of object-oriented software manifest themselves as large
and non-cohesive “God Classes” [4].

The problem of “God Classes” can be addressed by several
refactorings, all of which aim to extract some of their data
and functionality into other classes. The extracted elements
can be redistributed to the collaborators of the “God class”
(through the “Move Method” and “Move Attribute” refac-
torings) or repackaged as separate new classes (through the
“Extract Class” refactoring). In principle, the latter solution
is preferable, since it is less likely to reduce the cohesion of
the recipient classes.

The tasks of identifying problematic “God classes” and
choosing specific refactorings to improve them are not trivial
and require substantial experience and effort by the develop-
ers. Even when an opportunity for the“Extract Class”refac-
toring has been spotted, its actual application to the code
base is not trivial considering the need of ensuring (a) the
syntactic correctness of the codebase and (b) the preserva-
tion of the observable behavior of the system. For example,
in some cases the dependencies between class members span
across the entirety of the system or, in some other cases, the
refactoring cannot be performed because of inheritance or
synchronization violations. State-of-the-art IDEs sometimes
fail to address sufficiently these issues. For example, Eclipse
3.6 allows the user to extract attributes in a new class and
then perform a sequence of the “Move Method” refactorings,
to add behavior to this new class. This adds to the required
human effort to apply the refactoring. It would therefore be
desirable to build in IDEs or expand their existing toolkits
with the ability to suggest and carry out properly “Extract
Class” refactorings. Our tool automatically applies “Extract
Class” refactorings making all the necessary changes for the
system’s behavior and its syntactic correctness to be pre-
served.

The development of our plugin relies on two novel contri-
butions. First we developed a clustering method that ex-
amines the entities (i.e., attributes and methods) in all the
system classes to suggest refactorings that would potentially
improve the overall system design. The system-design qual-
ity is measured by the Entity Placement metric [5], com-

Copyright is held by the author/owner(s).
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05

1037



puted as the ratio of cohesion over coupling. The second
contribution of this work is the automation of the “Extract
Class” refactoring application. The user can preview the
changes using the Eclipse Preview Wizard. The tool is de-
veloped as part of the JDeodorant [1] Eclipse plugin. The
tool is available at the JDeodorant website1. A video of the
tool is also available on Youtube2 .

2. THE REFACTORING PROCESS

2.1 Identifying Extract-Class Opportunities
The tool identifies extract-class opportunities by applying

a hierarchical agglomerative clustering algorithm on a single
class using the Jaccard distance as the distance metric. The
distance between the attributes and methods of the class was
calculated by comparing the similarity of their entity sets.
The entity set of an entity (attribute or method) contains all
the members of the class that use or are used by the entity
in question.

Given a class, the algorithm starts by computing the en-
tity sets of each class entity, i.e., each attribute and method,
and placing each individual entity in a separate cluster.
Then, at each step, the algorithm chooses to merge the two
clusters (and their entity sets) that are closest to each other
according to the single-linkage criterion. The process stops,
when no more clusters can be merged since they are all more
distant to each other than the distance threshold. In our
experiment, we ran the algorithm for different values of the
threshold ranging from 0.1 to 0.9 with a 0.1 step because
a single fixed threshold is not sufficient to obtain all possi-
ble clusters that are produced by the hierarchical clustering
algorithm.

2.2 Ranking the Extract-Class Opportunities
The identified refactoring opportunities are virtually per-

formed in order to calculate the resulting Entity Placement
metric value without causing changes on source code. This
is achieved by changing the entity sets accordingly and recal-
culating the distances. To improve the performance of our
tool, we only recalculate the distances between the changed
entities (classes, methods and attributes) from the rest.

The resulting suggestions are then grouped by the source
class and presented in a tree-table format - see Figure 1,
point 5. The rows of the table correspond to candidate
refactorings. The columns of the table correspond to the
source class and the resulting entity-placement metric for
the system if the suggested refactoring is applied. The sug-
gestions are organized in groups which contain all the can-
didate refactorings suggested for a single source class. Each
group is assigned the lowest Entity Placement value among
its contained refactoring candidates. Eventually, the groups
are sorted in ascending order according to their assigned
Entity Placement value. The suggested refactorings that
produce a worse value than the one of the current system
are discarded. More details about the identification process
can be found in [2].

2.3 Applying the Chosen Refactoring
Refactoring, as defined by Fowler [3], is a change, which

alters the internal structure of the system’s code base but

1http://www.jdeodorant.com
2http://www.youtube.com/watch?v=h8K2M-lbDYo

does not affect its observable behavior. To ensure that we
fulfill the latter constraint, we have defined a set of precon-
ditions [2] that ensure - up to a certain degree - the stability
of the system’s functionality. At the same time, we have to
make sure that the changes effectuated by the refactoring do
not introduce any syntactic errors. To apply the refactor-
ing we used the ASTRewrite of Eclipse’s Java Development
Toolkit (JDT). To preview the changes we used the Preview
Wizard in Eclipse Language Toolkit (LTK).

The application of the Extract Class refactoring involves
the following steps. First, the algorithm removes the ex-
tracted entities from the source class and adds the new class
in the same package as the source class. Next, the bod-
ies of the extracted methods and the types of the extracted
fields are inspected and the algorithm adds the required im-
port declarations in the new class. Next, the extracted fields
are added in the new class as private attributes with public
accessors, in order to preserve the encapsulation principle.
Before adding the extracted methods to the new class, a few
issues must be considered. First, if the extracted method
assigns a field or invokes a method of the source class, it is
likely that it may change the state of source class instances.
Therefore, the source class must be passed as a parameter
to the new method when it is added to the newly extracted
class, so that the same change is feasible. On the other hand,
if an attribute of the source class is only read, it suffices to
add a parameter of the type of the accessed attribute in the
new method; in this way, the method does not unnecessarily
increase the coupling between the source and the extracted
class. Because these changes may alter the method’s sig-
nature, the algorithm has to modify the invocations of this
method in the rest of the extracted methods. As the final
step, the newly modified methods are added in the newly
extracted class. Finally, the source class is modified. First,
the algorithm checks if the extracted methods are also in-
voked by a third class (other than the source or the new
class). If this is true, the original source method is turned
into a method that delegates to the extracted one, so that
its public interface does not change. Then, a field having
the type of the newly created class is added in the source
class, it is instantiated, and the accesses of any members
of the new class are appropriately modified in the source
class. For example, if a method’s signature is changed, its
invocations in the source class need to be modified as well.

3. EXPERIMENTAL RESULTS
The effectiveness of the tool has been evaluated on the

JHotDraw system (version 5.3). We applied 16 of the sug-
gested refactorings and asked a professional in the business
of software quality assessment, to give his expert opinion
and answer three questions for each refactoring:

Q1. Does the extracted class describe a new concept?
Q2. Would you actually perform this refactoring, if a tool

suggested it?
Q3. Does it improve the understandability of the code?
In 12 cases (75%), the evaluator confirmed that the classes

suggested to be extracted indeed described a separate con-
cept. According to the expert two of these classes could
be extracted and used as utility or helper classes. Although,
they do not actually describe a new concept they can still be
extracted as new classes. In 9 cases (56%), the expert agreed
that he would perform the refactoring if it was suggested by
a tool. Interestingly, in 3 cases he claimed that he would

1038



Figure 1: JDeodorant in action. 1) The “Bad Smells” menu 2) The “God Class” view 3) The Project Explorer
4) The identification button 5) The expand icon and the tree-table format 6) The highlighted editor 7) The
apply button 8) The preview wizard

not have been able to identify the refactoring opportunities
by himself. In 9 cases, the expert notes that the performed
refactorings have a positive impact on the understandability
of the system.

During the evaluation, we discovered a few by-products of
the tool. In some cases, the code suggested to be extracted
was duplicated in the same or other classes. Another ap-
proach would be to extract one of them in a new class and
replace both instances of the duplicated code with references
to the extracted class. This type of duplication detection is
outside the scope of this tool at this point, and we are con-
sidering it as a potential extension. The proposed changes
can be manipulated further by the user to achieve better
results. In another interesting case, the extracted code was
totally disconnected from the rest of the class and was not
used anywhere else, indicating possibly dead code that needs
to be removed.

4. CONCLUSION
In this paper, we presented an extension for the JDedo-

rant Eclipse plugin. The tool employs a clustering technique
to identify extract-class refactoring opportunities and allows
the user to automatically perform the suggested refactorings
ensuring the syntactical correctness of the code and preserv-
ing its behavior. We evaluated the tool on the JHotDraw
system and asked for the expert assessment of a professional
evaluator on the effect of the applied refactorings as these
were suggested by the tool. The results of the evaluation
confirmed our method’s ability to identify new concepts.
Furthermore, the expert confirmed that a good percentage
of the proposed refactorings were good solutions that also
improved the understandability of the code.

In the future, we would like to explore the possibility of
combining our identification method with others, like code
duplication detection techniques, to improve our results. We
also plan to improve the interface of the tool with visualiza-
tions so that the user can better understand the results of
the identification process.

5. ACKNOWLEDGMENTS
The authors would like to thank Eric Bouwers and Yian-

nis Kanellopoulos for their participation in the evaluation
process. This work was supported by NSERC, iCORE and
IBM.

6. REFERENCES
[1] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou.

JDeodorant: Identification and Removal of Feature
Envy Bad Smells. 23rd International Conference on
Software Maintenance, pages 519–520, 2007.

[2] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and
J. Sander. Decomposing Object-Oriented Class
Modules Using an Agglomerative Clustering Technique.
25th IEEE International Conference on Software
Maintenance, pages 93–101, 2009.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring Improving the Design of
Existing Code. Addison Wesley, Boston, MA, 1999.

[4] A. J. Riel. Object-Oriented Design Heuristics. Addison
Wesley, Boston, MA, 1996.

[5] N. Tsantalis and A. Chatzigeorgiou. Identification of
Move Method Refactoring Opportunities. IEEE
Transactions on Software Engineering, 35(3):347–367,
2009.

1039


