
JDeodorant: Identification and Removal of Feature Envy Bad Smells

Marios Fokaefs, Nikolaos Tsantalis, Alexander Chatzigeorgiou 
Department of Applied Informatics, University of Macedonia 

54006 Thessaloniki, Greece 
{marios, nikos}@java.uom.gr, achat@uom.gr 

Abstract

In this demonstration we present an Eclipse plug-in 
that identifies Feature Envy bad smells in Java 
projects and resolves them by applying the appropriate 
Move Method refactorings. The main contribution is 
the ability to pre-evaluate the impact of all possible 
Move refactorings on design quality and apply the 
most effective one.

1. Introduction 

Placement of attributes/methods within classes in an 
object-oriented system is one of the most important 
analysis/design activities. However, this process is 
heavily dependent on the human factor and thus might 
lead to non-optimized systems in terms of design 
quality. Moving state and behavior between classes [3] 
can help to reduce coupling and increase cohesion, but 
it is non-trivial to manually identify where such 
refactorings should be applied. The identification of 
refactoring opportunities is one of the essential steps in 
the refactoring process [4]. 

To this end the proposed tool: a) automatically 
identifies problems related to the misplacement of 
methods (Feature Envy bad smells) in Java programs, 
b) ranks the refactorings that resolve the identified 
problems according to their impact on the design and 
c) automatically applies the most effective Move 
refactoring.   

2. Underlying methodology 

The identification of Feature Envy bad smells is 
based on the notion of distance between methods and 
system classes. The distance between a method m and
a class C, expresses the dissimilarity between the set of 
entities (methods and attributes) accessed by m and the 
set of entities belonging to C. A Feature Envy bad 
smell is identified (and a corresponding Move Method 

refactoring candidate is extracted) if the distance of a 
method from a system class is less than the distance of 
this method from the class that it belongs to.  

In a well designed system, the distances of the 
entities belonging to a class (inner entities) from the 
class itself, should be the smallest possible (high 
cohesion). At the same time the distances of the 
entities not belonging to a class (outer entities) from 
that class, should be as large as possible (low 
coupling). For each class, the ratio of average inner to 
average outer entity distances is a measure of how well 
entities have been placed in a class. The closer this 
ratio to zero is, the safer it can be concluded that inner 
entities have correctly been placed inside the class and 
outer entities to other classes. A system-level design 
quality measure (termed Entity Placement) is obtained 
by extracting the average for all classes. This measure 
can serve as a criterion for selecting the most effective 
solution among several suggested refactorings. One of 
the advantages of the proposed approach is that the 
effect of each candidate refactoring is calculated 
without actually applying it. Rather, refactorings are 
evaluated "virtually" meaning that only the 
corresponding entity sets are updated without altering 
the source code.

3. Tool overview 

The tool employs the ASTParser of Eclipse Java 
Development Tools (JDT) to analyze the relationships 
between system entities and apply move refactorings 
on source code. To the best of our knowledge there is 
no API in Eclipse to perform Move Method 
refactorings in Java projects. The tool can be 
downloaded from [1]. 

3.1. Identification of Feature Envy bad smells 

The user imports the system under study as a Java 
Project and opens Navigator View in Java Perspective.  

1-4244-1256-0/07/$25.00 © 2007 IEEE ICSM 2007519



Identify Bad 
Smells

Apply 
Refactoring

Figure 1. JDeodorant output showing identified Feature Envy bad smells 

Then, the user selects the Bad Smells item in the menu 
bar and triggers the Feature Envy action, which in turn 
opens the corresponding view. After pressing the 
Identify Bad Smells button the Feature Envy view lists 
both the identified bad smells as well as the candidate 
refactorings that resolve them, as shown in Figure 1. 
The view contains three columns: a) the Source Entity
column, showing misplaced methods (and the class to 
which they currently belong) representing an identified 
Feature Envy bad smell, b) the Target Class column, 
showing the class to which the Source Entity should be 
moved, thus representing a candidate Move Method 
refactoring, c) the Entity Placement column, showing 
the Entity Placement value resulting from the "virtual" 
application of the corresponding candidate refactoring.  

3.2. Ranking of Move refactorings 

The candidate Move refactorings are presented in 
ascending order according to the value of the Entity 
Placement column, in order to clearly highlight the 
most effective one. Moreover, the Feature Envy view 
includes an entry initialSystem, which corresponds 
to the Entity Placement value for the initial system. 
This helps to distinguish the candidate refactorings 
leading to an improvement of the design from those 
possibly causing deterioration.  

3.3. Application of Move Method refactorings 

In the Feature Envy view the user selects the entry 
corresponding to the Move Method refactoring he/she 
wishes to perform. The methodology suggests the 
selection of the refactoring with the lowest Entity 
Placement value; however, the user is free to select any 
of the candidate refactorings. The user should press the 
Apply Refactoring button (Figure 1) to actually 
perform the selected refactoring on source code.  

4. Evaluation 

The demonstrated tool has been applied on two 
widely known refactoring examples, namely Video 
Store [3] and LAN-simulation [2]. We have generated 
versions of both systems exactly before the application 
of the Move Method refactorings proposed by the 
authors. These versions are available at [1]. To check 
the validity of the tool we compared the refactorings 
proposed by the authors at each version to those 
automatically suggested. In the Video Store example, 
six out of six cases of Feature Envy bad smells have 
been successfully identified. In the LAN-simulation 
example, seven out of eight cases of Feature Envy bad 
smells have been successfully identified (the single 
missed case is due to the authors' choice to move a 
method based on conceptual rather than data access 
criteria).

5. References 

[1] Bad Smell Identification for Software Refactoring, 
http://java.uom.gr/~nikos/bad-smell-identification.html, 2007 

[2] S. Demeyer, F. Van Rysselberghe, T. Girba, J. Ratzinger, 
R. Marinescu, T. Mens, B. Du Bois, D. Janssens, S. Ducasse, 
M. Lanza, M. Rieger, H. Gall and M. El-Ramly, “The LAN-
simulation: A Refactoring Teaching Example”, 8th Int. 
Workshop on Principles of Software Evolution (IWPSE'05), 
Lisbon, Portugal, pp. 123-134, September 5-6, 2005. 

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, 
Refactoring: Improving the Design of Existing Code,
Addison Wesley, Boston, MA, 1999. 

[4] T. Mens, T. Tourwé, “A Survey of Software 
Refactoring”, IEEE Transactions on Software Engineering,
vol. 30, no. 2, pp. 126-139, February 2004. 

520


