
Decomposing Object-Oriented Class Modules Using an Agglomerative
Clustering Technique

Marios Fokaefs
Department of Computing Science

University of Alberta
Edmonton, Canada

fokaefs@cs.ualberta.ca

Nikolaos Tsantalis, Alexander Chatzigeorgiou
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

nikos@java.uom.gr, achat@uom.gr

Jörg Sander
Department of Computing Science

University of Alberta
Edmonton, Canada

joerg@cs.ualberta.ca

Abstract

Software can be considered a live entity, as it under-
goes many alterations throughout its lifecycle. Further-
more, developers do not usually retain a good design in
favor of adding new features, comply with requirements or
meet deadlines. For these reasons, code can become rather
complex and difficult to understand. More particularly in
object-oriented systems, classes may become very large and
less cohesive. In order to identify such problematic cases,
existing approaches have proposed the use of cohesion met-
rics. However, while metrics can identify classes with low
cohesion, they cannot identify new or independent concepts.
Moreover, these methods require a lot of human interpreta-
tion to identify the respective design flaws. In this paper, we
propose a class decomposition method using an agglomera-
tive clustering algorithm based on the Jaccard distance be-
tween class members. Our methodology is able to identify
new concepts and rank the solutions according to their im-
pact on the design quality of the system. Finally, our method
has been evaluated by two independent designers who were
asked to comment on the suggestions produced by our tech-
nique on their projects. The designers provided feedback
on the ability of the method to identify new concepts and
improve the design quality of the system in terms of cohe-
sion.

1. Introduction

Developing software can be a very long procedure. Dur-
ing this period, the code undergoes many changes and ma-
nipulations and may become large and complex. In addi-
tion, developers usually work under time pressure and may
neglect some very important design principles. The viola-
tion of these principles results in the appearance of design
problems in the code also known as “bad smells” [7]. To
remove bad smells from the code Opdyke [14] proposed
the process of refactoring. According to this notion, the
designer introduces some small formalized changes to the
code which are supposed to solve the design problems and
at the same time preserve the behavior of the program.

In this paper, we deal with a specific bad smell called
“God Class”. In object-oriented programming, there is a de-
sign principle which suggests that a class should implement
only one concept [13]. From the maintenance point of view,
this can also mean that a class should have only one reason
to change. The violation of this principle results in large and
complex classes or “God Classes” as they are more com-
monly known. This violation can occur in two ways: either
a class holds a lot of the system’s data in terms of number
of attributes (Data God Class) or it has a great portion of
the system’s functionality in terms of number and complex-
ity of methods (Behavioral God Class). In the first case, we
can either redistribute the attributes of the “God Class” or
move functionality (i.e., methods) from other classes closer
to the data. In the second case, we can either move func-
tionality from the “God Class” closer to the data of other
classes or split the class by extracting a cohesive and inde-

978-1-4244-4828-9/09/$25.00 2009 IEEE Proc. ICSM 2009, Edmonton, Canada

93

pendent piece of functionality [7] [2]. The latter is a refac-
toring called “Extract Class”.

In this work, we aim at identifying “Extract Class” op-
portunities by employing a clustering technique. As Tzer-
pos and Holt [23] suggest, clustering methods have a great
potential of being used in various Software Engineering
fields. Wiggerts [24] gives a detailed survey of clustering
methods and shows how they are or can be used for soft-
ware remodularization. More specifically, clustering meth-
ods can identify conceptually meaningful groups of similar
entities [20]. Therefore, in this paper we evaluate the perfor-
mance of a hierarchical agglomerative clustering technique
on the “God Class” problem. The intuition behind using
clustering in this case is that clusters may represent cohe-
sive groups of class members (methods and attributes) that
have a distinct functionality and can be extracted as separate
classes.

The contributions of the proposed methodology are the
following:

1. Identification of new concepts. We define a concept as
a distinct entity or abstraction for which a single class
provides a description.

2. Suggestion of behavior preserving refactoring solu-
tions for the identified problematic classes.

3. Ranking of the identified refactoring opportunities
based on their impact on the design quality as mea-
sured by the Entity Placement metric [22]

To evaluate the proposed methodology we have extended
an existing design flaw identification tool called JDeodor-
ant [6]. This tool, which is implemented as a plug-in for
the Eclipse platform, parses the code using an AST (Ab-
stract Syntax Tree) parser and identifies bad smells. The
methodology has been evaluated by two independent de-
signers, who provided feedback on the refactoring opportu-
nities identified for their systems. The designers assessed
the potential of the methodology to identify new concepts
and improve the design quality of their systems in terms of
cohesion.

The rest of the paper is organized as follows: Section 2
provides an overview of the related work. In Section 3, we
analyze the proposed methodology in depth. The results of
the evaluation are presented and discussed in Section 4 and
finally Section 5 concludes the paper.

2. Related Work

Several research works have dealt with the problem of
identifying God classes. Trifu and Marinescu [21] propose
a metrics-based method. They define God classes as “large,
non-cohesive classes that have access to many foreign data”

and use a formula based on complexity, cohesion and cou-
pling metrics to determine whether a class is problematic or
not. This method suffers from the fact that the thresholds
for the metrics are empirically or statistically determined
and thus may differ from system to system.

Tahvildari and Kontogiannis [19] propose two quality
design heuristics and use a diagnosis algorithm based on
complexity, cohesion and coupling metrics to identify de-
sign flaws. In this case, the thresholds are less tight and
vaguely defined (high/low) and may require human input.

DuBois et al. [4] propose a metrics oriented approach
meaning that their main aim is to improve the metrics rather
than use them as an identification criterion. For the iden-
tification, they use “guidelines” based on conceptual and
macroscopic criteria. For the God classes, the respective
guideline says: “Separate the responsibilities. Extract those
groups of methods and attributes that neither use nor are
used by other methods or attributes”. This method offers no
automation whatsoever and the guidelines are not formal-
ized in a way that would allow a degree of automation.

Finally, Demeyer et al. [2] suggest some conceptual cri-
teria to identify the God classes. According to this ap-
proach, a god class is a low cohesive and memory consum-
ing class. It usually has abstract names like “Controller”,
“Manager”, “Driver” or “System”. Any change to the sys-
tem may lead to a change of this class. It is often called the
“heart of the system”. In most of the cases, it is the hardest
class to maintain.

All of the above methods might be able to identify
problematic classes, but it remains uncertain whether they
can produce conceptually correct improvement suggestions
which are meaningful to the designer.

In the Software Reengineering literature, there have been
many works on remodularizing software modules. Man-
coridis et al. [11] propose a novel methodology for remod-
ularizing a software system. The aim is to produce good
clusters in terms of high cohesiveness (within the clusters)
and low coupling (between the clusters). They mainly use
hill-climbing and genetic algorithms. They produce the
Module Dependency Graph based on the source code and
then apply clustering on the resulting graph. They employ
the Modularization Quality measure to evaluate the clus-
ters that the algorithm produces. This measure favors Intra-
connectivity and penalizes Inter-connectivity. After finding
a sub-optimal partition using the hill-climbing and genetic
algorithms, they build a hierarchy of the clusters using the
Hierarchical clustering algorithm.

Doval et al. [3] consider the problem of identifying a
good partitioning as an optimization problem. They pro-
pose a genetic algorithm as a means to partition large soft-
ware systems using as an objective function the Modular-
ization Quality measure defined in [11]. In a similar work,
Shokoufandeh et al. [17] apply a spectral clustering algo-

94

rithm in order to remodularize a system. They also view
this process as an optimization problem using the Modular-
ization Quality measure as an objective function.

The main difference between the philosophy behind
these works and our approach, lies in the fact that they result
in a single solution that is close to the optimal one, which
the designer should accept or reject in its entirety. On the
contrary, the proposed method is essentially a stepwise ap-
proach, that extracts a set of refactoring suggestions ranked
by an appropriate metric.This offers the advantage of grad-
ual change of a system, allowing the designer to assess the
conceptual integrity of the refactoring suggestions at each
step.

Sartipi and Kontogiannis [16] propose a semi-supervised
clustering framework for recovering the software architec-
ture. They analyze the source code to retrieve the compo-
nent similarity, they cluster the components and, finally, the
user assigns the remaining modules to their closest clusters
or reallocates the modules among the clusters. They employ
the maximal association property (i.e., maximum number of
shared features) to introduce two new similarity measures,
namely association between entities and mutual association
between components. During the clustering phase the user
may select among a set of main seeds, around which the
new cluster will be built, or manually create a cluster.

All of the above methodologies propose remodulariza-
tion of software modules in a higher level, like package or
file level. Our method focuses on software remodularization
on a class level.

Simon et al. [18] suggest that visualization techniques
can be used to identify Extract Class opportunities. This
methodology defines dependency sets for each type of class
members (attributes and methods) in order to calculate the
Jaccard distance between class members. Using mapping
techniques, the entities are visually presented and then it is
upon the designer to decide whether there is an opportunity
to extract a class or not. The issue with visualization is that
the real spatial structure of the classes is unknown. More-
over, visualizing large classes can overwhelm the designer
and make it difficult for him to identify clear partitions. Our
methodology goes one step further by identifying clusters of
cohesive entities and presenting them to the designer ranked
according to their impact on the design of the whole system.

In a recent work, Joshi and Joshi [9] consider the prob-
lem of classes with low cohesion as a graph partitioning
problem. They focus on improving class cohesion by exam-
ining lattices based on the dependencies between attributes
and methods. A shortcoming of this method, as identified
by the authors, is that for large systems the lattices can be-
come very complex and thus it is more difficult for the de-
signer to inspect the lattice visually and identify problem-
atic cases. Moreover, while this method focuses on improv-
ing the cohesion of a class, it neglects the conceptual crite-

ria of the suggestions. The classes suggested to be extracted
can only contain methods, which are insufficient to describe
a concept. Finally, there is no indication that the suggested
refactorings will not affect the behavior of the program.

Finally, De Lucia et al. [10] propose a methodology that
takes into account both structural and conceptual criteria.
They build a weighted graph of the class methods based
on structural and semantic cohesion metrics, which then is
split using a MaxFlow-MinCut algorithm to produce more
cohesive classes. However, the semantic cohesion metric
is based on the names of classes and entities which can be
arbitrary and thus the results highly depend on the naming
policies used by the developers of a project. Furthermore,
by bipartitioning the graph it is possible to loose potential
clusters. For example, a class might consist of more than
two cohesive subclasses which could not be identified by
splitting the class. Finally, the attributes are not considered
during the calculation of the graph, but they are moved to
the extracted class. This might have undesirable effects on
the coupling of the system.

3. Methodology

The goal of the proposed methodology is the identifica-
tion of Extract Class refactoring opportunities. The method-
ology is applied to every class of a system regardless of its
cohesion. In this way, there is no need for defining thresh-
olds according to which a class will be examined or not. In
addition, a single threshold might not be sufficient to iden-
tify all problematic classes.

The identification of the Extract Class opportunities con-
sists of two main parts. Firstly, we use dependency infor-
mation from the code of the examined project in order to
calculate distances between class members and we apply a
clustering algorithm to identify cohesive groups of entities
that can be extracted as separate classes. Secondly, we em-
ploy a set of rules which assure that the classes suggested
to be extracted have a certain degree of functionality and
the suggested refactorings preserve the behavior of the pro-
gram. Finally, we rank the suggested refactorings according
to their impact on the design quality of the system.

3.1 Clustering

The clustering algorithm we use is a hierarchical ag-
glomerative algorithm. This algorithm works as follows:
Firstly, it assigns each entity to a single cluster. In each it-
eration it merges the two closest clusters. Finally, the algo-
rithm terminates when all entities are contained in a single
cluster. Eventually, the outcome of the algorithm is a hier-
archy of clusters. To determine the actual clusters we need
to choose a threshold value for the minimum distance as a

95

cut-off value. The hierarchy of the clusters is usually rep-
resented by a dendrogram. An example of a dendrogram is
shown in Figure 3. The leaves of the tree represent the en-
tities, the root is the final cluster and the intermediate nodes
are the actual clusters. The height of the tree represents the
different levels of the distance threshold in which two clus-
ters were merged.

In a hierarchical agglomerative clustering algorithm
there are two aspects that one should pay attention to. The
first is the linkage method and the second is the distance
threshold.

There are several methods used to determine the closest
clusters including the maximum distance between the mem-
bers of a clusters (complete linkage), the average distance
(average linkage) or the minimum distance (single linkage).
Maqbool and Babri [12] also propose the Weighted Com-
bined Algorithm as a linkage method. This algorithm takes
into account the strength of the dependency between two
entities (i.e., the number of times an entity is used by an-
other entity). Although this approach may be good for re-
modularization in higher level, in lower levels we consider
the presence of a dependency to be more important than its
strength. According to Anquetil and Lethbridge [1] com-
plete linkage favors more cohesive clusters, the single link-
age less coupled clusters and average linkage is somewhere
in-between. As our method is based on class member de-
pendencies, the cohesion of the newly created classes is ex-
pected to be of a fair or very good level. In other words, as
all entities will be connected, our algorithm is guaranteed to
produce fairly cohesive classes. Furthermore, cohesion is a
controlled variable due to the distance threshold that will be
discussed next. In contrast with cohesion, coupling is an un-
controlled variable. By selecting the single linkage method,
we have put emphasis on coupling so that the newly created
class be as loosely coupled as possible to the original one.

In our methodology, we do not define a fixed threshold
for the minimum distance, on the contrary we apply the al-
gorithm for several threshold values (ranging from 0.1 to
0.9) and we present to the user all the possible results. To
minimize the amount of information given to the user we
exclude any duplicate suggestion. A duplicate suggestion
occurs when two clusters, which were produced using a
different threshold value, contain exactly the same entities.
However, we do not exclude similar suggestions (i.e., when
the entities of a cluster are a subset of another cluster’s enti-
ties) because it is not certain whether a higher threshold can
produce better results than a lower one or vice versa.

We chose the agglomerative method over a partitioning
algorithm like K-means, because it is not easy to select the
number of clusters, while a distance threshold can be easily
estimated. K-means, as it is traditionally used in data min-
ing, requires that the entities are placed in a feature space
(i.e., space dimensions correspond to the data object at-

tributes). However, the spatial structure of a class cannot
be estimated accurately. This is because it is not known
how many dimensions are sufficient to map class members
in space and what these dimensions represent. Furthermore
testing every single possible value for k can deteriorate the
performance of the methodology dramatically. Partitioning
algorithms are also not robust to noise. By noise we mean
entities that are too far from the others and cannot be in-
cluded in any cluster. As it turns out object-oriented classes
usually produce rather sparse similarity matrices (i.e., a lot
of zero values) which correspond to a large amount of noise.

We did not choose a density-based algorithm because
density based algorithms are usually more parameterized.
A density based algorithm, like DBSCAN [5], needs two
parameters: the ε-neighborhood which defines a radius of
a point around which a dense subgroup (not a cluster) can
be defined and the MinPts which corresponds to the min-
imum points that need to exist in a subgroup. Then, the
subgroups are iteratively merged to form the dense clusters.
While we could define an ε value similar to the distance
threshold, it is not clear what the minimum number of enti-
ties in a neighborhood should be.

The distance metric we use is the Jaccard distance, which
according to Anquetil and Lethbridge [1] produces good re-
sults in software remodularization. To define the Jaccard
distance between two class members we employ the notion
of entity sets defined in [22]. According to this concept the
entity set of an attribute contains all the methods that access
this attribute and the entity set of a method contains all the
methods that are invoked by this method and all the attibutes
that are accessed by it. We extend the definition of the en-
tity set so that it also contains the entity itself. We do that
so that we can preserve the condition that says that dij = 0
iff i = j where dij is the Jaccard distance between entities
i and j. Without this extension, then two different entities
that access or were accessed by the same other entities (i.e.,
their entity sets were equal) would have a zero distance. We
also include attributes which are references to other classes
in the entity set of a method. A reference is essentially a
pipeline through which foreign entities are accessed. Since
we are interested in examining a class as a closed environ-
ment we consider references as local attributes and we ex-
clude from the entity sets of class members any foreign en-
tities that might be accessed through references. Based on
the defined of the entity sets we calculate the Jaccard dis-
tance between two entities α and β with entity sets A and
B respectively as follows:

dα,β = 1− |A ∩B|
|A ∪B|

(1)

To better understand the methodology, we will illustrate
its application on a simple synthetic example shown in Fig-
ure 1. In this example, we have a class with four attributes:

96

Figure 1: Source Code of a Synthetic Example

• a1 = name

• a2 = job

• a3 = officeAreaCode

• a4 = officeNumber

and three methods:

• m1 = changeJob

• m2 = modifyName

• m3 = getTelephoneNumber

Table 1 shows the distance matrix for this example and Fig-
ure 2 shows a graph representation of the class. In this
graph, the nodes represent attributes and methods and the
edges indicate that a dependency exists between two enti-
ties. Furthermore, in this graph representation the length
of the edges is proportional to the distances between the
class members. It is clear from the graph that there are two
distinct clusters shown in circles. We were able to identify
both clusters using the hierarchical algorithm and a distance
threshold of 0.65. Figure 3 shows the dendrogram produced
by the clustering algorithm.

3.2 Filtering the results

According to Martin Fowler’s definition refactoring is
a technique that alters the internal structure of the system

Table 1: Distance Matrix for the Class of Figure 1.

a1 a2 a3 a4 m1 m2

a2 0.4
a3 0.8 0.8
a4 0.8 0.8 0.67
m1 0.6 0.6 1 1
m2 0.6 0.6 1 1 0.5
m3 0.71 0.71 0.6 0.6 0.67 0.67

Figure 2: Graph corresponding to the Class of Figure 1.

but not its external behavior [7]. To this end, the proposed
methodology makes sure that the classes suggested to be
extracted have a certain degree of functionality and, at the
same time, the suggested refactorings preserve the behavior
of the program.

According to the preconditions required for assuring a
certain degree of functionality, the class suggested to be ex-
tracted should:

• contain more than one entity. A single member cannot
describe a concept sufficiently enough;

• contain at least one method. Data (i.e., attributes)
might be sufficient to identify a concept, but function-
ality (i.e., methods) is essential for the definition of a
class.

According to the preconditions required for behavior
preservation issues, the class suggested to be extracted
should:

• not contain a method that overrides any abstract or
concrete method of the super class of the source class;

• not contain a method that makes any super method in-
vocations;

• not contain a method that is synchronized or a method
that contains a synchronized block since the move of a
synchronized method could create concurrency prob-
lems to the objects of the source class

97

Figure 3: Dendrogram Resulting from the Application of
Hierarchical Algorithm for the Class of Figure 1.

Violation of the behavior preservation preconditions might
introduce compilation errors to the code or alter the external
behavior of the program.

To give an estimate of the impact of each suggested so-
lution on the design quality of the program, we use a novel
metric called Entity Placement (EP) [22], in order to rank
the refactoring suggestions and furthermore to filter out the
suggestions that have a negative impact, i.e., deteriorate the
Entity Placement value of the original system. Entity Place-
ment is a metric that combines the notions of coupling and
cohesion. It is also based on Jaccard distance using entity
sets, thus making it compliant to our method.

In the calculation of EP according to [22], the entity set
of an attribute a contains all the methods that access at-
tribute a, the entity set of a methodm contains all the meth-
ods that are invoked by method m and all the attibutes that
are accessed by m and, finally, the entity set of a class C
contains all the methods and attributes that belong to C.
Entity sets do not include:

• access methods (getters/setters)

• static attributes and methods

• delegate methods

• library entities

The value of Entity Placement for class C is the ratio of
its average distance from the entities that belong to class C
to its average distance from the entities that do not belong
to class C. The respective formula is:

EntityP lacementC =

∑
ei∈C

distance(ei,C)

|entities∈C|∑
ei /∈C

distance(ei,C)

|entities/∈C|

(2)

The value of the Entity Placement for a system is the
weighted average of the Entity Placement values of the
classes belonging to the system. The formula is:

EPSystem =
∑
Ci

|entities ∈ Ci|
|all entities|

EPCi (3)

To calculate the EP value without having to actually ap-
ply the refactoring on the source code, we apply it virtually
according to the following procedure:

1. We create a new empty class.

2. For each extracted entity we change its origin class
from the source class to the new class.

3. We update the entity sets of all the entities that access
or are accessed by the extracted entitities.

4. We insert the extracted entities in the entity set of the
new class.

5. We remove the extracted entities from the entity set of
the source class.

Finally, the suggestions are presented to the user sorted in
ascending order according to Entity Placement; the lower
the value, the more positive the impact to the design quality
of the system.

4. Evaluation

We applied our methodology to two projects and asked
the designers to give us their feedback. The designers were
asked to answer the following questions:

1. Can you find a name for the cluster of entities sug-
gested to be extracted? This will indicate whether the
method was able to identify a new concept.

2. Would you apply the proposed refactoring?

4.1 eRisk

eRisk is an electronic adaptation of the well-known
board game, developed by a group of undergraduate stu-
dents as part of a Software Engineering course. As under-
graduate students are usually less experienced, the project,
as expected, did not have a high design quality, a fact that
posed certain challenges to our method. While we were

98

able to recover a large number of problematic cases, there
were also some less meaningful suggestions mainly due to
the lack of design discipline. For example, concepts are not
well defined and they are highly coupled with each other.

We applied our method for seven threshold values rang-
ing from 0.1 to 0.7. For thresholds higher than 0.7 the
methodology just kept increasing the size of the already
proposed clusters thus making them less meaningful. We
also did not consider suggestions that would cause the En-
tity Placement value of the system to deteriorate. We asked
one of designers of the project to provide feedback on the
suggested refactoring opportunitits. The results are summa-
rized in Table 2.

Table 2: Results for eRisk

Total Assigned Applied
Suggestions Names

37 28 16

Out of the total 37 suggestions (without duplicates) the
designer of eRisk was able to assign a name to 28 (75,6%)
of the suggested clusters. This percentage is encouraging
and can show that our method is able to identify new con-
cepts and eventually improve the understandability of the
code. However, not all of these classes were finally quali-
fied to be applied by the designer.

In the second question, the designer of eRisk answered
that he would apply 33 (43,2%) of the suggested refactor-
ings. The main reason for accepting a suggestion was that
it actually proposed a new concept, which should indeed be
extracted in a separate class. Our methodology also identi-
fied two cases where the extracted entities were completely
disconnected from the rest of the class (i.e., they did not use
or were used by any other entity of the class) which is a
clear example of possible extraction.

The designer rejected the remaining the suggestions
mainly on the ground that the proposed change would not
have a significant impact on the desing quality or the un-
destandability of the code. Other reasons for rejecting a
suggestion were that the proposed class did not describe a
separate concept or that such a change would unnecessar-
ily increase the coupling of the system. The designer also
rejected several suggestions produced with a high threshold
value, as they would extract a large portion of the data or the
functionality of the source class. Finally, they were some
cases that the designer claimed that he would apply the sug-
gested refactoring if some more entities were included in
the extracted class. However, this problem was solved as
the threshold value was gradually increased.

During the application of our methodology on eRisk and
the discussion with its designer, we were able to observe
some very interesting by-products. In some cases, from

the classes suggested to be extracted, the designer was able
to identify that some of them could be reused in multiple
places. An interesting outcome of this result was that the
proposed classes were more like utilities. While they had
a relatively low correlation to the general concept of the
project, they could be used by several other classes in cal-
culations or initializations.

In several cases, we also observed opportunities to ex-
tract an abstract superclass or an interface. In many of the
GUI classes of the system the designer would use a method
that would initialize the attributes of a container (panel or
frame) and a method that would nullify the attributes to re-
lease memory resources. While the methods were slightly
different from class to class, they had the same role, thus it
would make sense to extract them in a higher level of the
class hierarchy.

Furthermore, we were able to identify opportunities to
move entities to another class instead of extracting them to
a new one. This approach was supported by the fact that
the designer assigned a name of an already existing class
to the newly extracted one. Finally, there was a case where
we identified an opportunity to extract an inner class. While
the designer agreed that the extracted entities indeed consti-
tuted a different concept, the application of such a refactor-
ing would dramatically increase the coupling of the system.
Therefore, extracting the entities into an inner class would
retain the original coupling of the system.

4.2 SelfPlanner

SelfPlanner [15] is an intelligent web-based calendar ap-
plication that plans the tasks of a user using an adaptation
of the Squeaky Wheel Optimization framework. It is the
outcome of a research project of the Artificial Intelligence
Group at the department of Applied Informatics, University
of Macedonia, Greece. It consists of a planning engine de-
veloped in C++ and a client/server application developed in
Java.

SelfPlanner can be considered as a rather mature project,
since it has been constantly evolving for more than two
years. Its developer is an experienced programmer who
has a deep knowledge of object-oriented design principles.
These facts justify the small number of Extract Class refac-
toring opportunities that were identified for SelfPlanner.
More specifically, the application of our methodology re-
sulted in 18 suggestions (excluding duplicates) with thresh-
old values ranging from 0.3 to 0.7 (using value 0.1 as incre-
ment step). Threshold values below 0.3 (i.e., 0.1 and 0.2)
and over 0.7 (i.e., 0.8 and 0.9) did not produce any results.
Moreover, the application of 4 out of the total 18 sugges-
tions would result in a higher Entity Placement metric value
compared to the value corresponding to the current system
(i.e., it would deteriorate the design quality of the system as

99

measured by Entity Placement metric), and as a result these
suggestions were excluded from the evaluation. The results
are summarized in Table 3.

Table 3: Results for SelfPlanner

Total Assigned Applied
Suggestions Names

14 12 9

The independent designer was able to assign a name to
12 (86%) clusters of entities that were suggested to be ex-
tracted as separate classes. The employed clustering tech-
nique was able to capture groups of methods that not only
accessed common fields but more importantly had relevant
functionality. For example, there was a case that the em-
ployed clustering algorithm successfully grouped all the en-
tities which were related with the functionality of the Sub-
ject role in an Observer pattern instance [8]. The grouped
entities were actually a field holding the collection of Ob-
servers, two methods playing the role of attach and detach
operations, as well as a method playing the role of notify
operation [8].

From the twelve conceptually meaningful Extract Class
refactoring opportunities that were identified for SelfPlan-
ner, the independent designer supported that 9 of them (64%
in total) would have a positive impact on design quality if
they were applied in source code. According to the indepen-
dent designer, the reasons for adopting these specific refac-
toring suggestions are that they lead to the creation of new
classes with sufficient functionality and at the same time
they do not introduce extensive coupling between the source
and extracted classes.

5. Conclusions

In this paper, we proposed a novel approach for identi-
fying potential Extract Class refactoring opportunity using
a hierarchical agglomerative clustering algorithm based on
the Jaccard distance between class members. Our method-
ology is able to identify new concepts that can be extracted
as separate classes. Instead of just identifying problematic
cases, our methodology also proposes behavior preserving
refactoring solutions to address such cases. The suggestions
are ranked using the Entity Placement metric in order to as-
sist the user to understand the impact of each refactoring on
the design quality of the system.

Our evaluation process showed that our methodology
can produce meaningful and conceptually correct sugges-
tions and extract new concepts. In particular, for the two
projects that our approach was applied to, it was able to
identify a relatively large number of new concepts (75,6%

and 86% respectively) that can be potentially extracted in
new classes. Finally, the two designers argued that they
would apply a decent number of the suggested refactor-
ings (43,2% and 64%) as they would improve the under-
standability of their code and would facilitate the process of
maintenance.

6. Acknowledgment

The authors would like to thank Dr Eleni Stroulia for
her insightful comments and the two independent design-
ers, Anastasios Alexiadis and Athanasios Monopavlidis for
their invaluable assistance.

References

[1] N. Anquetil and T. Lethbridge. Experiments with Cluster-
ing as a Software Remodularization Method. In WCRE ’99:
Proceedings of the 6th Working Conference on Reverse En-
gineering, 1999.

[2] S. Demeyer, S. Ducasse, and O. M. Nierstrasz. Object-
Oriented Reengineering Patters. Morgan Kaufman Publish-
ers, 2002.

[3] D. Doval, S. Mancoridis, and B. S. Mitchell. Automatic
Clustering of Software Systems Using a Genetic Algorithm.
Proceedings of the 5th International Conference on Software
Tools and Engineering Practice, 30 August - 2 September
1999.

[4] B. DuBois, S. Demeyer, and J. Verelst. Refactoring - Im-
proving Coupling and Cohesion of Existing Code. Proceed-
ings of the 11th Working Conference on Reverse Engineer-
ing, pages 144–151, November 8-12 2004.

[5] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
database with noise. International Conference on Knowl-
edge Discovery in Databases and Data Mining, August
1996.

[6] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou. JDeodor-
ant: Identification and Removal of Feature Envy Bad
Smells. 23rd International Conference on Software Main-
tenance, pages 519–520, October 2-5 2007.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring Improving the Design of Existing Code. Addi-
son Wesley, Boston, MA, 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Boston, MA, 1995.

[9] P. Joshi and R. K. Joshi. Concept Analysis for Class Cohe-
sion. 13rd European Conference on Software Maintenance
and Reengineering, pages 237–240, March 24-27 2009.

[10] A. D. Lucia, R. Oliveto, and L. Vorraro. Using Structural and
Semantic Metrics to Improve Class Cohesion. 24th IEEE
International Conference on Software Maintenance, 2008.

[11] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R.
Gansner. Using Automatic Clustering to Produce High-
Level System Organizations of Source Code. Proceedings

100

of the 6th International Workshop on Program Comprehen-
sion, pages 45–52, 1998.

[12] O. Maqbool and H. A. Babri. The Weighted Combined Al-
gorithm: A Linkage Algorithm for Software Clustering. In
CSMR ’04: Proceedings of the 8th European Conference
on Software Maintenance and Reengineering, pages 15–24.
IEEE Press, March 2004.

[13] R. C. Martin. Agile Software Developement: Principles,
Patterns and Practices. Prentice Hall, Upper Saddle River,
NJ, 2003.

[14] W. F. Opdyke. Refactoring object-oriented frameworks.
Ph.D. dissertation, 1992.

[15] I. Refanidis and A. Alexiadis. SelfPlanner: Planning your
time! ICAPS 2008 Workshop on Scheduling and Planning
Applications, 2008.

[16] K. Sartipi and K. Kontogiannis. Component Clustering
Based on Maximal Association. Proceedings of the IEEE
Working Conference on Reverse Engineering, October 2001.

[17] A. Shokoufandeh, S. Mancoridis, T. Denton, and M. May-
cock. Spectral and Meta-Heuristic Algorithms for Software
Clustering. Journal of Systems and Software, 77(3):213–
223, September 2005.

[18] F. Simon, F. Steinbruckner, and C. Lewrentz. Metrics Based
Refactoring. Proceedings of the 5th European Conference
on Software Maintenance and Reengineering, pages 30–38,
2001.

[19] L. Tahvildari and K. Kontogiannis. A Metric-Based Ap-
proach to Enhance Design Quality Through Meta-Pattern
Tranformations. Proceedings of the 7th European Confer-
ence on Software Maintenance and Reengineering, pages
183–192, March 26-28 2003.

[20] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison-Wesley, 2005.

[21] A. Trifu and R. Marinescu. Diagnosing Design Problems in
Object Oriented Systems. Proceedings of the 12th Working
Conference on Reverse Engineering, 2005.

[22] N. Tsantalis and A. Chatzigeorgiou. Identification of Move
Method Refactoring Opportunities. IEEE Transactions on
Software Engineering, 35(3):347–367, May/June 2009.

[23] V. Tzerpos and R. C. Holt. Software Botryology: Automatic
Clustering of Software Systems. Proceedings of the Inter-
national Workshop on Large-Scale Software Composition,
1998.

[24] T. A. Wiggerts. Using Clustering Algorithms in Legacy Sys-
tems Remodularization. In WCRE ’97: Proceedings of the
4th Working Conference on Reverse Engineering, 1997.

101

