
An Empirical Study on Web Service Evolution

Marios Fokaefs, Rimon Mikhaiel, Nikolaos Tsantalis, Eleni Stroulia

Department of Computing Science
University of Alberta

Edmonton, AB, Canada
{fokaefs,rimon,tsantalis,stroulia}@ualberta.ca

Alex Lau

Center for Advanced Studies
IBM Toronto Lab

Markham, ON, Canada
alexlau@ca.ibm.com

Abstract—The service-oriented architecture paradigm pre-
scribes the development of systems through the composition of
services, i.e., network-accessible components, specified by (and
invoked through) their WSDL interface descriptions. Systems
thus developed need to be aware of changes in, and evolve with,
their constituent services. Therefore, accurate recognition of
changes in the WSDL specification of a service is an essential
functionality in the context of the software lifecycle of service-
oriented systems.

In this work, we present the results of an empirical study on
WSDL evolution analysis. In the first part, we empirically study
whether VTracker, our algorithm for XML differencing, can
precisely recognize changes in WSDL documents by applying
it to the task of comparing 18 versions of the Amazon EC2 web
service. Second, we analyze the changes that occurred between
the subsequent versions of various web-services and discuss
their potential effects on the maintainability of service systems
relying on them.

Keywords-service evolution; tree-edit distance; WSDL; clus-
tering;

I. INTRODUCTION

Service-system evolution and maintenance is an interest-

ing variant of the general software-evolution problem. On

one hand, the problem is quite complex and challenging

due to the fundamentally distributed nature of service-

oriented systems, whose constituent parts may reside not

only on different servers but also across organizations and

beyond the domain of any individual entity’s control. On

the other hand, since the design of a service-oriented sys-

tem is expressed in terms of the interface specifications

of the underlying services, the overall systems needs to

be aware of only the changes that impact these interface

specifications; any changes to the service implementations

that do not impact their interfaces are completely transparent

to the overall system. In effect, the WSDL specifications

of the system’s constituent services serve as a boundary

layer, which precludes service-implementation changes from

impacting the overall system.

Frequently, service providers do not necessarily know by

whom, how often or by how many clients their services

are used. And although changes will always happen (so

that providers can improve and extend their offerings), the

service provider needs to be somewhat aware of the impact

of a specific change on existing clients, in terms of the

time and effort necessary to update client software as well

as the potential business costs (e.g., when changes cause

disruptions to the operations of important partners). If the

impact is low, the service provider might still need to provide

some backward compatibility. If the impact is high but the

change is still necessary, then its effect on a client might

need to be leveraged by the client’s developer with the use

of appropriate tools and techniques.

This is why recognizing the changes to the WSDL spec-

ification of a service interface and their impact on client

applications is highly desirable and a necessary prerequisite

for actually dealing with the change either on the server

or on the client side. Further, assuming that such a precise

method for service-specification changes existed, it would be

extremely useful if one could (a) characterize the changes in

terms of their complexity and (b) semi-automatically develop

adapters for migrating clients from older interface versions

to newer ones.

In our work, we have developed VTracker, a tree-

alignment algorithm. VTracker is an evolution of SPRC [1],

an algorithm developed for the task of RNA secondary

structure alignment. VTracker (and SPRC) are based on

the Zhang-Shasha’s tree-edit distance [2] algorithm, which

calculates the minimum edit distance between two trees

given a cost function for different edit operations (e.g.

change, deletion, and insertion). In our earlier work [3],

we have already applied VTracker to the task of comparing

web-service specifications. However, in this earlier work, our

objective was to illustrate how VTracker could be used to

compare BPEL specifications. In the mean time, we have

evolved VTracker to enable it to compare large XML docu-

ments, which has allowed us to use it in comparing complex

WSDL specifications in the empirical study reported in this

paper.

More specifically, in this paper, we are interested in

analyzing the long-term evolution of real world services,

including the Amazon Elastic Cloud Computing (Amazon

EC2)1, the FedEx Package Movement Information and Rate

1http://aws.amazon.com/ec2/

2011 IEEE International Conference on Web Services

978-0-7695-4463-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ICWS.2011.114

49

Services2, the PayPal SOAP API3 and the Bing search

service4. First, we have applied VTracker to the problem

of pair-wise comparison of subsequent versions of these

service-interface specifications. We manually inspected the

results of the comparison in order to assess how effec-

tive VTracker is for the purpose of accurately recognizing

service-interface changes. Next, we examined the various

types of changes that the algorithm identified in the history

of the real-world services we study, in order to understand

how services evolve, what types of changes are more or less

frequent, and whether these changes endanger the stability

of the clients.

The rest of the paper is organized as follows. In Section II

we give an overview of VTracker and we elaborate on how

this tree-differencing algorithm works. In Section III, we

discuss our mapping of WSDL documents to tree represen-

tations that can be understood and compared by VTracker.

In Section IV, we evaluate VTracker’s ability on studying

service evolution. In Section V, we discuss the results of our

study and we present some interesting change scenarios. In

Section VI we review the related literature and finally in

Section VII we conclude our work and discuss a few of our

future plans.

II. VTRACKER OUTLINE

VTracker is an extension to Zhang-Shasha tree-edit dis-

tance algorithm [2], which, given a cost for change, inser-
tion, and deletion operations, computes the lowest total cost

necessary to transform one tree to another. The algorithm’s

average complexity is |T1|3/2 · |T2|3/2, where |T1| and |T2|
are the sizes of the two trees. VTracker uses this algorithm as

a starting point, and it extends it in two ways. First, VTracker

identifies, in addition to the least expensive cost, the actual

edit script that transforms one tree to the other. Second, it

reports for move operations, through a post-processing phase

of mapping deleted sub-trees from the first tree to inserted

subtrees of the other.

The result of a comparison between two trees – T1 and

T2 – is a tree-edit script, i.e., a sequence M of mappings,

map(i, j), where i is a node in T1 and j is a node in T2,

such that ∀(i1, j1)and(i2, j2) ∈M :

• i1 = i2 iff j1 = j2; each node cannot be involved in

more than one edit operation;

• T1[i1] is on the left of T1[i2] iff T2[j1] is on the left

of T2[j2]; the mapping preserves the original sibling

order;

• T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor

of T2[j2];it also preserves the ancestor-child order.

Let us illustrate the properties of the labeled-

ordered tree-differencing algorithm with the example

2http://www.fedex.com/us/developer
3https://www.paypalobjects.com/en US/ebook/PP APIReference/

architecture.html
4http://www.bing.com/developers

Figure 1. Tree Edit Script.

shown Figure 1. The difference of trees T1

and T2 shown in Figure 1 is the edit sequence

M = (b, b), (d, d), (e, e), (c,−), (−, f), (a, a′). This

sequence consists of the following edits: node a is changed

to a′, node c is deleted, node f is inserted, and node d is

moved. Both nodes b and e are unchanged at the second

tree. This solution obeys the above constraints as it maps

(a, a′) where both a and a′ are ancestors of all other

nodes; additionally, (b, b) and (e, e) preserve the sibling

order where in both trees, node b is on the left of node e.

Clearly, moved nodes do not preserve the original ordering

relations.

A. Affine Cost

The original Zhang-Shasha algorithm assumes that the

cost of any deletion/insertion operation is independent of the

operation’s context. Thus, the cost of a node insertion/dele-

tion is the same, irrespective of whether or not that node’s

children are also deleted/inserted. As a result, it considers

as equally expensive two different scripts with the same

number and types of edits, with no preference to the script

that may include all the changes within the same locality.

Such behavior is unintuitive: a set of changes within the

same sub-tree is more likely than the same set of changes

dispersed across the whole tree.

In order to produce more intuitive tree-edit sequences,

VTracker uses an affine-cost policy. In VTracker, a node’s

deletion/insertion cost is context sensitive: if all of a node’s

children are also candidates for deletion, this node is more

likely to be deleted as well, and then the deletion cost of

that node should be less than the regular deletion cost. The

same is true for the insertion cost. To reflect this heuristic,

the cost of the deletion/insertion of such a node is discounted

by 50%.

B. Simplicity Heuristics

It is very likely to have many edit scripts associated with

the same calculated edit distance. Thus, the objective of

VTracker simplicity filter is to discard the unlikely solutions

from the solution set produced by the VTracker tree-edit

distance algorithm through a set of simplicity heuristics.

50

The first simplicity heuristic advises the algorithm to “pre-

fer minimal paths”: when there is more than one different

path with the same minimum cost, the one with the least

number of deletion and/or insertion operations is preferable.

The second simplicity heuristic advises the algorithm

to “prefer contiguous similar edit operations”. Intuitively,

this rule says that contiguous same-type operations could

be considered as a single edit operation. When there are

multiple different paths with the same minimum cost and the

same number of editing operations, the one with the least

number of changes (refractions) of operation types along a

tree branch is preferable.

The third simplicity heuristic advises the algorithm to

“maximize the number of nodes along a tree branch” to

which the same edit operation is applied. VTracker proposes

that, to the extent possible, sibling nodes should also suffer

the same edit operations.

III. APPLYING VTRACKER TO WSDL DOCUMENTS

The WSDL specification is quite verbose. Consider, for

example, the mapping of a single public class method

(implemented in Java) into a WSDL operation. This mapping

will produce a tree rooted at the operation element which

will contain a number of messages corresponding to the

number of parameters in the method signature. Each of these

message elements, in turn, will contain a single part element,

which in turn will refer to a data type. Clearly all these

cases cause the implicit tree representation to become deeper

without necessarily adding any information content to it.

Such deeply nested trees can, in fact, severely compromise

the performance of VTracker.

This is why for the purpose of comparing WSDL spec-

ifications with VTracker, we developed an intermediate

XML representation, much simpler than WSDL, which still

captures the information content relevant to our task. This

simpler representation includes information about data types

and their use in operations. This is because we are interested

in studying the web-service evolution from the client’s

perspective and identifying what changes are easily adapted

and which are not. Operations and types are the interesting

parts since the operations are the main points of interaction

between the client and the web service, with the types being

directly related to the operations (through input and output).

Thus, given a WSDL document, we follow the following

process in order to construct its simpler XML representation

that VTracker can inspect.

1) We strip the files off their functional parts such as the

SOAP bindings.

2) We trace the references from the operations’ inputs

and outputs to the types through the messages and

the xs:elements. We replace the messages in the

inputs and outputs with the corresponding types, thus

eliminating messages and xs:elements.

3) We remove the messages as they essentially are me-

diators from types to operations and they add no

additional information.

4) We remove the xs:element nodes which are imme-

diate children of the root of the file. This is because

these nodes serve as mediators between the types and

the messages.

5) Finally, we remove any annotations or documentation

nodes in the file. This data is irrelevant to the purpose

of this study.

This process produces valid XML documents, although

not valid WSDL documents any more. Note that the structure

of these documents is, in fact, similar to WADL5. The

goal of performing these changes was to to minimize the

number of nodes of the XML document tree and eliminate

as many levels of indirection as possible in order to improve

VTracker’s performance.

IV. EVALUATION OF VTRACKER

Our first objective in this work is to examine whether

VTracker can be used to accurately recognize the evolution

of web services. We first compared the 18 versions of the

Amazon EC2 service pairwise, namely, version 1 against

version 2, version 2 against version 3 and so on. VTracker

produced the tree edit distances between every pair of

operations for each pair of versions. Next, based on these

distances, we applied a hierarchical agglomerative clustering

algorithm, in order to group similar operations together. In

order to run the clustering between the two versions, we need

to have distances between all operations (from both versions)

in a square distance matrix. Thus, we have to construct the

total distance matrix as shown in Figure 2. Although the

individual sub-matrices might not be square, for example,

because new operations were added from one version to

the next, the concatenation of the matrices produces a

square distance matrix which can be used by the clustering

algorithm. We used the R Project for Statistical Computing6

to run our clustering analysis.

The intuition behind this process is that, if indeed

VTracker properly recognizes the origin of each operation in

version 2 as its corresponding operation in version 1, then

it will recognize them as similar and will assign a small

distance between them, thus causing the resulting clusters

to only contain corresponding operations. In cases where

this does not happen, i.e., if two versions of an operation

are clustered in different clusters, we will assess whether

the difference between two versions is so significant that

the two operations cannot be considered as versions of the

same operation but rather two distinct operations; one that

was removed from the first file and another new one that was

5 Web Application Description Language -
http://www.w3.org/Submission/wadl/

6http://www.r-project.org/

51

added in the second file. Closer examination of the cluster

will help us better understand the changes between versions

and the motivation behind them and may also reveal the

need to tune VTracker with domain specific knowledge.

Figure 2. The construction of the total distance matrix.

The results of the clustering experiment were in forms of

dendrograms (Figure 3) so that we can see how the opera-

tions of two subsequent versions were grouped together. In

Figure 3, we see a particular dendrogram for the comparison

between the 4th and the 5th version of the Amazon EC2

web service. The operations are indexed 1-19 for version 4

and 20-39 for version 5. As it becomes evident, operation 1

in version 4 corresponds with operation 20 and so on. The

height of the tree corresponds to the level of the distance

where the clusters merged. We can distinguish three cases

of clusters:

• The operation with index 39 does not become clustered

until very late in the process, at a very high distance.

This is because this particular operation was a new

addition in version 5, and VTracker, correctly, was

not able to recognize it as similar to any operation in

version 4.

• There are operations that are paired with each other in a

distance higher than 0. This is because these operations

or the types that they are using changed from one

version to the next. VTracker was still able to map

them correctly and report their changes through their

distances. As it can be noticed the pair 19-38 stands

even higher than the rest of the modified operations.

This is because in this particular case the type that was

immediately used by the operation changed (shallow
change), while in the rest of the cases the changes

occurred deeper in the chain of types and thus the effect

of the change was “diluted” along the various elements

(deep change).

• The rest of the operations which are paired at a distance

0. These are operations that remained the same between

the two versions and their types did not change either.

This experiment helped us confirm that VTracker is able

to correctly map elements between different versions of the

same service and identify possible changes between them.

V. STUDY OF WEB SERVICE EVOLUTION

In this part of the study, we used VTracker as tool to

report all changes that happened between different versions

from a set of services. For our study, we chose to examine

the evolution of the following services:

• Amazon EC2. The Amazon Elastic Compute Cloud is

a web service that provides resizable compute capacity

in the cloud. We studied the history of the web ser-

vice across 18 versions of its WSDL file dating from

6/26/2006 to 8/31/2010.

• The FedEx Rate Service operations provide a shipping

rate quote for a specific service combination depending

on the origin and destination information supplied in

the request. We studied 9 versions of this service.

• The FedEx Package Movement Information Service
operations can be used to check service availability,

route and postal codes between an origin and destina-

tion. We studied 3 versions of this service.

• The PayPal SOAP API Service can be used to make

payments, search transactions, refund payments, view

transaction information, and other business functions.

We studied 4 versions of this service.

• The Bing Search services provide programmatic ac-

cess to Bing data by way of application programming

interfaces (APIs).The Bing API, Version 2 provides

developers and site managers with flexible, multiple-

protocol access to content SourceTypes such as Im-

age, InstantAnswer, MobileWeb, News, Phonebook,

RelatedSearch, Spell, Translation, Video, and Web. We

studied 5 versions of this service.

A. Analyzing the evolution of the services

Table I shows the evolution profile of all the examined

services. The percentage calculated for each one of the

activities (change, deletion, insertion) is with respect to

the total number of activities in that particular version. As

we can see from the table in services like PayPal, Bing

and in most versions of Amazon EC2 and FedEx Rate,

we observe a domination of additions. From this we can

derive two conclusions: (a) these services were in a stage

of rapid development and high expansion during this part

of their lifecycle, and (b) in general, radical changes and

deletions are avoided, probably because the service providers

recognize that they are more likely to break a client. On

the other hand, in services like FedEx Package Movement

Information and some versions of the Amazon EC2 and

FedEx Rate, we noticed an increased number of changes,

primarily, and deletions. This indicates that these services

were in a more stable stage and developers performed

restructuring and perfective changes.

52

Figure 3. Dendrogram for the clustering of the operations between versions 4 and 5.

B. Correlation between changes and business announce-
ments

As web services are an integral part of modern businesses

their consistency is bound to be affected by business deci-

sions. In this section, we are trying to correlate changes that

happened in the studied services with business announce-

ments of new features.

1) Amazon EC2: In March 2008, Amazon announced7

new features for static IP addresses, availability zones and

user selectable kernels. These changes were already avail-

able in version 7 earlier the same year. In August 2008, they

announced the Elastic Block Store (EBS) for persistent stor-

age and the changes were incorporated in version 8. In May

2009, they announced the AWS management console, and

plans for load balancing, autoscaling, and cloud monitoring

services. The changes were incorporated between versions

9 and 13.

2) FedEx Rate: In March 2010, FedEx announced8 the

FedEx Electronic Trade Documents, Shipping Hazardous

Materials, the FedEx Web Integration Wizard, FedEx Freight

Rating and enhancements for the FedEx SmartPost. These

changes were incorporated between version 6 and 8. In

August 2010, they announced more enhancements for the

FedEx SmartPost, “Hold at Location” service expansion,

new intra-country shipping options and improvements for

hazardous material shipping. These changes were introduced

in version 9.

7Source: AmazonWebServicesBlog(http://aws.typepad.com/)
8Source: https://www.fedex.com/us/developer/wss/announcement.html

3) Bing: In June 2009, Bing launched9 the

Bing Translator and consequently the types

TranslationRequest, TranslationResponse
and ArrayOfDeepLink were added between version

2.1 and 2.2. In June 2010 Bing was expanded10 to handle

more entertainment-related queries and the enumerations

Shopping, QueryAnnotation, Social, Events and

RssFeed were added between versions 2.2 and 2.3.

C. Service Change Scenarios

In this section we discuss a collection of change scenarios.

Some of them have actually occurred in the set of services

we have studied, while others we deem likely to happen.

We discuss the changes in detail and describe how they can

affect client applications: whether they are manageable and

how.

Operation Deletions. We noticed an absence of operation

deletions. This is mainly because if an operation is deleted

a client that might have been using it will instantly break.

This is a non-recoverable situation, which in fact means that

the client should be changed and recompiled. We found a

case like that in FedEx Rate. In version 1 only one operation

existed named getRate. In version 2 a second operation

was added named rateAvailableServices and in

version 3 a third operation named getRates replaced the

other two. Although, the three operations were similar, in

the sense that they used and returned similar data, in the

9Source: http://en.wikipedia.org/wiki/Bing Translator
10Source: http://blogs.computerworld.com/16374/microsoft to add

enhancements to bing

53

Table I
THE EVOLUTION PROFILE OF THE STUDIED SERVICES.

Service Version Changed(%) Deleted(%) Inserted(%)

Amazon EC2 2 2.82 0 97.18
Amazon EC2 3 13.33 0 86.67
Amazon EC2 4 50 0 50
Amazon EC2 5 8.82 0 91.18
Amazon EC2 6 16.67 50 33.33
Amazon EC2 7 1.71 0 98.29
Amazon EC2 8 1.40 0 98.60
Amazon EC2 9 3.54 0.88 95.58
Amazon EC2 10 11.11 0 88.89
Amazon EC2 11 2.67 0 97.33
Amazon EC2 12 5.56 0 94.44
Amazon EC2 13 0.79 0 99.21
Amazon EC2 14 2.70 0 97.30
Amazon EC2 15 10.26 0 89.74
Amazon EC2 16 1.08 0 98.92
Amazon EC2 17 64.90 0 35.10
Amazon EC2 18 31.06 0 68.94

FedEx Rate 2 8.93 21.43 69.64
FedEx Rate 3 9.20 5.75 85.06
FedEx Rate 4 8.11 17.05 74.84
FedEx Rate 5 8.00 20.00 72.00
FedEx Rate 6 1.51 6.67 91.83
FedEx Rate 7 3.05 30.46 66.50
FedEx Rate 8 11.48 12.02 76.50
FedEx Rate 9 11.53 42.88 45.59

Bing 2.1 0 21.33 78.67
Bing 2.2 0 9.38 90.63
Bing 2.3 0 0 100.00
Bing 2.4 0 0 100.00

PayPal 53.0 2.33 0 97.67
PayPal 62.0 0.55 0 99.45
PayPal 65.1 1.35 0 98.65

FedEx Pack. 3 80.00 0 20.00
FedEx Pack. 4 100.00 0 0

end these changes must have caused significant problems to

client applications. A prudent thing to do in this case would

be to declare the old operations as deprecated so as not to be

used by new clients and when the time was right to remove

them in order to minimize the cost.

Inline Type. In Amazon EC2, we noticed the best way

to handle changes in types. In version 6 the type RunIn-

stancesInfoType was removed and all of its elements were

moved to the parent type named RunInstancesType. This

change is called “Inline Type” [4] and it is non-destructive

to the client. It does not affect the functionality and it does

not break the code because any data that existed in version

5 still exists in version 6 although bundled in a different

type. The important thing is that no matter how the data is

formatted the client must have access to it because it was

used from the previous version. Furthermore, we noticed

that old operations never use new data, which is reserved

only for the new operations. The opposite action, namely

“Extract Type”, where a complex type is decomposed in

simpler elements, is also a recoverable change by the client

for the same reasons.

Aggressive Evolution. Yet another interesting change

occurred in FedEx Rate in version 9 where several enhance-

ments were supposed to take place. For this reason, more

than 50% of the types of the service were removed and

totally new ones were added. This was a poor maintenance

activity not only because of the nature of the changes

(deletions) but also their breadth. In this case, the best

course of action, in our opinion, would have been to add

the new types in a new service and copy the old still

valid components from the previous version and offer both

services as alternatives so that the old clients will not break.

Renaming Variables. In Amazon version 14 we noticed

a type with two elements named currentState and

previousState. In version 15 the same type has the ele-

ments previousState and shutdownState. There are

two scenarios in this case. First, that the currentState
was renamed in shutdownState and previousState
remained the same. In the second case, the currentState
was renamed to previousState and previousState
was renamed to shutdownState. The difference between

the two scenarios is the order of the parameters. If the order,

matters then the second scenario is likely correct.

Adding New Types. If new types are added as elements

in already existing types then the interface of the service is

not affected. The question is then whether the functionality

breaks. If the new elements do not participate in the result

of the operation then the functionality of the client is not

affected.

For example, in version 1 of a service we have an

operation add(int i, int j) which returns the sum of i and

j and in version 2 we have add(int i, int j, boolean flag)

where the flag notes whether the result should be stored in

a file. In this scenario the flag doesn’t affect the sum of the

two numbers and thus the functionality of the client will not

be affected. In a different situation, the returned sum will not

be the expected one. The problem is that we cannot be sure

whether the change in the result was because of the added

parameter or because something changed in the algorithm

(a change which is not visible to the client). In this case,

creating an adapter will not fix the client. An idea to address

this problem would be to employ web mining techniques in

order to obtain the description of the changes that happened

from one version to the other and help the developer of the

client to apply the proper changes in their system.

Changing Input or Output Types. Since the client

interacts only with the operations, these are the sensitive

points. The interface of the service breaks when the input or

the output types of an operation are replaced with different

types, or when they are renamed. In these cases, the client

software must be updated in order to invoke the operation

in the correct way. If the input or output is replaced by a

new type, then the type should be generated on the client

side or added in the stub.

If the input or output type is changed (elements added,

54

deleted, changed or renamed) then a problem occurs only

if the client attempts to access these types. For example,

if some elements in the returned type of an operation are

deleted or renamed and the client tries to access these

elements, it will break. In case of added elements, there

will be no problems.

VI. RELATED WORK

Our work in this paper relates to model differencing,

VTracker’s contribution, and service evolution, the substance

of our empirical study.

A. Model and Tree Differencing Techniques

Fluri et al. [5] proposed a tree differencing algorithm for

fine-grained source code change extraction. Their algorithm

takes as input two abstract syntax trees and extracts the

changes by finding a match between the nodes of the

compared trees. Moreover, it produces a minimum edit script

that can transform one tree into the other given the computed

matching. The proposed algorithm uses the bigram string

similarity to match source code statements (such as method

invocations, condition statements, and so forth) and the

subtree similarity of Chawathe et al. [6] to match source

code structures (such as if statements or loops).

Kelter et al. [7] proposed a generic algorithm for comput-

ing differences between UML models encoded as XMI files.

The algorithm first tries to detect matches in a bottom-up

phase by initially comparing the leaf elements and subse-

quently their parents in a recursive manner until a match is

detected at some level. When detecting such a match, the

algorithm switches into a top-down phase that propagates

the last match to all child elements of the matched elements

in order to deduce their differences.

Xing and Stroulia [8], [9] proposed the UMLDiff algo-

rithm for automatically detecting structural changes between

the designs of subsequent versions of object-oriented soft-

ware. The algorithm produces as output a tree of structural

changes that reports the differences between the two design

versions in terms of additions, removals, moves, renamings

of packages, classes, interfaces, fields and methods, changes

to their attributes, and changes of the dependencies among

these entities. UMLDiff employs two heuristics (i.e., name-

similarity and structure-similarity) for recognizing the con-

ceptually same entities in the two compared system versions.

These two heuristics enable UMLDiff to recognize that two

entities are the same even after they have been renamed

and/or moved.

Recently, Xing [10] proposed a general framework for

model comparison, named GenericDiff. While it is domain

independent, it is aware of domain-specific model properties

and syntax by separating the specification of domain-specific

inputs from the generic graph matching process and by mak-

ing use of two data structures (i.e., typed attributed graph

and pairup graph) to encode the domain-specific properties

and syntax so that they can be uniformly exploited in the

generic matching process. Unlike the aforementioned ap-

proaches that examine only immediate common neighbors,

GenericDiff employs a random walk on the pairup graph to

spread the correspondence value (i.e., a measurement of the

quality of the match it represents) in the graph.

B. Service Evolution Analysis

Wang and Capretz [11] proposed an impact analysis

model as a means to analyze the evolution of dependencies

among services. By constructing the intra-service relation

matrix for each service (capturing the relations among the

elements of a single service) and the inter-service relation

matrix for each pair of services (capturing the relations

among the elements of two different services) it is possible

to calculate the impact effect caused by a change in a given

service element. A relation exists from element x to element

y if the output elements of x are the input elements of

y, or if there is a semantic mapping or correspondence

built between elements of x and y. Finally, the intra- and

inter service relation matrices can be employed to support

service change operations, such as the addition, deletion,

modification, merging and splitting of elements.

Aversano et al. [12] proposed an approach, based on

Formal Concept Analysis, to understand how relationships

between sets of services change across service evolution.

To this end, their approach builds a lattice upon a context

obtained from service description or operation parameters,

which helps to understand similarities between services,

inheritance relationships, and to identify common features.

As the service evolves (and thus relationships between

services change) its position in the lattice will change, thus

highlighting which are the new service features, and how

the relationships with other services have been changed.

Ryu et al. [13] proposed a methodology for addressing

the dynamic protocol evolution problem, which is related

with the migration of ongoing instances (conversations) of

a service from an older business protocol to a new one.

To this end, they developed a method that performs change

impact analysis on ongoing instances, based on protocol

models, and classifies the active instances as migrateable

or non-migrateable. This automatic classification plays an

important role in supporting flexibility in service-oriented

architectures, where there are large numbers of interacting

services, and it is required to dynamically adapt to the new

requirements and opportunities proposed over time.

Pasquale et al. [14] propose a configuration management

method to control dependencies between and changes of

service artifacts including web services, application servers,

file systems and data repositories across different domains.

Along with the service artifacts, Smart Configuration Items

(SCIs), which are in XML format, are also published.

The SCIs have special properties for each artifact such as

host name, id etc. Interested parties (like other application

55

servers) can register to the SCIs and receive notifications for

changes to the respective artifact by means of ATOM feeds

and REST calls. Using a discovery mechanism the method is

able to identify new, removed or modified SCIs. If a SCI is

identified as modified, then the discovery mechanism tracks

the differences between the two items and adds them as

entries in the new SCI. The changes are limited to delete,

add, modify a property or delete, add, modify a dependency.

The changes are also too general, for example, a change

in an input type of an operation is reported as a change

in the operations part of a WSDL. In our case, we are

more interested in finding more complicated changes and

annotate them appropriately so we know the exact nature of

the change (where it happened and what it affected).

The aforementioned research works mainly focus on

the evolution of inter-dependencies among services or the

evolution of business protocols. On the other hand, our

approach focuses on the evolution of the elements within a

single service and their intra-dependencies. Furthermore, our

approach investigates the effect of service evolution changes

on client applications.

VII. CONCLUSION

In this paper we presented an empirical study of the

evolution of web services, where we investigated how

changes that occur in WSDL files can potentially affect

client applications. The first question we tried to answer

was whether VTracker, a general, domain agnostic tree-

differencing algorithm, can be used to study the evolution

of web services. VTracker was indeed helpful in this task

mainly because of its ability to produce fine-grained results

in terms of distances between individual elements (types

and operations) that belonged in different versions and

changes that were applied on these elements. This helped

us identify the nature of the changes and identify good and

bad maintenance scenarios in our case studies. Furthermore,

this work helped us improve VTracker in terms of efficiency

and accuracy.

In the context of our empirical study, we examined the

evolution of five web services: Amazon EC2, FedEx Rate,

Bing, PayPal and FedEx Package Movement Information.

Our main observation was that, indeed as we expected, web

services are usually expanded rather than changed or having

their elements removed. This is because the addition of

new features does not affect the robustness of clients that

already use the service. Furthermore, changes, if made in a

conservative manner, do not negatively impact clients much.

On the other hand, deletion of elements should be avoided,

as it will likely break a client application.

ACKNOWLEDGMENT

The authors would like to acknowledge the generous

support of NSERC, iCORE, and IBM.

REFERENCES

[1] R. Mikhaiel, G. Lin, and E. Stroulia, “Simplicity in RNA
Secondary Structure Alignment: Towards biologically plausi-
ble alignments,” 6th IEEE Symposium on Bioinformatics and
Bioengineering, 2006.

[2] K. Zhang, R. Stgatman, and D. Shasha, “Simple fast al-
gorithm for the editing distance between trees and related
problems,” SIAM Journal on Computing, vol. 18, pp. 1245–
1262, 1989.

[3] R. Mikhaiel and E. Stroulia, “Examining Usage Protocols for
Service Discovery,” 4th International Conference on Service
Oriented Computing, pp. 496–502, 2006.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring Improving the Design of Existing Code. Boston,
MA: Addison Wesley, 1999.

[5] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change
Distilling: Tree Differencing for Fine-Grained Source Code
Change Extraction,” IEEE Transactions on Software Engi-
neering, vol. 33, no. 11, pp. 725–743, 2007.

[6] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom, “Change Detection in Hierarchically Structured
Information,” ACM Sigmod Internation Conference on Man-
agement of Data, pp. 493–504, 1996.

[7] U. Kelter, J. Wehren, and J. Niere, “A Generic Difference
Algorithm for UML Models,” Software Engineering 2005,
Fachtagung des GI-Fachbereichs Softwaretechnik, pp. 105–
116, 2005.

[8] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-
Oriented Design Differencing,” 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 54–65,
2005.

[9] ——, “Analyzing the Evolutionary History of the Logical
Design of Object-Oriented Software,” IEEE Transactions on
Software Engineering, vol. 31, no. 10, pp. 850–868, 2005.

[10] Z. Xing, “Model Comparison with GenericDiff,” 25th
IEEE/ACM International Conference on Automated Software
Engineering, pp. 135–138, 2010.

[11] S. Wang and M. A. M. Capretz, “A Dependency Impact Anal-
ysis Model for Web Services Evolution,” IEEE International
Conference on Web Services, pp. 359–365, 2009.

[12] L. Aversano, M. Bruno, M. D. Penta, A. Falanga, and
R. Scognamiglio, “Visualizing the Evolution of Web Services
using Formal Concept Analysis,” 8th International Workshop
on Principles of Software Evolution, pp. 57–60, 2005.

[13] S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and
R. Saint-Paul, “Supporting the Dynamic Evolution of Web
Service Protocols in Service-Oriented Architectures,” ACM
Transactions on the Web, vol. 2, no. 2, pp. 1–46, 2008.

[14] L. Pasquale, J. Laredo, H. Ludwig, K. Bhattacharya, and
B. Wassermann, “Distributed cross-domain configuration
management,” in Proceedings of the 7th International Joint
Conference on Service-Oriented Computing, ser. ICSOC-
ServiceWave ’09, 2009, pp. 622–636.

56

