
The Journal of Systems and Software 83 (2010) 391–404
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
Identification of refactoring opportunities introducing polymorphism

Nikolaos Tsantalis, Alexander Chatzigeorgiou *

Department of Applied Informatics, University of Macedonia, 54006 Thessaloniki, Greece
a r t i c l e i n f o

Article history:
Received 14 November 2008
Received in revised form 3 September 2009
Accepted 3 September 2009
Available online 11 September 2009

Keywords:
Refactoring
Polymorphism
State/Strategy design pattern
Object-oriented design
0164-1212/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jss.2009.09.017

* Corresponding author. Tel.: +30 2310 891886; fax
E-mail addresses: nikos@java.uom.gr (N.

(A. Chatzigeorgiou).
a b s t r a c t

Polymorphism is one of the most important features offered by object-oriented programming languages,
since it allows to extend/modify the behavior of a class without altering its source code, in accordance to
the Open/Closed Principle. However, there is a lack of methods and tools for the identification of places in
the code of an existing system that could benefit from the employment of polymorphism. In this paper
we propose a technique that extracts refactoring suggestions introducing polymorphism. The approach
ensures the behavior preservation of the code and the applicability of the refactoring suggestions based
on the examination of a set of preconditions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Polymorphism has been widely recognized as one of the most
important features of object-oriented programming languages. As
polymorphism we refer to subtype polymorphism which according
to Day et al. (1995) allows code written in terms of some type T to
actually work for all subtypes of T. The main advantage of polymor-
phism is that it allows client classes to depend on abstractions
(Gamma et al., 1995; Martin, 2003). An abstraction (abstract class
or interface) can be extended by adding new subclasses that con-
form to its interface (i.e. override its abstract methods). However,
the client classes that depend on abstractions do not have to
change in order to take advantage of the behavior defined in the
new subclasses.

Despite the sedulous teaching of polymorphism in object-ori-
ented programming courses and its detailed presentation and
discussion in books appealing to professionals, state-checking is of-
ten employed as an alternative approach to polymorphism in order
to simulate late binding and dynamic dispatch. State-checking man-
ifests itself as conditional statements that select an execution path
either by comparing the value of a variable representing the
current state of an object with a set of named constants, or by
retrieving the actual subclass type of a reference through RunTime
Type Identification (RTTI) mechanisms. The aforementioned symp-
toms usually result from either poor quality of the initial design
or software aging (Parnas, 1994) caused by requirement changes
that were not anticipated in the original design. State-checking
ll rights reserved.

: +30 2310 891791.
Tsantalis), achat@uom.gr
introduces additional complexity due to conditional statements
consisting of many cases and code duplication due to conditional
statements scattered in many different places of the system that
perform state-checking on the same cases for different purposes
(Fowler et al., 1999). As a result, the maintenance of multiple
state-checking code fragments operating on common states may
require significant effort and introduce errors.

Although the employment of polymorphism in object-oriented
systems is considered as an important design quality indicator,
there is a lack of tools that either identify state-checking cases in
an existing system or eliminate them by applying the appropriate
refactorings on source code. To this end, we propose a technique
for the identification and elimination of state-checking problems
in Java projects that has been implemented as an Eclipse plug-in.
An advantage of the proposed approach over metric-based ap-
proaches is the fact that all identified problems are actual cases
of state-checking rather than ordinary conditional statements.
Moreover, the examination of a set of preconditions ensures that
the refactoring suggestions are both applicable and behavior-
preserving.

The approach can be considered as semi-automatic, since after
the extraction of the refactoring suggestions the designer is
responsible for deciding whether a state-checking case should be
eliminated or not based on conceptual and design quality criteria.
Regarding the automation of the identification process, the main
difference of the proposed technique with state-of-the-art Inte-
grated Development Environments (IDEs) offering refactoring sup-
port (e.g. Eclipse 3.5, Netbeans 6.7, IntelliJ IDEA 8.1, Visual Studio
2008 along with Refactor! Pro 2.5) is that IDEs determine which
refactorings are applicable based on the selection of a code frag-
ment by the developer, while the proposed technique identifies

http://dx.doi.org/10.1016/j.jss.2009.09.017
mailto:nikos@java.uom.gr
mailto:achat@uom.gr
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

392 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404
refactoring opportunities without requiring any human interven-
tion. Moreover, the proposed technique assists the designer to
determine the effectiveness of the identified refactoring opportuni-
ties by grouping them according to their relevance and sorting
them according to various quantitative characteristics.

The evaluation of the proposed technique consists of three
parts. The first part presents the precision and recall of the ap-
proach by comparing the refactoring opportunities identified by
an independent expert to the results of the proposed technique
on various open-source projects. The second part of the evaluation
investigates the impact of three quantitative factors on the deci-
sion of the independent expert to accept or reject the refactoring
opportunities identified by the proposed technique. The last part
refers to the scalability of the technique based on the computation
time required for the extraction of refactoring suggestions on var-
ious open-source projects which differ in size characteristics.

The rest of the paper is organized as follows: Section 2 provides
an overview of the related work. The proposed technique is thor-
oughly analyzed in Section 3, and Section 4 presents the tool that
implements it. The results of the evaluation are discussed in Sec-
tion 5. Finally, we conclude in section 6.
2. Related work

According to Gamma et al. (1995), polymorphism simplifies the
definitions of clients, decouples objects from each other, and lets
them vary their relationships to each other at runtime. To this
end, polymorphism plays a key role to the structure and behavior
of most design patterns. In the literature of object-oriented soft-
ware engineering, several empirical studies have investigated the
impact of polymorphism and design patterns on external quality
indicators related with software maintenance.

Brito e Abreu and Melo (1996) have shown that Polymorphism
Factor (Brito e Abreu, 1995), which is defined as the number of
methods that override inherited methods divided by the maximum
number of possible distinct polymorphic situations, has a moder-
ate to high negative correlation with defect and failure densities
as well as with rework. In other words, the appropriate use of poly-
morphism in an object-oriented design should decrease the defect
density and rework. However, they have also supported that very
high values of Polymorphism Factor (above 10%) are expected to
reduce these benefits, since the understanding and debugging of
a highly polymorphical hierarchy is much harder than the proce-
dural counterpart.

Prechelt et al. (2001) conducted a controlled experiment to
compare design pattern solutions to simpler alternatives in terms
of maintenance. The subjects of the experiment were professional
software engineers that were asked to perform a variety of mainte-
nance tasks. The independent variables were the programs and
change tasks, the program version (there were two different func-
tional equivalent versions of each program, a pattern-based ver-
sion and an alternative version with simpler solutions) and the
amount of pattern knowledge of the participants. The dependent
variables were the time taken for each maintenance task and the
correctness (i.e. whether the solutions fulfilled the requirements
of the task). In most of the cases the experimental results had
shown positive effects from the use of design patterns, since main-
tenance time was reduced compared to the simpler alternative
versions.

Ng et al. (2006) performed a controlled experiment on main-
taining JHotDraw to study whether the introduction of additional
patterns through program refactoring is beneficial regardless of
the work experience of the maintainers. For this reason, they used
two sets of subjects in their experiment, namely experienced and
inexperienced maintainers. They compared two maintenance ap-
proaches where in the first approach the subjects performed the
maintenance tasks directly on the original program, while in the
second approach the subjects performed the maintenance tasks
on a refactored version of the original program using additional de-
sign patterns to facilitate the required changes. The empirical re-
sults have shown that, to complete a maintenance task of
perfective nature, the time spent even by the inexperienced main-
tainers on the refactored version was much shorter than that of the
experienced subjects on the original version.

Ng et al. (2007) studied whether maintainers utilize deployed de-
sign patterns, and when they do, which tasks they more commonly
perform. For this reason, they refined an anticipated change facili-
tated by the deployment of design patterns into three finer-grained
maintenance tasks, namely adding new concrete participants, mod-
ifying the existing interfaces of a participant, and introducing a new
client. They concluded that regardless of the type of tasks performed
by maintainers when utilizing deployed design patterns for antici-
pated changes, the delivered code is significantly less faulty than
the code developed without utilizing patterns.

Other empirical studies have shown that maintenance effort
does not only depend on the design quality of a given program
(as expressed by the employment of design principles or the exis-
tence of design patterns), but also on human factors such as the
experience, skills and education of the software developers and
maintainers.

Arisholm and Sjøberg (2004) performed a controlled experi-
ment in order to investigate the effect of delegated versus central-
ized control style on the maintainability of object-oriented
software. To this end, two categories of developers (namely expe-
rienced and inexperienced) performed several change tasks on two
alternative designs that had a centralized and delegated control
style, respectively. The results of the experiment have shown that
the most experienced developers required less time to maintain
the software with delegated control style than with centralized
control style, while novice developers had serious problems in
understanding the delegated control style and performed much
better with the centralized control style. Consequently, they con-
cluded that maintainability of object-oriented software depends,
to a large extent, on the skill of the maintainers.

Du Bois (2006) performed a series of controlled experiments to
investigate whether the application of two reengineering patterns
(Demeyer et al., 2003), namely Refactor to Understand and Split Up
God Class, can improve program comprehension. The experiment
involving the decomposition of god classes verified that the partic-
ular education of the subject performing the comprehension task
affects the way in which a god class is decomposed.

Wendorff (2001) reported on a large commercial project where
the uncontrolled use of patterns has contributed to severe mainte-
nance problems. The reasons causing the maintenance problems
were that some pattern instances were misused by software devel-
opers who had not understood the rationale behind their employ-
ment, many software developers overestimated the future
volatility of requirements and opted for patterns to build flexibility
at the cost of an undesirable increase of complexity, the change of
requirements over the lifetime of the project led some pattern in-
stances to become obsolete, and finally some pattern instances
were embellished with additional features which were not actually
needed. Consequently, the inappropriate application of patterns
may have a negative effect on flexibility and maintainability of ob-
ject-oriented software.

Concerning performance, it is widely believed that the replace-
ment of conditional logic by a polymorphic method call deterio-
rates performance due to the introduction of an additional
indirection through the virtual function table. Demeyer (2005)
investigated the performance trade-off that is involved when intro-
ducing virtual functions by comparing the execution time of four

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404 393
C++ benchmark programs which contain large conditionals against
refactored versions where the conditionals were replaced by vir-
tual function calls. The results of the experiment have shown that
the optimized code which was generated by three C++ compilers
for the refactored versions performed equally or even better com-
pared to the conditional counterparts.

The catalogue of refactorings by Fowler et al. (1999) refers to
state-checking as the switch statements bad smell. They argued that
the main problem of this smell is code duplication, since the same
switch statement is usually scattered in many different places of
the code. In such a case, the adaptive maintenance of the code is
rather difficult, since the addition of a new clause requires the
identification and modification of all these multiple switch state-
ments. The object-oriented paradigm offers the polymorphism
mechanism as an elegant way to solve this problem. Fowler et al.
proposed two refactorings that eliminate the state-checking code
and introduce a new inheritance hierarchy, namely Replace Type
Code with Subclasses and Replace Type Code with State/Strategy.
The difference between the two refactorings is that in the first
one the inheritance hierarchy is constructed by creating subclasses
of the class that originally contained the state-checking code, while
in the second one a new State/Strategy inheritance hierarchy is cre-
ated and the class that originally contained the state-checking code
becomes the Context class in the State/Strategy design pattern. It is
important to mention that the Replace Type Code with Subclasses
refactoring is not applicable when the value of the state changes
at runtime, since the class type of an object cannot be changed
after its creation. Fowler et al. also proposed the Replace Conditional
with Polymorphism refactoring that eliminates the state-checking
code in the case where the inheritance hierarchy already exists.

Demeyer et al. (2003) proposed reengineering patterns as a way
to codify and record knowledge about modifying legacy software.
Reengineering patterns emphasize on the process of moving from
an existing legacy solution to a new refactored solution. Their dif-
ference with refactorings is that they also include a process for the
detection of the symptoms and a discussion of the impact of
changes that the refactored solution may introduce. Within the
context of state-checking elimination Demeyer et al. proposed sev-
eral reengineering patterns which are closely related to specific
refactorings. For example, the reengineering patterns Transform
Self Type Checks and Transform Client Type Checks are related to Re-
place Type Code with Subclasses and Replace Conditional with Poly-
morphism refactorings, respectively. Moreover, the reengineering
patterns Factor Out State and Factor Out Strategy are related to Re-
place Type Code with State/Strategy refactoring. The detection pro-
cess of the symptoms for the aforementioned reengineering
patterns is given in the form of guidelines that should be followed
by the maintainers in order to manually determine whether a spe-
cific conditional statement performs state-checking. Therefore,
these guidelines do not constitute a concrete technique that could
be automated by means of tools.

Kerievsky (2004) proposed a wider set of refactorings as solu-
tions to the design problem of conditional complexity. The selection
of the appropriate refactoring solution depends on the purpose of
the conditional logic behind a complex conditional statement.
For example, if conditional logic controls the state transitions of
an object, then the Replace State-Altering Conditionals with State
refactoring should be applied. In the case where conditional logic
controls which of several variants of a calculation will be executed,
then the Replace Conditional Logic with Strategy refactoring should
be applied. Kerievsky also introduced two novel refactorings that
eliminate conditional structures by introducing polymorphism.
The first is Replace Conditional Dispatcher with Command that
breaks down a conditional structure into a collection of Command
(Gamma et al., 1995) objects and replaces conditional logic with
code to fetch and execute the Command objects. The second is
Move Accumulation to Visitor that introduces a Visitor (Gamma
et al., 1995) in order to remove a conditional structure that is used
to obtain data from instances of classes having different interfaces.
Although, the author provides a detailed description on the steps
required to apply the proposed refactorings (known as mechanics)
along with examples from real-world software, the way to identify
cases in the code that could benefit from these refactorings is left
up to the designer.

Van Emden and Moonen (2002) proposed an approach for the
automatic detection and visualization of instanceof and typecast
code smells. The instanceof code smell appears as a sequence of
conditional statements that test an object for its type, while the
typecast code smell appears when an object is explicitly converted
from one class type into another. An interesting part of their ap-
proach is the visualization of the detected code smells in the form
of a graph, where the code smells are presented as additional nodes
connected to the code entities that they belong to. In this way it is
possible to discern which parts of the system have the largest
number of code smells and would benefit the most from
refactoring.

Trifu and Reupke (2007) proposed an approach that is based on
the idea of combining correlated indicators in order to diagnose
certain design flaws, in analogy with the medical world where a
disease is diagnosed based on the presence of a specific constella-
tion of symptoms. They distinguish three kinds of indicators,
namely aggregating indicators (single metrics or logical expres-
sions combining metrics), structural indicators (patterns in the
structure of the code), and semantic indicators (the names of cer-
tain program elements, such as variables). Within the context of
state-checking they have specified a design flaw named explicit
state checks. The indicators used for the diagnosis of the specific de-
sign flaw are: (a) methods that contain ‘‘switch” or ‘‘if-else-if” con-
ditional structures, and (b) checks should be performed on an
attribute/property/parameter that semantically indicates the state
of the current object instance (i.e. a variable that contains the
string ‘‘state” in its name). The evaluation of the explicit state checks
design flaws that were diagnosed in three open-source projects has
shown that the employed indicators exhibit low precision when
they are triggered individually or even simultaneously.

O’Keeffe and Ó Cinnéide (2008) proposed a search-based ap-
proach for improving the design of object-oriented programs with-
out altering their behavior. To this end, they formulated the task of
design improvement as a search problem in the space of alterna-
tive designs. The quality evaluation functions used to rank the
alternative designs were based on metrics from the QMOOD hier-
archical design quality model. The refactorings used by the search
techniques to move through the space of alternative designs were
inheritance-related (Push Down Field/Method, Pull Up Field/Meth-
od, Extract/Collapse Hierarchy, Replace Inheritance with Delega-
tion, Replace Delegation with Inheritance and many others).
Their approach has been validated by two case studies, in which
the results of the employed search techniques (Hill Climbing and
Simulated Annealing) and evaluation functions have been com-
pared. This work is not directly associated with the elimination
of conditional complexity or the introduction of new inheritance
hierarchies and polymorphism as a remedy to conditional com-
plexity. However, some of the refactorings used to move through
the space of alternative designs may affect the degree of abstrac-
tion and polymorphism in a given system. A disadvantage of
search-based approaches is that their results rely heavily on the
parameterization of the employed search techniques (O’Keeffe
and Ó Cinnéide, 2007).

Ó Cinnéide (Ó Cinnéide and Nixon, 1999; Ó Cinnéide, 2000)
proposed a method for the automatic introduction of design pat-
terns in terms of refactoring transformations. Based on the obser-
vation that design patterns can be decomposed into sequences of

394 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404
minipatterns (a minipattern is a design motif that occurs fre-
quently but is a lower-level construct compared to a conventional
design pattern), he proposed a set of six reusable minitransforma-
tions that can define most of the design pattern transformations if
composed properly. A minitransformation consists of a precondi-
tion, an algorithmic description of the transformation, and a post-
condition that ensure behavior preservation. Ó Cinnéide also
proposed the concept of precursor as a starting point for a design
pattern transformation. A precursor is a design structure that
serves as an indicator of the need for applying a specific design
pattern in future maintenance stages. However, the description
of most precursors is by nature quite vague (including the precur-
sor of State pattern) and thus their identification cannot be
automated.
3. Identification of refactoring opportunities that introduce
polymorphism

Let us consider that a state-checking code fragment exists in-
side the body of method m belonging to class C. We define the fol-
lowing sets that will be used for the description of the proposed
technique:

IVC: the set of Instance Variables (non-static fields) of class C;
MC: the set of non-static Methods of class C;
Pm: the set of Parameters of method m;
LVm: the set of Local Variables declared inside the body of
method m and before the state-checking code fragment;
NC: the set of Named Constants of all system classes (static final
fields of int, short, char, or byte type and enum constant
declarations).
3.1. Identification of refactoring opportunities that introduce the State/
Strategy pattern

A code fragment that performs state-checking based on named
constants can be either a switch statement or an if/else if

statement (each if statement should be the else clause of the
previous if statement, except for the first one).

The set of candidate State Variables SV (variables that can pos-
sibly hold a value representing the current state) is the subset of
variables from the union of IVC, Pm and LVm sets having int, short,
char, byte, or enum type:

SV ¼ fx 2 fIVC [Pm [LVmg : typex ¼ primitive _ typex ¼ enumg

In the case where the state-checking code fragment under study
is a switch statement s consisting of n cases the following condi-
tions should be satisfied:

1. The expression of s should be a variable v belonging to SV or an
invocation of the getter method of a variable v belonging to SV
provided that v is an instance variable.

2. For each switch case c of s, the expression of c should be a
named constant belonging to NC.

3. n should be greater than one, or equal to one provided that a
default case exists.

In the case where the state-checking code fragment under study
is an if/else if statement consisting of n if statements the fol-
lowing conditions should be satisfied:

1. The expression of each if statement should be (or should con-
tain a conditional sub-expression that is) an infix expression
with equality operator. Moreover, one of the operands should
be a variable v belonging to SV or an invocation of the getter
method of a variable v belonging to SV provided that v is an
instance variable, while the other operand should be a named
constant belonging to NC.

2. Variable v should be common in all infix expressions of the n if
statements.

3. n should be greater than one, or equal to one provided that a
final else clause exists.

If all conditions are satisfied the following information is
extracted:

(a) the state variable v
(b) the set of Identified Named Constants (INC) that participate

in the specific state-checking code fragment along with the
code corresponding to each named constant

Identification of additional named constants related with a state-
checking code fragment. It is quite possible that the set of identified
named constants INC for a specific state-checking code fragment
does not contain all the named constants that the state variable v
is actually related with. The identification of all relevant states
(represented by named constants) is very important in order to
create a State inheritance hierarchy that can be also utilized by
other state-checking code fragments which may operate on differ-
ent but relevant named constants. Otherwise, it could be possible
to generate multiple inheritance hierarchies that constitute differ-
ent concrete implementations of essentially the same state
abstraction, causing serious design flaws.

The proposed technique follows two complementary ap-
proaches in order to identify the set of Additional Named Constants
(ANC) which are conceptually related with the state variable v but
do not participate in the specific state-checking code fragment. The
set of additional named constants ANC is also added to the infor-
mation that is extracted for each state-checking code fragment
along with the code corresponding to the default case or final
else clause.

1. Approach based on the state variable v
a. If variable v is an instance variable of class C, then all meth-

ods of class C are examined for assignments where the left
hand side is variable v.

b. If variable v is a local variable or parameter of method m,
then only method m is examined for assignments where
the left hand side is variable v.

If the right hand side of these assignments is a named constant
belonging to NC set but not to INC set (NC/INC), then the named
constant is added to the ANC set.

2. Approach based on the sets of identified named constants INC

The concept behind this approach is that if two state-checking

code fragments operate on at least one common named constant
(the intersection of their INC sets is not empty), then their state
variables are conceptually related with all the named constants
belonging to the union of their INC sets. Thus, a single State inher-
itance hierarchy should be created for both state-checking code
fragments having as many concrete state subclasses as the named
constants belonging to the union of their INC sets.

To this end, an algorithm (Fig. 1) is proposed that identifies the
maximum number of conceptually relevant named constants by
searching for common named constants among the INC sets of all
state-checking code fragments. Let us consider that INCi is the set
of identified named constants for state-checking code fragment i.
The INC sets are sorted in a list INCList according to their cardinality
in descending order. The examination of the INC sets in descending

Fig. 1. Algorithm for the identification of relevant named constants.

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404 395
order increases the probability of identifying a larger number of
conceptually relevant named constants (in a single iteration) com-
pared to a random order. A set of named constants namedConstants
is used to temporarily store the conceptually relevant named con-
stants, while a set of indexes indexSet is used to temporarily store
the indexes of INC sets which have common elements.

The proposed approach is unable to identify named constants
which conceptually belong to a group of relevant states but do
not participate in any conditional structure performing state-
checking (i.e. they do not belong to the union of all INC sets) or
are not assigned to any variable holding the current state (state
variable v). Usually, such named constants express possible states
or types that will become active in a future software release or are
already active states whose functionality is covered by the default
case or final else clause of the related state-checking code frag-
ments (and thus they do not participate directly in state-checking).
Obviously, such cases of named constants require human interven-
tion to be discovered.

3.2. Identification of refactoring opportunities that replace RTTI with
polymorphism

A code fragment that performs RunTime Type Identification can
be an if/else if statement (each if statement should be the else
clause of the previous if statement, except for the first one) consist-
ing of n if statements.

The set of candidate Superclass Type Variables (STV) is the sub-
set of variables from the union of IVC, Pm and LVm sets having the
type of a system class which is inherited by other classes of the
system.

A valid case of RunTime Type Identification should satisfy the
following conditions:

1. The expression of each if statement should be (or should con-
tain a conditional sub-expression that is) either:
a. An instanceof expression where the left operand is a var-

iable v belonging to STV, while the right operand is a class
type that inherits the superclass type corresponding to vari-
able v.

b. An infix expression with equality operator where one of the
operands is the invocation of method getClass() over a
variable v belonging to STV (v.getClass()), while the other
operand is a type literal (Type.class) which is a subclass of
the superclass type corresponding to variable v.
2. Variable v should be common in all expressions of the n if

statements.
3. n should be greater than one, or equal to one provided that a

final else clause exists.

If all conditions are satisfied the following information is
extracted:

(a) the variable v (reference to superclass type);
(b) the set of Identified Subclass Types (IST) that participate in

the specific if/else if statement along with the code cor-
responding to each subclass type;

(c) the inheritance hierarchy tree structure corresponding to
the identified class types;

(d) the code corresponding to the final else clause.

3.3. Handling of compound conditional expressions

In the case where the expression of an if statement consists of
sub-expressions combined with conditional AND operators (&&),
the proposed technique identifies which sub-expression actually
performs state-checking and constructs a new conditional expres-
sion from the other sub-expressions. The remaining expression
will replace the original expression, when the code of the then
clause is going to be moved to the appropriate subclass.

To this end, the original expression is represented as a binary
expression tree where all the parent nodes are conditional AND
operators and the leaf nodes are the actual sub-expressions. Next,
all the leaf nodes are examined (according to the first condition of
the aforementioned rules) to identify a sub-expression that per-
forms state-checking. If more than one sub-expressions are found
to perform state-checking, then the technique selects the sub-
expression whose state variable exists in the state-checking
expressions of all the other if statements. The remaining expres-
sion is constructed by removing the identified leaf node from the
binary tree and by replacing its parent node with its sibling node.

In the code example of Fig. 2 the expression of the first if state-
ment consists of three sub-expressions combined with conditional
AND operators.

The binary expression tree of the compound expression of Fig. 2
is shown in Fig. 3a. After examining the leaf nodes of the binary
expression tree, two out of the three sub-expressions can be con-
sidered as valid state-checking expressions. The first one ‘‘drag-
Mode== DRAG_MOVE” is an equality comparison of variable
dragMode with the named constant DRAG_MOVE, while the third
one ‘‘selected instanceof Node” is an instanceof expression
used for the purpose of RunTime Type Identification. From the two
valid state-checking expressions the first sub-expression is se-
lected ‘‘dragMode == DRAG_MOVE”, since variable dragMode ap-
pears in the state-checking expression of the second if

statement ‘‘dragMode == DRAG_LASSO”. Consequently, the
remaining expression is constructed by removing leaf node ‘‘drag-
Mode == DRAG_MOVE” from the tree and by replacing its parent
node ‘‘&&” with its sibling node ‘‘x > 0”, as shown in Fig. 3b. Finally,
the remaining expression will be the compound conditional
expression ‘‘x > 0 && selected instanceof Node”.

In the case where the expression of an if statement consists of
sub-expressions combined with conditional OR operators (||) and
all sub-expressions perform state-checking on the same variable
holding the current state, the functionality of the then clause is
common for all the named constants that participate in the
state-checks. In order to avoid the duplication of the then clause
in all the concrete subclasses corresponding to the named con-
stants that participate in the state-checks, an intermediate class
is introduced in the created State/Strategy inheritance hierarchy

Fig. 2. Example of compound conditional expression with AND operators.

Fig. 3. Handling of compound conditional expressions with AND operators.

396 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404
between the abstract class playing the role of State/Strategy and
the corresponding concrete subclasses. The intermediate class
overrides the polymorphic method of the State/Strategy superclass
with the common functionality of the then clause, while the con-
crete subclasses simply inherit the intermediate class without
overriding the polymorphic method. The name of the intermediate
class is extracted from the corresponding named constants
employing a Longest Common Subsequence (LCS) algorithm. In
the code example of Fig. 4a the expressions of both if statements
consist of two sub-expressions combined with a conditional OR
operator. Fig. 4b shows the resulting State inheritance hierarchy
which has two intermediate classes (Destroy, Conquer) contain-
ing the common functionality of the corresponding if statements.

3.4. Preconditions

According to Opdyke (1992), each refactoring is associated with
a set of preconditions which ensure that the behavior of a program
will be preserved after the application of the refactoring. The pro-
posed technique examines all valid cases of state-checking and dis-
qualifies those cases that do not satisfy the following set of
preconditions:

1. The state-checking code fragment should not contain assign-
ments of local variables belonging to the LVm set (variables of
method m declared before the state-checking code fragment)
or parameters belonging to Pm. In the case where such a vari-
able is passed as parameter to the polymorphic method, its
value would not change after the execution of the polymorphic
method, since parameters are passed by-value in Java. This
could possibly affect the behavior of the code that followed
the state-checking code fragment after the application of the
refactoring. An exception to this rule is the case where the
state-checking code fragment contains assignments of a single
variable belonging to the union of LVm and Pm sets that is
returned inside or after the state-checking code fragment.
2. The state-checking code fragment cannot be extracted if it
resides inside the body of an iteration statement (for, while,
do-while) and contains unstructured control flow statements
(break, continue). The reason is that if a branch of the
state-checking code is extracted as a separate method, then
the contained unstructured control flow statement will not
be surrounded by any iteration thus leading to a compilation
error.

3. The state-checking code fragment should not contain any super
method invocations, since the move of the code containing such
invocations to the corresponding subclass would lead to compi-
lation problems.

4. The names of the created classes belonging to the State/Strategy
inheritance hierarchy should not be the same with the names of
already existing classes in the same package or even in different
packages. In the first case, it is not possible to have two classes
with the same name in the same package. In the second case,
the classes of the system that do not explicitly import the
already existing class will present errors due to the ambiguous
type of the conflicting class name. This issue can be resolved by
renaming the classes of the State/Strategy hierarchy that lead to
conflict.

3.5. Assessing the effect of the identified refactoring opportunities on
design quality

It is reasonable to expect that several cases of state-checking
may exist in a software system, especially when it consists of many
classes. As a result, it is really important to be able to distinguish
the refactoring suggestions which have greater effect on the design
of the system. To this end, the proposed technique provides a sort-
ing mechanism for the identified refactoring opportunities.

First of all, the refactoring suggestions are grouped according
to their relevance. We can consider that there are two kinds of
grouping based on the nature of state-checking. The first one in-
volves the cases that perform state-checking based on named
constants and the grouping criterion is the named constants
found in common. The second one involves the cases that per-
form RunTime Type Identification based on subclass types and
the grouping criterion is the common inheritance hierarchy that
the subclass types may belong to. The philosophy behind this
kind of grouping is that the refactoring suggestions belonging to
the same group will eventually utilize the same inheritance hier-
archy (that either is going to be created or already exists). The
groups of refactoring suggestions are sorted according to their
size. The higher the number of the refactoring suggestions
belonging to a group, the greater the impact of the specific group
on design quality, since the degree of polymorphism (i.e. the
number of polymorphic methods added to a single inheritance
hierarchy) introduced to the system will be higher. In the case
where two groups have the same size, they are sorted according
to the average number of statements per branch (state) of the
state-checking code fragments that they contain. Finally, the
refactoring suggestions are also sorted within the group that they
belong to according to the number of cases performing state-

Fig. 4. Handling of compound conditional expressions with OR operators.

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404 397
checking at each class of the group (at first level) and the average
number of statements per branch of each state-checking code
fragment in the group (at second level).

It should be noted that the refactoring suggestions within a
group are independent with each other, in the sense that the appli-
cation of a refactoring does not affect the other suggestions. In
other words, the application of all refactorings belonging to a
group leads to the same code regardless of the order in which they
are applied.

3.6. Limitations

As already mentioned in the introduction, the proposed ap-
proach is semi-automatic in the sense that the decision of whether
a refactoring suggestion should be accepted or not is left up to the
designer of the examined program. Consequently, a limitation of
the approach is that the effectiveness of the refactoring identifica-
tion technique relies on the expertise of the designer. In general,
the designer should consider three factors in order to derive a
decision:

1. The number of conditional structures that perform state-check-
ing on specific named constants throughout the code of the pro-
gram. Obviously, the larger the number of these conditional
structures, the more severe the design problem is. The proposed
technique assists the designer by grouping the suggestions
according to the relevance of the named constants participating
in the conditional structures and sorting the resulting groups of
suggestions according to their size.

2. The possibility of adding a new state to an already existing
group of states due to a future change in requirements. Obvi-
ously, if the designer is absolutely sure that the addition of
new states in the future is not possible, there is no need to
replace the existing solution with one that introduces polymor-
phism. This factor can be determined based on the require-
ments of the program under examination.

3. The trade-off between the flexibility that may be introduced by
the employment of State pattern and the complexity that may
be caused by the number of concrete State subclasses being
added. Obviously, the smaller the number of added State sub-
classes and the larger the size of code being moved to them,
the more beneficial the refactoring is.
If we assume that the maintainer of the program under exami-
nation has a sufficient knowledge of its design structure and
requirements, and exploits effectively the assistance provided by
the proposed technique, then the time required for the examina-
tion of the refactoring suggestions is significantly reduced.

The proposed technique does not cover all refactoring opportu-
nities that introduce polymorphism. Kerievsky (2004) proposed a
catalogue of refactorings that replace simpler solutions to specific
design problems with solutions introducing design patterns and
consequently polymorphism. However, each design pattern re-
quires a completely different approach for the identification of
cases where it can be introduced. As a result, it is impossible to
build a common technique that covers all refactoring opportunities
introducing design patterns. It should be noted, though, that state-
checking conditional logic has been widely recognized as an
important design flaw in object-oriented software (Fowler et al.,
1999; Demeyer et al., 2003; Kerievsky, 2004), since conditional lo-
gic is considered as one of the most common sources of
complexity.

It should be noted that conditional structures performing RTTI
can be refactored (in order to eliminate the conditionals by
employing polymorphism) either by applying ‘‘Replace Conditional
with Polymorphism” (Fowler et al., 1999) or by applying ‘‘Move
Accumulation to Visitor” (Kerievsky, 2004). In the first case the
code contained in the conditional branches is moved to the sub-
classes of a common hierarchy, while in the second case the code
is accumulated in a single Visitor class and double-dispatch is em-
ployed. In this particular context, the second approach (i.e. the Vis-
itor design pattern) is required when the designer wants to avoid
‘‘polluting” the subclasses with additional operations (Gamma
et al., 1995). For both cases the proposed technique would identify
the need for introducing polymorphism; however, the selection be-
tween the two aforementioned solutions depends on factors that
cannot be automatically determined. The tool currently automates
only the application of the first solution.

Another issue deals with the existence of additional refactor-
ing opportunities on the conditional structures performing state-
checking. Usually, such conflicting refactorings involve the
extraction of the code residing in conditional branches as new
separate methods (this activity constitutes part of the Refactor
to Understand reengineering pattern introduced by Demeyer
et al., 2003), the extraction of code that is duplicated between

398 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404
a conditional structure and other parts of the program as a single
method, and even the move of a conditional structure (or the
method containing it) to another class due to Feature Envy (Fow-
ler et al., 1999) design problem. The aforementioned refactorings
can be considered as low-level transformations compared to
more sophisticated refactorings introducing polymorphism and
design patterns, and thus should be applied first. It should be
noted that if the application of low-level refactorings does not af-
fect the branching structure of conditional statements, then the
refactoring opportunities introducing polymorphism will be
preserved.

Finally, the conditional operator ?: (also known as the ternary
operator) has not been considered by the proposed technique.
The ternary operator is used in the form of conditional expression

Condition ? value if true : value if false

where value_if_true is returned if condition is true, and value_if_false
otherwise. This conditional expression is most commonly used as
the right hand side of assignment statements. As a result, its usage
potential is limited compared to if and switch statements. More-
over, it is not suitable for the representation of multiple cases or
execution branches, since it results in overcomplicated code which
is difficult to read and understand. For these reasons, the condi-
tional expression with ternary operator is rarely used compared
to if and switch statements.

3.7. Demonstration of the technique on an open-source project

In this section we present the refactoring suggestions extracted
by the proposed technique for an open-source project and demon-
strate the application of two representative refactorings on source
code. The examined open-source project is named Violet (version
0.16) and is a UML editor intended for students, teachers, and
authors who need to produce simple UML diagrams quickly (Horst-
mann, 2005). The extracted suggestions will be presented sepa-
rately for the two kinds of refactoring solutions which are
supported by the proposed technique.

The suggestions corresponding to Replace Type Code with State/
Strategy refactorings are summarized in Table 1.

The group of refactoring suggestions 1–3 (Table 1) is related to
named constants representing different drag modes. The active
drag mode affects the way that UML components are painted in
the diagram, as well as the handling of various mouse events.
We can consider that the State inheritance hierarchy created for
this group of refactorings will be sufficiently utilized, since three
polymorphic methods will be added (the number of polymorphic
methods being added is equal to the size of the group) and a rela-
tively large number of statements (as it is evident from the last col-
umn of Table 1) will be moved to the corresponding overriding
Table 1
Replace Type Code with State/Strategy refactoring suggestions for Violet 0.16*.

Id Class Method Named constants Default
case

Name of
variable
holding t
state

1 GraphPanel mouseDragged DRAG_MOVE No dragMod
DRAG_LASSO

2 GraphPanel paintComponent DRAG_RUBBERBAND No dragMod
DRAG_LASSO

3 GraphPanel mouseReleased DRAG_RUBBERBAND No dragMod
DRAG_MOVE

4 MultiLineString setLabelText LEFT No justificat
CENTER
RIGHT

* All class names are preceded by package ‘‘com.horstmann.violet.framework.”
methods in the concrete State subclasses when the refactorings
of the group are applied. The application of Replace Type Code with
State/Strategy refactoring for the third suggestion is demonstrated
in Fig. 5.

As it can be observed from Fig. 5a, method mouseReleased in
class GraphPanel contains an if/else if statement that performs
state-checking. The state variable is instance variable dragMode
having int type, while the set of identified named constants INC
is {DRAG_RUBBERBAND, DRAG_MOVE} and the set of additional
named constants ANC that results as described in Section 3.1 is
{DRAG_NONE, DRAG_LASSO}. After the application of the refactor-
ing, class GraphPanel plays the role of Context in the State/Strategy
pattern, as shown in Fig. 5b. The type of the state variable drag-
Mode has been changed to the type of the abstract class DragMode
playing the role of State/Strategy. The state-checking code frag-
ment has been replaced with an invocation of the polymorphic
method mouseReleased through state variable dragMode. Finally,
each concrete State subclass (e.g. class DragMove that represents
named constant DRAG_MOVE) overrides the polymorphic method
mouseReleased by copying the statements of the corresponding
conditional branches.

The suggestions corresponding to Replace Conditional with Poly-
morphism refactorings are summarized in Table 2.

The group of refactoring suggestions 1–4 (Table 2) is related to
subclass types that belong to the inheritance hierarchy of interface
Node. The classes belonging to the Node inheritance hierarchy rep-
resent elements that participate in UML diagrams. The conditional
structures corresponding to this group of suggestions perform
RunTime Type Identification based on the actual subclass type of
the Node reference. The application of Replace Conditional with
Polymorphism refactoring for the third suggestion is demonstrated
in Fig. 6.

As it can be observed from Fig. 6a, method getPoints in class
CallEdge contains an if/else if statement that performs RTTI. The
reference to superclass type is local variable n whose type is Node.
The set of identified subclass types IST is {CallNode, PointNode}
and the conditional statement has also a final else clause (default
implementation). The inheritance hierarchy tree structure corre-
sponding to the identified subclass types is shown in Fig. 7. The ab-
stract class RectangularNode has eleven more subclasses which
have not been included in the Class Diagram of Fig. 7. After the
application of the refactoring, the conditional code performing
RTTI has been replaced with an invocation of the polymorphic
method getPoints (declared in interface Node) through local vari-
able n, as shown in Fig. 6b. Each subclass belonging to IST overrides
the polymorphic method getPoints by copying the statements of
the corresponding conditional branches, while class AbstractNode
provides the default implementation by copying the statements
of the final else clause.
he

Kind of
variable
holding the
state

#Cases in a class
utilizing the same
hierarchy

#Cases in a system
utilizing the same
hierarchy

Average
#statements
per branch

e Field 3 3 16

e Field 3 3 6.5

e Field 3 3 3.5

ion Field 1 1 1

Fig. 5. Application of Replace Type Code with State/Strategy refactoring.

Table 2
Replace Conditional with Polymorphism refactoring suggestions for Violet 0.16*.

Id Class Method Subclass types Default
case

Name of
superclass
type reference

Kind of
superclass type
reference

#cases in a class
utilizing the same
hierarchy

#cases in a system
utilizing the same
hierarchy

Average
#statements
per branch

1 SequenceDiagramGraph layout CallNode No n Local variable 2 4 1
ImplicitParameterNode

2 SequenceDiagramGraph removeEdge CallNode Yes end Getter invocation 2 4 1
3 CallEdge getPoints CallNode Yes n Local variable 1 4 5.3

PointNode
4 PackageNode addNode ClassNode Yes n Parameter 1 4 1.5

InterfaceNode
PackageNode

* All class names are preceded by package ‘‘com.horstmann.violet.”

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404 399
4. JDeodorant Eclipse plug-in

The proposed technique has been implemented as an Eclipse
plug-in (Tsantalis et al., 2008) that not only identifies state-check-
ing problems but also allows the user to apply the refactorings
that resolve them on Java source code. Moreover, the tool groups
the refactoring suggestions according to their relevance and sorts
them within their groups according to the quantitative character-

Fig. 6. Application of Replace Conditional with Polymorphism refactoring.

400 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404
istics described in Section 3.5, assisting the user to determine an
appropriate sequence of refactoring applications. The plug-in em-
ploys the ASTParser of Eclipse Java Development Tools (JDT) to
analyze the source code of Java projects and the ASTRewrite to ap-
ply the refactorings and provide undo functionality. Fig. 8 shows
the way that the refactoring suggestions are presented to the user.
The first column indicates the type of the extracted refactorings
(Replace Type Code with State/Strategy or Replace Conditional with
Polymorphism), while the second column indicates the method
that contains the corresponding state-checking code fragment.
By double-clicking on a row of the table the corresponding
state-checking code fragment is highlighted in the Eclipse editor.
The third and fourth columns indicate the number of relevant
refactoring suggestions belonging to the same group at a system
and class level, respectively. The final column shows the average
number of statements per branch of the corresponding state-
checking code fragment.

5. Evaluation

The proposed technique has been evaluated in three ways:

(a) To evaluate the precision and recall of proposed tech-
nique, we performed an experiment to compare the
refactoring opportunities identified by an independent
expert to the results of the technique on various open-
source projects.

(b) We performed an experiment to investigate the correlation
of three quantitative factors (which are used to sort the
refactoring suggestions extracted by the technique) with

Table 3
Size characteristics of the examined open-source projects.

Measure Violet 0.16 IHM 0.1.1 Nutch 0.4

#Classes 75 86 295
#Methods with body 377 629 1389
Total #conditional structures 231 245 1495
Source lines of code* 6910 8662 23579

* Source lines of code (SLOC) have been measured using SLOCCount.

+getPoints()

«interface»
Node

+getPoints()

AbstractNode

+getPoints()

PointNode RectangularNode

+getPoints()

CallNode

default
implementation

overriding
of default
implementation

Fig. 7. Node inheritance hierarchy tree structure.

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404 401
the decision of the independent expert to accept or reject
the refactoring opportunities identified by the proposed
technique.

(c) To evaluate the scalability of the proposed technique, we
measured the computation time required for the application
of the technique with regard to the size of various open-
source projects.
5.1. Evaluation of precision and recall

To evaluate the performance of the proposed technique in terms
of exactness and completeness, we performed an experimental
study to compare the findings of an independent expert to the re-
sults of the proposed technique on various open-source projects.

The expert that participated in the experiment had significant
experience in software design (he has been working for more than
12 years as a telecommunications software designer) and deep
knowledge of object-oriented design principles and patterns.
Moreover, he was unfamiliar with the proposed technique and
was able to dedicate a significant amount of time on analyzing
the projects under study. The motivation behind his participation
in the experiment was the utilization of the results for his PhD re-
search on aspect-oriented design.

The projects which have been selected for the experiment are
Violet 0.16 which is a UML editor intended for educational pur-
Fig. 8. Grouping and sorting of
poses, Ice Hockey Manager 0.1.1 which is a hockey team manage-
ment game, and Nutch 0.4 which is a web crawler. The reasons for
selecting these specific projects were:

� Their source code is open and publicly available allowing the
replication of the experiment.

� They have a relatively small size allowing the independent
expert to adequately examine them.

� They are implemented in Java programming language enabling
the analysis of their source code by the proposed technique.

� The selected software releases correspond to rather immature
versions, thus offering potential refactoring opportunities.

� They originate from different application domains allowing, to
some extent, the generalization of the conclusions.

The size characteristics of the examined projects are shown in
Table 3.

The exact question that has been asked to the independent ex-
pert was: ‘‘Which are the conditional structures that should be re-
placed with an instance of State design pattern, or employ an RTTI
mechanism that should be replaced with a polymorphic call?” We
considered as True Occurrences the refactoring opportunities re-
ported by the independent expert. This set of True Occurrences is
the baseline against which we compared the proposed technique
when calculating precision and recall. The measures required for
the classification of the results are defined as follows:

� True Positive: A refactoring opportunity identified by the inde-
pendent expert, and also by the proposed technique.

� False Positive: A refactoring opportunity identified by the pro-
posed technique, but not by the independent expert.

� False Negative: A refactoring opportunity identified by the inde-
pendent expert, but not by the proposed technique.

� True Negative: A conditional structure which has not been con-
sidered to offer a refactoring opportunity by the independent
expert and has not been suggested as a refactoring opportunity
by the proposed technique.

The precision and recall for the examined projects are given in
Table 4. We have observed that if we exclude from the suggestions
of the proposed technique the conditional structures having an
the refactoring suggestions

Table 4
Precision and recall for the examined open-source projects.

Project Violet 0.16 IHM 0.1.1 Nutch 0.4

True Occurrences (TO) 7 9 17
True Positives (TP) 4 9 (7) 17
False Positives (FP) 4 (0) 12 (0) 13 (1)
False Negatives (FN) 3 0 (2) 0

True Negatives (TN) 220 (224) 224 (236) 1465 (1477)
Precision: TP/(TP + FP) 50% (100%) 43% (100%) 57% (94%)
Recall: TP/(TP + FN) 57% 100% (78%) 100%
Accuracy: (TP + TN)/

(TP + FP + FN + TN)
97% (99%) 95% (99%) 99% (100%)

402 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404
average number of statements per branch which is lower than two
(i.e. conditional structures with a relatively small number of state-
ments), the precision of the technique is significantly improved.
The measures resulting from the application of the threshold (i.e.
average number of statements per branch >= 2) are given inside
parentheses wherever a change was observed.

The false negatives refer to conditional structures using this
keyword in place of the variable holding the current state, whereas
our identification approach requires the existence of an instance
variable, local variable, or method parameter. A conditional code
that compares this keyword with a set of named constants (having
the type of the class corresponding to this keyword) cannot be con-
sidered as a case of state-checking, since the value of this reference
cannot change after object creation and as a result the state of the
object cannot be modified at runtime. The independent expert sup-
ported that such cases could be eliminated by introducing a sub-
class (of the class corresponding to this reference) for each
named constant that participates in the conditional and overriding
the method that contains the conditional in each created subclass
(i.e. by applying the Replace Type Code with Subclasses refactoring).

The independent expert reported a few cases where the variable
holding the current state was a field inherited from a superclass.
The proposed technique failed to collect these cases, because it re-
quires the fields holding the current state to belong in the same
class where the corresponding state-checking code fragment ex-
ists. The reason for this requirement is to make feasible the change
of the original type of the field to the type of the abstract class
playing the role of State. However, the expert supported that the
original solutions should not be replaced with an instance of State
pattern, and as a result, they were not considered as false
negatives.
Table 5
Logistic regression results for project Nutch 0.4.

Factor B (S.E.) Wald X2 df Nagelkerke R2 p

a 1.777 (0.648) 7.533 1 0.783 0.006
b �0.716 (0.254) 7.930 1 0.657 0.005
c 2.624 (0.920) 8.124 1 0.712 0.004
5.2. Correlation of quantitative factors with expert judgment

The goal of this experiment is to assess the correlation of three
factors with the decision of the independent expert to accept or re-
ject the refactoring opportunities identified by the proposed tech-
nique. These factors are:

(a) The number of conditional structures performing state-
checking on the same set of named constants or equivalently
the number of polymorphic methods that can be added in
the same inheritance hierarchy of states.

(b) The number of alternative states belonging to a set of named
constants or equivalently the number of concrete State sub-
classes that will be created in an inheritance hierarchy of
states.

(c) The average number of statements per branch in a condi-
tional structure performing state-checking or equivalently
the average number of statements that will be moved to
the concrete State subclasses of an inheritance hierarchy.
The null and alternative hypotheses being tested are the
following:

H0a: The decision of accepting or rejecting a refactoring oppor-
tunity is not affected by factor a.
H1a: The decision of accepting or rejecting a refactoring oppor-
tunity is affected by factor a.
H0b: The decision of accepting or rejecting a refactoring oppor-
tunity is not affected by factor b.
H1b: The decision of accepting or rejecting a refactoring oppor-
tunity is affected by factor b.
H0c: The decision of accepting or rejecting a refactoring oppor-
tunity is not affected by factor c.
H1c: The decision of accepting or rejecting a refactoring oppor-
tunity is affected by factor c.

The hypotheses will be tested by univariate logistic regression
analyses, one for each factor. The dependent variable is a binary
variable representing ‘‘agreement” or ‘‘disagreement” on the refac-
toring opportunities identified by the proposed technique, while
the independent variable in each case is the corresponding factor.
The values for the dependent variable were derived from the True
Positives and False Positives of the experiment described in Section
5.1. A True Positive corresponds to an ‘‘agreement” of the indepen-
dent expert with a refactoring opportunity identified by the pro-
posed technique, while a False Positive corresponds to a
‘‘disagreement” of the independent expert with a refactoring
opportunity identified by the proposed technique. The values for
the independent variables (i.e. the three factors being examined
in the experiment) were provided by the tool implementing the
proposed technique. The data for the analysis have been drawn
from project Nutch 0.4, since it provides the largest number of sug-
gestions (N = 30 cases). The results from the analysis are shown in
Table 5.

Since the p-value is less than the significance level (0.05) for all
three factors, we can reject the null hypotheses and claim that the
decision for accepting a refactoring opportunity is affected by all
factors. In particular, considering the coefficients (B), the decision
is affected positively by the number of polymorphic methods to
be added to the same hierarchy of states (factor a) and the average
number of statements that will be moved to the State subclasses
(factor c), while it is affected negatively by the number of State
subclasses that will be created (factor b). In other words, the inde-
pendent expert tends to agree with the refactoring opportunities
that sufficiently utilize a newly created inheritance hierarchy of
states (by belonging to a relatively large group of opportunities
that will utilize the same hierarchy of states), move a relatively
large number of statements from the conditional branches to the
corresponding State subclasses, and introduce hierarchies of states
with a relatively small number of State subclasses. The proposed
technique takes into account these quantitative factors when sort-
ing the extracted refactoring suggestions in order to assist the de-
signer in assessing their effect on design quality.
5.3. Threats to validity

Since the two experiments have different goals we list their ma-
jor threats separately (Wohlin et al., 2000).

Table 7
CPU times for each step required for the extraction of refactoring suggestions*.

Step Nutch 1.0 FreeCol 0.8.3 JMol 11.6.21 JFreeChart 1.0.13

a 7984 ms 17,250 ms 13,200 ms 20,890 ms
b 200 ms 578 ms 1780 ms 734 ms

* Measurements performed on Intel Core 2 Duo E6600 2.4 GHz, 2 GB DDR2 RAM.

Table 6
Various size measures for the examined open-source projects.

Measures Nutch
1.0

FreeCol
0.8.3

JMol
11.6.21

JFreeChart
1.0.13

#Classes 582 613 548 1037
#Methods with

body
2554 5104 6337 9960

#Conditional
structures

2391 5598 10730 8042

Source lines of code* 42,955 83,258 106,237 143,062

* Source lines of code (SLOC) have been measured using SLOCCount.

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404 403
Threats to internal validity: As threats to internal validity we
consider those factors that may cause interferences regarding the
relationships being investigated.

For the first experiment (Section 5.1), which is related with the
evaluation of precision and recall of the technique, there is a pos-
sibility that the human expert has missed a number of refactoring
opportunities while examining the code of the projects or misclas-
sified a number of non-valid cases as refactoring opportunities.
Obviously, these threats affect the reported precision and recall
of the technique. The first threat is mitigated by the fact that the
selected projects were relatively small in size and thus could be
adequately examined by the independent expert. Moreover, the
independent expert was motivated to perform a detailed and infal-
lible analysis of the projects under study by the fact that the results
would be utilized for his PhD research. The second threat is miti-
gated by the expertise of the evaluator and his past experience
with design patterns in industrial software development.

For the second experiment (Section 5.2), which is related with
the correlation of quantitative factors with expert judgment, there
may have been omitted other important factors that affect the
decision of the independent expert, such as the possibility of add-
ing a new state to an already existing group of states due to a fu-
ture change in requirements. Obviously, this threat could affect
the accuracy of a multivariate prediction model which involves
more than one independent variables as predictors at the same
time, and for this reason, we performed univariate regression anal-
ysis for each factor separately. In any case, the investigated statis-
tical relationships do not prove a causal relationship between the
factors and the expert’s decision.

Threats to external validity: Since the experiments have been
performed employing a single expert as evaluator and a small
number of projects, the study suffers from the usual threats to
external validity. In other words, these factors limit the possibility
to generalize our findings beyond the selected setting (projects and
evaluator). For example, in the experiment regarding the correla-
tion of quantitative factors with expert judgment, the logistic
regression results for the other two projects that have been consid-
ered in the first experiment (Violet 0.16 and IHM 0.1.1) were not
statistically significant.

5.4. Evaluation of scalability

The process required for the extraction of the refactoring sug-
gestions in a given system consists of the following steps:

(a) Parsing of the system under study using the ASTParser of
Eclipse JDT.

(b) Examination of all conditional statements (switch, if/else if
statements) in the given system in order to identify valid
cases of state-checking. Moreover, the valid cases of state-
checking are checked against the set of preconditions
defined at Section 3.4.

Table 6 contains various size measures for four open-source pro-
jects, namely Nutch 1.0, FreeCol 0.8.3, JMol 11.6.21, and JFreeChart
1.0.13.

Table 7 presents the required computation time for each step of
the process.

The CPU time required for the first step depends on the size of
the system under examination in terms of lines of code, since all
field and method declarations (including the statements inside
the body of each method) are parsed and analyzed. The CPU time
required for the second step primarily depends on the total num-
ber of conditional structures found in the system under examina-
tion. The proposed technique requires access to the Abstract
Syntax Tree (AST) information both during the identification of
refactoring opportunities and the application of refactorings which
are eventually selected by the user. A limitation regarding scalabil-
ity is that the AST information of large projects occupies a large
amount of heap memory causing OutOfMemory exceptions. This
issue can be resolved either by applying the proposed technique
on smaller components of a project (e.g. packages) or by removing
AST information for classes that do not exhibit any refactoring
opportunities.
6. Conclusions

Despite the wide acknowledgement of the benefits of polymor-
phism in object-oriented systems, the identification of places in
code where polymorphism should be introduced is neither trivial
nor supported by tools. In this paper, we have proposed a tech-
nique that extracts refactoring suggestions introducing polymor-
phism as a solution to state-checking problems.

The comparison of the refactoring opportunities identified by an
independent expert on three open-source projects to the results of
the proposed technique has shown a moderate precision and rela-
tively high recall. The small number of false negatives encourages
the use of the proposed technique as a semi-automatic approach,
where the designer eventually decides whether a suggested refac-
toring should be applied or not. A second experiment investigated
by means of binary logistic regression the correlation between
three quantitative factors and the decision of the expert. The re-
sults indicate that the designer agrees in introducing polymor-
phism when an inheritance hierarchy will be extensively utilized
by adding several polymorphic methods, when a large number of
statements will be moved to the State subclasses and when the
number of State subclasses that will be created is relatively small.
Finally, performance analysis has shown that the proposed tech-
nique is efficient in terms of computation time but less scalable
in terms of memory usage.

Acknowledgements

The authors would like to thank Konstantinos Kouskouras for
his contribution to the independent assessment of the proposed
technique.

References

Arisholm, E., Sjøberg, D.I.K., 2004. Evaluating the effect of a delegated versus
centralized control style on the maintainability of object-oriented software.
IEEE Transactions on Software Engineering 30 (8), 521–534.

404 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 83 (2010) 391–404
Brito e Abreu, F., 1995. The MOOD metrics set. In: Proceedings of the Ninth
European Conference on Object-Oriented Programming Workshop on
Metrics.

Brito e Abreu, F., Melo, W., 1996. Evaluating the impact of object-oriented design on
software quality. In: Proceedings of the Third International Software Metrics
Symposium, pp. 90–99.

Day, M., Gruber, R., Liskov, B., Myers, A.C., 1995. Subtypes vs. where clauses:
constraining parametric polymorphism. In: Proceedings of the 10th Annual
Conference on Object-Oriented Programming Systems, Languages, and
Applications, pp. 156–168.

Demeyer, S., Ducasse, S., Nierstrasz, O., 2003. Object-Oriented Reengineering
Patterns. Morgan Kaufman.

Demeyer, S., 2005. Refactor conditionals into polymorphism: what’s the
performance cost of introducing virtual calls? In: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pp. 627–630.

Du Bois, B., 2006. A Study of Quality Improvements by Refactoring. Ph.D.
dissertation, University of Antwerp.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., 1999. Refactoring: Improving
the Design of Existing Code. Addison Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley.

Horstmann, C., 2005. Violet. Available from: <http://www.horstmann.com/violet/>.
Kerievsky, J., 2004. Refactoring to Patterns. Addison Wesley.
Martin, R.C., 2003. Agile Software Development: Principles, Patterns and Practices.

Prentice Hall.
Ng, T.H., Cheung, S.C., Chan, W.K., Yu, Y.T., 2006. Work experience versus refactoring

to design patterns: a controlled experiment. In: Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
12–22.

Ng, T.H., Cheung, S.C., Chan, W.K., Yu, Y.T., 2007. Do maintainers utilize deployed
design patterns effectively? In: Proceedings of the 29th International
Conference on Software Engineering, pp. 168–177.

Ó Cinnéide, M., Nixon, P., 1999. A methodology for the automated introduction of
design patterns. In: Proceedings of the IEEE International Conference on
Software Maintenance, pp. 463–472.

Ó Cinnéide, M., 2000. Automated Application of Design Patterns: A Refactoring
Approach. Ph.D. dissertation, University of Dublin, Trinity College.

O’Keeffe, M., Ó Cinnéide, M., 2007. Getting the most from search-based refactoring.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
1114–1120.

O’Keeffe, M., Ó Cinnéide, M., 2008. Search-based refactoring for software
maintenance. The Journal of Systems and Software 81 (4), 502–516.
Opdyke, W.F., 1992. Refactoring Object-Oriented Frameworks. Ph.D. dissertation,
University of Illinois at Urbana-Champaign.

Parnas, D.L., 1994. Software aging. In: Proceedings of the 16th International
Conference on Software Engineering, pp. 279–287.

Prechelt, L., Unger, B., Tichy, W.F., Brössler, P., Votta, L.G., 2001. A controlled
experiment in maintenance comparing design patterns to simpler solutions.
IEEE Transactions on Software Engineering 27 (12), 1134–1144.

Trifu, A., Reupke, U., 2007. Towards automated restructuring of object oriented
systems. In: Proceedings of the 11th European Conference on Software
Maintenance and Reengineering, pp. 39–48.

Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A., 2008. JDeodorant: identification and
removal of type-checking bad smells. In: Proceedings of the 12th European
Conference on Software Maintenance and Reengineering, pp. 329–331.

Van Emden, E., Moonen, L., 2002. Java quality assurance by detecting code smells.
In: Proceedings of the Ninth Working Conference on Reverse Engineering, pp.
97–106.

Wendorff, P., 2001. Assessment of design patterns during software reengineering:
lessons learned from a large commercial project. In: Proceedings of the
Fifth European Conference on Software Maintenance and Reengineering, pp.
77–84.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000.
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers.

Nikolaos Tsantalis received the BS and MS degrees in applied informatics from the
University of Macedonia, in 2004 and 2006, respectively. He is currently working
toward the PhD degree in the Department of Applied Informatics at the University
of Macedonia, Thessaloniki, Greece. His research interests include design patterns,
refactorings, and object-oriented quality metrics. He is a student member of the
IEEE and the IEEE Computer Society.

Alexander Chatzigeorgiou is an assistant professor of software engineering in the
Department of Applied Informatics at the University of Macedonia, Thessaloniki,
Greece. He received the Diploma in electrical engineering and the PhD degree in
computer science from the Aristotle University of Thessaloniki, Greece, in 1996 and
2000, respectively. From 1997 to 1999, he was with Intracom, Greece, as a tele-
communications software designer. His research interests include object-oriented
design, software maintenance and metrics. He is a member of the IEEE and the IEEE
Computer Society.

http://www.horstmann.com/violet/

	Identification of refactoring opportunities introducing polymorphism
	Introduction
	Related work
	Identification of refactoring opportunities that introduce polymorphism
	Identification of refactoring opportunities that introduce the State/Strategy pattern
	Identification of refactoring opportunities that replace RTTI with polymorphism
	Handling of compound conditional expressions
	Preconditions
	Assessing the effect of the identified refactoring opportunities on design quality
	Limitations
	Demonstration of the technique on an open-source project

	JDeodorant Eclipse plug-in
	Evaluation
	Evaluation of precision and recall
	Correlation of quantitative factors with expert judgment
	Threats to validity
	Evaluation of scalability

	Conclusions
	Acknowledgements
	References

