The Journal of Systems and Software 84 (2011) 1757-1782

Contents lists available at ScienceDirect

i

of
ans

o
AT

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Identification of extract method refactoring opportunities for the
decomposition of methods

Nikolaos Tsantalis*, Alexander Chatzigeorgiou

Department of Applied Informatics, University of Macedonia, 156 Egnatia Str., 54006 Thessaloniki, Greece

ARTICLE INFO ABSTRACT

Article history:

Received 27 July 2010

Received in revised form 26 January 2011
Accepted 9 May 2011

Available online 14 May 2011

The extraction of a code fragment into a separate method is one of the most widely performed refactoring
activities, since it allows the decomposition of large and complex methods and can be used in combination
with other code transformations for fixing a variety of design problems. Despite the significance of Extract
Method refactoring towards code quality improvement, there is limited support for the identification of
code fragments with distinct functionality that could be extracted into new methods. The goal of our
approach is to automatically identify Extract Method refactoring opportunities which are related with
the complete computation of a given variable (complete computation slice) and the statements affecting
the state of a given object (object state slice). Moreover, a set of rules regarding the preservation of existing
dependences is proposed that exclude refactoring opportunities corresponding to slices whose extraction
could possibly cause a change in program behavior. The proposed approach has been evaluated regarding
its ability to capture slices of code implementing a distinct functionality, its ability to resolve existing
design flaws, its impact on the cohesion of the decomposed and extracted methods, and its ability to pre-
serve program behavior. Moreover, precision and recall have been computed employing the refactoring

Keywords:

Extract Method refactoring
Program slicing

Module decomposition

opportunities found by independent evaluators in software that they developed as a golden set.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

According to several empirical studies procedures/modules
with large size (Banker et al., 1993), high complexity (Gill and
Kemerer, 1991), and low cohesion (Meyers and Binkley, 2007)
require significantly more time and effort for comprehension,
debugging, testing and maintenance. A solution to this kind of
design problems is given by Extract Method refactoring (Fowler
et al.,, 1999) which simplifies the code by breaking large methods
into smaller ones and creates new methods which can be reused.
However, existing IDEs and research approaches have focused on
automating the extraction of statements which are indicated by
the developer without providing support for the automatic identi-
fication of code fragments that could benefit from decomposition.
Abadi et al.(2008) stressed the inadequate support that is offered by
modern IDEs for various cases requiring the application of Extract
Method refactoring.

Extract Method refactoring is employed for fixing several design
flaws such as Duplicated Code (Fowler et al., 1999) where the same
code structure existing in more than one place is extracted into
a single method, Long Method (Fowler et al., 1999) where parts
of a large and complex method having a distinct functionality are

* Corresponding author. Tel.: +30 2310 891886; fax: +30 2310 891290.
E-mail address: nikos@java.uom.gr (N. Tsantalis).

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2011.05.016

extracted into new methods, and Feature Envy (Fowler et al., 1999)
where a part of a method using several data of another class is ini-
tially extracted into a new method and then moved to the class that
it envies. Furthermore, in the study by Binkley et al. (2006), Extract
Method refactoring transformations have been widely employed
to enable the migration of object-oriented programs to the aspect-
oriented paradigm. The wide use of Extract Method refactoring has
also been evident in several empirical studies (Murphy et al., 2006;
Murphy-Hill et al., 2009) that analyzed the refactoring operations
performed by programmers using the Eclipse IDE.

Our approach covers the identification of refactoring opportuni-
ties which (a) extract the complete computation of a given variable
(referred to as complete computation slice) into a new method, (b)
extract the statements affecting the state of a given object (referred
to as object state slice) into a new method. A complete computation
slice is a slice that contains all the assignment statements of a given
variable within the body of a method, while an object state slice is a
slice that contains all the statements modifying the state of a given
object (by method invocations through references pointing to this
specific object) within the body of a method. It should be empha-
sized that object state slice has no relevance with the concept of
object slice introduced by Liang and Harrold (1998) which is defined
as “the statements in the methods of a particular object that might
affect the slicing criterion”. Fig. 1 illustrates two code examples for a
complete computation slice and an object state slice, respectively.
Our approach builds upon well established techniques such as


dx.doi.org/10.1016/j.jss.2011.05.016
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:nikos@java.uom.gr
dx.doi.org/10.1016/j.jss.2011.05.016

1758

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

public void translate (double dx,
if (getParent() == null) {
dy = TOP GAPY - getBounds() .get¥Y();

double dy) {

}
else {
double y = getBounds().getY ()
y = Math.max (v,
getParent () .getBounds () .getMinY ()
- topHeight / 2);
y = Math.min(y,
getParent () .getBounds () .getMaxY ()
- topHeight / 2);
dy = v - getBounds().get¥();

+ dy;

}

super.translate (dx,

dy) ;

public void draw (Graphics2D g2) {

super.draw (g2) ;
Color oldColor = g2.getColor();
g2.setColor (color);

Shape path = getShape():;
g2.fill (path);
g2.setColor (oldCelor) ;
g2.draw (path) ;

RectangleZD bounds = getBounds();
GeneralPath fold = new GeneralPath();
fold.moveTo ( (float) (bounds.getMaxX ()

- FOLD X), (float)bounds.get¥Y()):
fold.lineTo( (float)bounds.getMaxX ()

- FOLD X, (float)bounds.getY() + FOLD X)
fold.lineTo( (float)bounds.getMaxX (),

(float) (bounds.getY () + FOLD Y));
fold.closePath () ;

oldColor = g2.getColor();
g2.setColor (g2.getBackground()) ;
g2.fill (fold):;

g2.setColor (oldColor) ;
g2.draw(fold) ;

text.draw(g2, getBounds()):;

(a)

(b)

Fig. 1. (a) complete computation slice for variable dy. (b) object state slice for object reference fold.

program dependence graphs for the representation of dependences
in methods and as a vehicle to perform slicing and block-based slic-
ing to determine alternative regions to which a slice may expand.
The contribution of the approach is the identification of behavior-
preserving and meaningful refactoring opportunities in object-
oriented code without human intervention, by combining a variety
of techniques which improve the quality of the resulting slices.

The evaluation of the approach provides evidence that both
complete computation and object state slices are able to capture
code fragments implementing a distinct and independent function-
ality compared to the rest of the original method and thus lead to
extracted methods with useful functionality.

In a previous work (Tsantalis and Chatzigeorgiou, 2009), we pre-
sented an approach for the identification of complete computation
slices in object-oriented systems along with a set of rules for the
preservation of program behavior after slice extraction.

The novelty of the current approach lies at the following points:

¢ [tintroduces the concept of object state slice as a means to capture

code that modifies the state of a given object and proposes an

algorithm for the identification of such slices.

It proposes a set of additional rules that exclude refactoring

opportunities corresponding to slices whose extraction could

possibly cause a change in program behavior.

It adopts a variety of program analysis techniques (such as alias

analysis, polymorphic method call analysis) in order to improve

the precision of the resulting slices.

It supports the handling of branching statements (i.e. break, con-

tinue) within loops and switch statements, throw statements and

try/catch blocks.

e The evaluation has been enriched and consists of two main parts:
o Qualitative and quantitative evaluation on an open-source

project, consisting of the following three sub-analyses:

(a) an independent assessment of the identified refactoring
opportunities on a well-known open-source project regard-
ing their soundness and usefulness,

(b) an investigation of the impact of the suggested refactorings
on slice-based cohesion metrics and

(c) an investigation of the impact of the suggested refactorings
on the external behavior of the program.

o Evaluation of precision and recall against the findings of inde-
pendent evaluators on projects developed by themselves.

The rest of the paper is organized as follows: Section 2 provides
an overview of the related work. Section 3 presents a thorough
analysis of the methodology for the identification of slice extraction
refactoring opportunities. Section 4 presents the tool implement-
ing the proposed methodology. The evaluation of the proposed
approachis presented in Section 5. Finally, we conclude in Section 6.

2. Related work

The vast majority of the papers found in the literature of function
extraction are based on the concept of program slicing. According
to Weiser (1984), a slice consists of all the statements in a program
that may affect the value of a variable x at a specific point of interest
p. The pair (p, x) is referred to as slicing criterion. In general, slices
are computed by finding sets of directly or indirectly relevant state-
ments based on control and data dependences. After the original
definition by Weiser, several notions of slicing have been proposed.
Concerning the employment of runtime information, static slicing
uses only statically available information to compute slices, while
dynamic slicing (Korel and Laski, 1988) uses as input the values of
variables for a specific execution of a program in order to provide
more accurate slices. Concerning flow direction, in backward slic-
ing a slice contains all statements and control predicates that may



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782 1759

affect a variable at a given point, while in forward slicing (Bergeretti
and Carré, 1985) a slice contains all statements and control predi-
cates that may be affected by a variable at a given point. Concerning
syntax preservation, syntax-preserving slicing simplifies a program
only by deleting statements and predicates that do not affect a
computation of interest, while amorphous slicing (Harman et al.,
2003) employs a range of syntactic transformations in order to sim-
plify the resulting code. Concerning slicing scope, intraprocedural
slicing computes slices within a single procedure, while interpro-
cedural slicing (Horwitz et al., 1990) generates slices that cross the
boundaries of procedure calls. Program slicing has several applica-
tions in various software engineering domains such as debugging,
program comprehension, testing, cohesion measurement, mainte-
nance and reverse engineering (Tip, 1995; Binkley and Gallagher,
1996; Harman and Hierons, 2001).

A direct application of program slicing in the field of refactor-
ing is slice extraction, which has been formally defined by Ettinger
(2007) as the extraction of the computation of a set of variables V
froma program S as areusable program entity, and the update of the
original program S to reuse the extracted slice. Within the context
of slice extraction the literature can be divided into two main cate-
gories according to Ettinger (2007). In the first category belong the
methodologies that extract slices based on a set of selected state-
ments which are indicated by the user (arbitrary method extraction).
In the second category belong the methodologies that extract slices
based on a variable of interest at a specific program point which is
indicated by the user.

The first approach for decomposing a procedure was proposed
by Gallagher and Lyle (1991). They introduce the concept of decom-
position slice as a slice that captures all computation on a given
variable. The decomposition slice for a variable v is the union of the

slices that result by using as seed statements in slicing criteria the
statements that output variable v along with the last statement of
the procedure. As output statement is considered a statement that
prints or returns the value of a given variable. They also defined
dependence relations between the resulting decomposition slices
of a procedure. Two decomposition slices S(v) and S(w) are consid-
ered as independent if their intersection is empty (S(v)NS(w)= ).
Decomposition slice S(v) is considered as strongly dependent on
S(w) if S(v) is a proper subset of S(w), S(v) c S(w). The dependence
relationships between the decomposition slices are used to con-
struct the lattice of decomposition slices, which can be considered
as adirected graph where nodes represent the decomposition slices
of a procedure and edges represent the strongly dependent rela-
tionships between them. Fig. 2b shows the lattice of decomposition
slices for the code in Fig. 2a. The decomposition slices for the out-
put variables of the code in Fig. 2a are the following: S(c)={12, 13,
24}, S(nc)={11, 12, 13, 14, 24}, S(nl)={9, 12, 13, 15, 17, 18, 24},
S(inword) = {8, 12, 13, 15, 16, 20, 21, 24}, and S(nw) = {8, 10, 12, 13,
15, 16, 20, 21, 22, 24}.

As it can be observed in Fig. 2b, S(c) is strongly dependent on all
other decomposition slices and S(inword) is strongly dependent on
S(nw). Tonella (2003) introduced the concept lattice of decomposi-
tion slices as an extension to decomposition slice graph (Gallagher
and Lyle, 1991) in order to represent weak inferences (i.e. shared
statements which are not decomposition slices) between decom-
position slices. For example, statement 15 in Fig. 2a is shared by
decomposition slices S(nl), S(inword) and S(nw) but does not form a
decomposition slice. Fig. 2cillustrates the concept lattice of decom-
position slices for the code in Fig. 2a.

By examining Fig. 2c, it can be observed that by traversing the
concept lattice from the bottom to the decomposition slice of a vari-

S(nl)

N\

main:nw
we.c:10
wc.c:22

\ wc.c:18

main:inword
wce.c:8
we.c:16
we.c:20
wce.c:21

main:nl
wc.c:9
wc.c:17

S(nw)

main:nc
we.c: 11
wc.c:14

S(inword)

we.c:15

main:c
we.c:12

wce.c:13
wc.c:24

1 #define EOF -1
2  #define NO O
3 #define YES 1
4
5 main() {
6 int inword, nl, nw, nc, c¢;
7
8 inword = NO;
9 nl = 0;
10 nw = 0;
11 nc = 0; S(nc)
12 c = getchar();
13 while (c !'= EOF) {
14 nc = nc + 1;
15 if (e == || ¢ == "\n’) {
16 inword = NO;
17 if (c == ’\n?)
18 nl = nl + 1;
19 }
20 else if (inword == NO) {
21 inword = YES;
22 nw = nw + 1;
23 }
24 ¢ = getchar();
25 }
26 printf("%d \n", nl);
27 printf("%d \n", nw);
28 printf("%d \n", nc);
29 }
(a)

(c)

Fig. 2. (a) The code of a word counting program. (b) The lattice of decomposition slices according to Gallagher and Lyle (1991). (c) The concept lattice of decomposition slices

according to Tonella (2003).



1760 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

able v whose computation is intended to be extracted, the slice of
variable v is the union of the statements in the traversed decompo-
sition slices, while the statements that will be duplicated if the slice
is extracted is the union of the statements in the traversed decom-
position slices excluding the decomposition slice of variable v. The
lattice of decomposition slices is used by Gallagher and Lyle (1991)
in order to construct the complement of a decomposition slice (i.e.
the statements that should remain in the original procedure after
the extraction of the decomposition slice: the complement consists
of statements that do not belong in the decomposition slice along
with statements of the decomposition slice that have to be dupli-
cated in the original procedure). Our approach in a similar manner
computes the indispensable statements corresponding to aslice. The
indispensable statements are statements that although belong to
the slice, should not be removed from the original method to pre-
serve the behavior of the remaining statements (i.e. statements not
belonging to the slice). The indispensable statements along with the
remaining statements correspond to the complement of a slice, as
defined by Gallagher and Lyle (1991).

The major difference of our approach with decomposition slic-
ing is related with the selection of the seed statements which
are required to derive the computation of a given variable. The
decomposition slicing technique uses as seed statements the state-
ments that output the variable under consideration along with
the last statement of the procedure. As a result, the selected seed
statements may include code not dealing with the computation
of the variable under consideration (e.g. a print or a return state-
ment does not contribute to the computation of the variable of
interest). Moreover, they may lead to the inclusion of additional
irrelevant statements in the resulting slices due to the use of
multiple variables within the seed statements (a statement that
prints or returns an expression involving multiple variables, e.g.
return x+y;).Ontheotherhand, ourapproach usesas seed state-
ments the statements where the variable under consideration is
defined, leading to slices that contain the pure computation of the
variable under consideration (i.e. it does not include the computa-
tion of variables that are completely irrelevant to the variable of
interest).

Cimitile et al. (1996) proposed a specification driven slicing
process for identifying reusable functions based on the precon-
dition and postcondition of a given function. Initially, a symbolic
execution technique is used to recover the preconditions for the
execution of each statement and predicate existing within the body
of the function. Eventually, the statements whose preconditions are
equivalent to the pre- and post-conditions of the function serve as
candidate entry and exit points of the computed slice (i.e. a pair
of statements restricting the expansion of the slice within their
boundaries). This approach requires to associate the data of the
function’s specification with the program variables, to define the
set of output variables of the function and to provide invariant
assertions that cannot be automatically derived in order to operate.

Lanubile and Visaggio (1997) introduced the notion of transform
slicing as a method for extracting reusable functions. A transform
slice includes the statements which contribute directly or indirectly
to the transformation of a set of input variables into a set of out-
put variables. The computation of a transform slice is similar to
the computation of a static backward slice with the difference that
it expands until the statements that define values for the input
variables are included in the slice. Transform slicing uses output
statements as seeds for the slicing criteria, or the last program
statement if it is not possible to find an output statement in the
proper place. This approach requires domain knowledge regard-
ing conceptually simple tasks which are performed in the system
(functional abstractions) along with their input and output data, so
that the user can choose the right slice among candidates resulting
from transform slicing.

Kang and Bieman (1998) proposed the input—output dependence
graph (IODG) as a means to model and visualize the dependency
relationships between inputs and outputs of a module. Based on
the IODG representation of a module they defined the design-level
cohesion (DLC) measure which provides an objective criterion for
evaluating and comparing alternative design structures. Moreover,
the DLC measure can be used as a criterion to determine whether
or not a given module should be redesigned or restructured. Based
on the IODG representation and the DLC measure they defined
eight basic restructuring operations (i.e. module decomposition
and composition operations) and described a process for applying
the restructuring operations to improve design of system mod-
ules. The restructuring process of this approach requires specifying
expected marginal DLC levels of the examined modules, decom-
posing the IODG of the poorly designed modules in appropriate
partitions exhibiting higher DLC level, and locating unnecessarily
decomposed modules based on the IODG visualization and cou-
pling, size, and/or reuse measures.

Lakhotia and Deprez (1998) proposed a transformation, called
Tuck, which can be used to restructure a program by breaking its
large functions into smaller ones. The tuck transformation consists
of three steps: Wedge, Split, and Fold. The wedge is a program
slice that contains the statements in the smallest single-entry,
single-exit (SESE) region including all the seed statements. The split
transformation splits the original function into two SESE regions,
one containing all the computations relevant to the set of seed
statements and the other containing all the remaining computa-
tions. The transformation introduces new variables or renames
variables and composes the two new regions so that the overall
computation remains unchanged. Finally, the fold transformation
creates a function for the SESE region corresponding to the seed
statements and replaces the statements by a call to this function.
A major limitation of the approach is that the tuck transformation
requires as external input a set of seed statements, and a foldable
subgraph (i.e. a subgraph where there is no edge from its exit node
to any node of the subgraph) containing the seed statements. Fur-
thermore, the evaluation performed by Komondoor and Horwitz
(2003) has shown that the performance of the approach was poor
on a dataset of “difficult” cases because it promotes statements in a
non-intelligent manner (i.e. copies/moves unnecessary code to the
extracted function) and does not handle exiting jumps.

Komondoor and Horwitz (2000) proposed an algorithm for
reordering a given set of control flow graph nodes so that they can
be extracted into a procedure while preserving semantics by tak-
ing as input a set of nodes chosen for extraction. Their approach is
based on a polygraph that represents ordering constraints imposed
by data flow, def-order, anti, and output dependences. The acyclic
graphs defined by the polygraph are examined whether they form
extractable pieces of code. This approach does not allow the dupli-
cation of any predicate node and does not handle exiting jumps.

Komondoor and Horwitz (2003) proposed an algorithm that
takes as input the control flow graph of a procedure and a set
of statements to be extracted (marked statements) and applies
semantics-preserving transformations to make the marked state-
ments form a contiguous, well-structured block that is suitable
for extraction. The applied transformations are the reordering of
unmarked statements in order to make the marked statements
contiguous, the duplication of predicates in both the extracted and
original procedure, the promotion of unmarked statements to the
marked ones, and the special handling of exiting jumps such as
return, break and continue statements. This approach does not
allow the duplication of assignment statements and loop predi-
cates leading to missed extraction opportunities in favor of low
code duplication.

Harman et al. (2004) introduced a variation of the algorithm
proposed by Komondoor and Horwitz (2003) which is based on



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782 1761

amorphous procedure extraction. Amorphous extraction relaxes
the syntactic constraints of the original program in order to enable
the application of simplifying transformations. However, it retains
the requirement that the extracted program and the original must
be semantically equivalent. The goal of the proposed variation is to
minimize the need for statement promotion (i.e. when a statement
which was not originally marked for extraction must be extracted to
preserve the semantics of the program) and predicate duplication
in order to make the extraction process more precise.

Jiang et al. (2008) performed an empirical study on six open-
source projects in order to evaluate the splitability of procedures.
Concerning the frequency of splitable procedures, they concluded
that the majority of procedures are not splitable, while those which
are splitable can be split into two or three subprocedures. Further-
more, they studied the overlap distribution of splitable procedures.
Overlap is a measure of code duplication between the resulting
subprocedures. The higher the overlap, the more cohesive the orig-
inal procedure is, and therefore, less likely to be splitable. They
concluded that the splitability of a procedure depends on the
inter-dependency between its subprocedures. The higher the inter-
dependency of subprocedures, the more statements they share
with each other, and splitting generates a larger amount of dupli-
cated code. Finally, the empirical results have shown a strong
correlation between procedure size and splitability in the case of
2-way splitable procedures.

The aforementioned methods concern only procedural pro-
gramming languages and thus they do not take into account
important issues regarding object-oriented programming lan-
guages, such as: (a) the fact that in contrast to primitive variables,
some variables can be references to objects and therefore it is pos-
sible to change their state (by modifying their field values) apart
from their value, which in turn may affect the correctness of the
resulting slices, and (b) the fact that beyond slices containing the
computation of a primitive variable, there exist slices containing
the “computation” of an object (i.e. the statements that affect the
state of an object).

Maruyama (2001) simplified an interprocedural slicing algo-
rithm proposed by Larsen and Harrold (1996) by making it
intraprocedural and then introduced the concept of block-based
region into the resulting algorithm. A basic block is a sequence of
consecutive statements in which flow of control enters at the begin-
ning and leaves at the end without halt or possibility of branching
except at the end. Maruyama employed a block-partitioning algo-
rithm in order to decompose the control flow graph of a method
into basic blocks and form several block-based regions used for
restricting the expansion of a slice within their boundaries. In this
way it is possible to extract more than one slice for a given slicing
criterion by using the appropriate block-based regions, compared
to classic static slicing algorithms that extract only a single slice
for a given slicing criterion by using the entire source method
as region. Although the approach of Maruyama was the first to
cover slice extraction in object-oriented programming languages,
it suffers from several limitations. It does not handle behavior
preservation issues that can be raised from duplication of state-
ments. It does not guarantee that the complete computation of
the variable indicated by the user will be extracted as a sepa-
rate method. Finally, it does not support extraction opportunities
which are related with objects but only with variables of primitive
type.

All of the aforementioned approaches require external input in
terms of seed statements, input/output variables, or seed variables
in order to operate. Although this feature makes them more gen-
eral and flexible, it restricts their degree of automation due to their
dependence on human intervention and expertise. Our approach
automatically determines the required parameters for the extrac-
tion of a slice, since its goal is to identify and suggest all feasible and

behavior preserving refactoring opportunities being present within
a given method.

3. Methodology

The proposed methodology handles two main categories of
Extract Method refactoring opportunities. The first category refers
to variables (having primitive data types or being object references)
whose value is modified by assignment statements throughout the
body of the original method. The second category refers to object
references (which are local variables or fields of the class containing
the original method) pointing to objects whose state is affected by
method invocations throughout the body of the original method.
It should be noted that the state of an object reference is affected
by method invocations that modify the value of at least one of its
attributes. In the first case, the goal is to extract the complete com-
putation of a given variable (complete computation slice), while in
the second case, the goal is to extract all the statements modifying
the state of a given object (object state slice) within the scope of
the original method. The aforementioned goals ensure at a certain
degree that the extracted code will exhibit useful functionality. To
achieve these goals our approach employs the union of static slices
by different means according to the specific needs of each category.
According to De Lucia et al. (2003) the unions of static slices which
rely on slicing algorithms that do preserve a subset of the direct
data and control dependence relations of the original program are
valid slices.

3.1. Construction of the program dependence graph

Our approach employs the program dependence graph (PDG) in
order to represent the methods under examination. The program
dependence graph was initially introduced by Ferrante et al. (1987)
in order to represent control and data flow dependences between
the operations of a procedure. The nodes of a PDG represent the
statements of the corresponding procedure. Each node has a set
of defined variables which consists of the variables whose value
is modified by an assignment, and a set of used variables which
consists of the variables whose value is used at the correspond-
ing statement. A control dependence edge from node p to node g
denotes that the execution of statement g depends on the control
conditions of statement p. The sets of defined and used variables are
employed to compute data dependences between the statements
throughout the procedure control flow. A data dependence edge
from node p to node g due to variable x denotes that statement
p defines variable x, statement g uses variable x and there exists
a control flow path from statement p to g without an intervening
definition of x.

Later on, Horwitz et al. (1990) introduced the System Depen-
dence Graph (SDG) in order to represent procedure calls between
PDGs and face the problem of interprocedural slicing (i.e. slicing
that crosses the boundaries of procedure calls). A procedure call is
represented using a call-site node, while the information transfer is
represented using four different kinds of parameter nodes. The PDGs
are connected using three kinds of edges, namely call, parameter-in
and parameter-out edges. Larsen and Harrold (1996) extended the
System Dependence Graph (SDG) proposed by Horwitz et al. (1990)
to represent object-oriented programs. They introduced the Class
Dependence Graph (CIDG) to represent the methods and instance
variables belonging to a class. Additionally, they proposed ways to
represent inherited methods, class instantiations and polymorphic
method calls. Liang and Harrold (1998) improved the aforemen-
tioned approach by providing a way to distinguish data members
for different objects instantiated from the same class.

Since our approach aims at extracting intraprocedural slices (i.e.
slices that extend within the boundaries of a method) as new sepa-



1762

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

}

public Customer

public class Customer ({
private String name;
private Vector _rentals = new Vector();

(String name) {
_name = name;

public void addRental (Rental arg) {

_rentals.addElement (arg) ;

public class Vector<E> extends AbstractList<E> ({
protected Object[] elementData;
protected int elementCount;
protected int capacityIncrement;

public synchronized wvoid addElement (E obj) {

modCount++;
ensureCapacityHelper (elementCount + 1);
elementData[elementCount++] = obj;

} }
1 public static wvoid main(String args[]) {
2 Customer customer =

new Customer ("customer") ;

3 Movie movie =

new Movie ("title",Movie.NEW RELEASE);
Rental rental = new Rental (movie, 3);
customer.addRental (rental) ;

oo

private void ensureCapacityHelper (int minCapacity) {
int oldCapacity = elementData.length;

(minCapacity > cldCapacity) {

Object[] oldData = elementData;

int newCapacity = (capacityIncrement > 0)
? (oldCapacity + capacityIncrement)

(oldCapacity * 2);

if (newCapacity < minCapacity) {
newCapacity = minCapacity;

}

elementData =

Arrays.copyOf (elementData, newCapacity);

Fig. 3. Code example to demonstrate the handling of method invocations.

rate methods, we have adopted the PDG representation which does
not include any method call representation elements. However,
the information regarding the state of the objects being referenced
inside the body of a method is crucial for the formation of precise
and correct slices, as well as the preservation of program behav-
ior after code extraction. The state of an object can be modified or
accessed by invoked methods which modify or access the fields of
this object inside their body. These methods can be invoked directly
by using the object reference as invoker, or indirectly by passing
the object reference as parameter to another method which in turn
uses this object reference as invoker.

Let us assume that statement s inside the body of method m
invokes a method through object reference r or passes object refer-
ence r as parameter to a method. A partial call graph is recursively
generated starting from method m that includes only the method
calls which are associated with object reference r (i.e. methods
which are actually invoked through the original reference r or the
original reference ris passed as parameter to them). While the par-
tial call graph is constructed, the fields which are modified or used
inside the body of each visited method are added to the sets of
defined and used variables of statement s, respectively. These fields
are represented as composite variables (i.e. variables consisting of
more than one parts), where the last part is the name of the corre-
sponding field and the initial part is the actual reference through
which the field was modified or accessed.

In the code example of Fig. 3, statement 5 of method main
invokes method addrental through object reference customer
and passes as parameter to the invoked method object reference
rental. The partial call graph corresponding to this method
invocation is shown in Fig. 4. At each method node in the call
graph the sets of defined and used variables are shown, where the
formal parameters have been replaced with the actual parameters
(e.g. in method addElement of class vector, formal parameter
obj has been replaced with actual parameter rental) and this
reference has been replaced with the actual invoker reference (e.g.
in method addrental of class Customer, this reference has been
replaced with the actual invoker reference customer). The sets
of defined and used variables for statement 5 are derived from
the union of the defined and used variable sets, respectively, for

each method in the call graph. For example, the set of defined
variables for statement 5 is {customer._rentals.modCount,
customer._.rentals.elementCount,
tomer._rentals.elementData} and is derived by the union
of the sets of defined variables for node vector::addElement and
Vector::ensureCapacityHelper in the call graph shown in Fig. 4.

The computation of data dependences in the PDG of method m
takes also into account the composite variables which are related
with the state of object references existing in the body of m. These
additional data dependences allow the formation of more precise
and correct slices and at the same time enable the extraction of
code that affects the state of a given object reference.

Our approach adopts a variety of code analysis techniques in
order to further increase the precision and correctness of the result-
ing slices.

cus-—

a Alias analysis (Ohata and Inoue, 2006): An alias relationship exists
between two references when they refer to the same object
in memory during program execution. The set of references in
which each element pair satisfies an alias relationship is called
an alias set. Alias analysis is a method for extracting alias sets by
static code analysis. Alias analysis techniques are mainly divided
into two categories, namely flow insensitive where the execution
order of statements is not taken into account and flow sensitive
where the execution order of statements is taken into account.
Flow sensitive techniques follow the control flow of a program
in order to determine alias relationships and as a result they can
extract more accurate alias relations compared to flow insensi-
tive approaches. Landi et al. (1993) have introduced the concept
of reaching alias sets in order to compute flow sensitive alias rela-
tionships. Areaching alias set for a given statement is a collection
of alias sets which apply just before the execution of this state-
ment. For example, in the code of Fig. 5 the reaching alias set
for both statements 5 and 6 is (a, b), since after the execution of
statement 4 references a and b point to the same object in mem-
ory. Our approach handles the existence of a reaching alias set
RASet for statement s in the following way:

For each composite variable in the sets of defined and used
variables of statement s whose first part is a reference r belong-



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

1763

(man)

Def Use
- customer
rental
customer.addRental(rental)
A 4
[ Customer::addRental ]
Def Use

A 4

[Vector::addEIementJ

customer._rentals.addElement(rental)

Def

customer._rentals
rental

Use

Y

[Vector::ensureCapacityHelper]

customer._rentals.modCount
customer._rentals.elementCount

customer._rentals.ensureCapacityHelper(customer._rentals.elementCount + 1)

Def

customer._rentals.modCount
customer._rentals.elementCount
customer._rentals.elementData
rental

Use

customer._rentals.elementData | customer._rentals.elementData

customer._rentals.capacitylncrement

ing to an alias set A of RASet, an additional number of composite
variables is added (to the set of defined or used variables, respec-
tively) which is equal to the number of references belonging to
alias set A (excluding r) by replacing the first part of the composite
variable with each one of the aliases of reference r.

In the example of Fig. 5, the additional composite variables
that were added in the sets of defined and used variables are

public class Buffer {
private String s = "";
public wvoid append(String s) {
this.s += s;
1
1 public void method() {
2 Buffer a = new Buffer();
3 Buffer b;
4 b=a; Def Use
5 a.append("a"); a.s,b.g | a.s,[b.g, a
6 Db.append("b"); b.s,[a.s |b.s,[a.s,b
}
}

Fig. 5. Code example containing an alias relationship between references a and b.
(The composite variables that were added in the sets of defined and used variables
due to the existence of alias set (a, b) are highlighted in rectangles.).

b

(o]

Fig. 4. Call graph for statement 5 of method main in Fig. 3, along with the sets of defined and used variables for each visited method. (The actual references being used as
invokers or being passed as arguments are highlighted with bold fonts.)

highlighted in rectangles. In this way, it is ensured that in the
case of an alias relationship all statements affecting the state of
the same object in memory will be extracted together regardless
of the actual references through which the methods changing the
object’s state are invoked.

Polymorphic method call analysis (Larsen and Harrold, 1996; Liang
and Harrold, 1998): A polymorphic method call occurs when an
abstract method is invoked through a reference of abstract type.
Usually, the actual subclass type of the reference can be deter-
mined only at runtime. When the type of the caller reference
cannot be statically determined, all concrete implementations of
the abstract method are visited in the respective call graph. In
this way, it is ensured that the state information associated with
the caller reference covers all possible subclass types that the
reference may obtain at runtime.

Handling of branching statements directly in the PDG (Ball and
Horwitz, 1993; Kumar and Horwitz, 2002): Unstructured control
flow is achieved in Java by three kinds of branching statements.
The break statement terminates the innermost loop and trans-
fers the control flow to the statement following the innermost
loop. The continue statement skips the current iteration of the
innermost loop and transfers the control flow to the evaluation
expression that controls the innermost loop. Finally, the return
statement exits from the current method and transfers the con-
trol flow to the point where the method was invoked. In general,
the problem caused by branching statements is that they cannot
be included in slices, thus affecting slice correctness. The rea-
son behind the non-inclusion of branching statements in slices
is that they do not form control or data dependences with other
statements in the traditional PDG of a method.



1764 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

Ball and Horwitz (1993) proposed the augmented program
dependence graph (APDG) as a means to handle properly the
branching statements being present in a PDG. As a first step, the
augmented control flow graph (ACFG) is constructed to represent
the branching statements as pseudo-predicates. A pseudo-
predicate node has two outgoing edges where the one (labeled
as true) goes to the target of the jump and the other one (labeled
as false) goes to the statement that would follow the branching
statement if no branching occurred. As a second step, the APDG is
constructed based on the ACFG by adding to the branching state-
ments appropriate outgoing control dependences. The target
nodes of these outgoing control dependences are the statements
that follow the branching statement within the body of the inner-
most loop (and are directly control dependent on the innermost
loop) and the innermost loop itself. The handling of branching
statements as pseudo-predicates in the ACFG affects the way
that block-based regions are formed in our approach, since block-
partitioning depends on branching nodes (i.e. nodes having two
or more outgoing flow edges) as explained in Section 3.2. As
a result, our approach adds the required control dependences
directly on the PDG without constructing the intermediate
ACFG.

Regarding the special case of break statements within the body
of a switch statement, Kumar and Horwitz (2002) proposed the
pseudo-predicate PDG (PPDG) which is also constructed based
on the ACFG. In this approach, the switch case statements are
handled as pseudo-predicates in the ACFG where the control flow
labeled as true goes to the statement that follows the switch
case and the control flow labeled as false goes to the default
case of the switch statement (or the first statement following
the switchif no default case is present). In the PPDG, a switch
case statement has outgoing control dependences to the state-
ments that follow it (and are directly control dependent on the
switch statement) before the next break statement. Again, our
approach adds the required control dependences directly on the
PDG without constructing the intermediate ACFG.

d Handling of try/catch blocks and throw statements directly in the
PDG (Allen and Horwitz, 2003): Try/catch blocks are used in Java
as ameans to handle exceptions caused at runtime. The try block
contains code that could throw an exception, while the catch
blocks contain code that is directly executed when an exception is
thrown in the body of the try block. Each catch block is respon-
sible for handling a specific exception type. A try/catch block
may also have a finally block (apart from catch blocks) which
always executes when the try block exits. Allen and Horwitz
(2003) extended the System Dependence Graph (SDG) to sup-
port slicing programs with exceptions by treating try and throw
statements as pseudo-predicate nodes in the CFG. A try node (in
the CFG) has an outgoing edge (labeled as true) to the first state-
ment inside the try/catch block and an outgoing edge (labeled
as false) to the first statement that follows the last catch block.
In the construction of the PDG, a try node has outgoing control
dependences to the statements inside the try/catch block that
may throw an exception (such statements can be either throw
statements or statements containing method invocations whose
declaration throws an exception).

Throw statements are special statements which are used for
creating and throwing exception objects. Exception types are
divided into checked exceptions which must be explicitly handled
by a catch block or propagated up the call stack of meth-
ods (java.lang.Exception subclasses), and unchecked exceptions
which do not have this requirement (java.lang.RuntimeException
subclasses). Similarly to branching statements, throw statements
do not form control or data dependences with other statements
in the traditional PDG of a method. Allen and Horwitz (2003) also
treat throw statements and statements containing method invo-

cations that throw an exception as pseudo-predicate nodes in
the CFG. A node throwing an exception (in the CFG) has an out-
going edge (labeled as true) to the catch block that handles the
thrown exception and an outgoing edge (labeled as false) to the
statement that would follow the statement causing the exception
if no exception occurred. In the construction of the PDG, a node
throwing an exception has outgoing control dependences to the
statements that follow it within the body of the try block (if the
node throwing an exception is placed within a try block) or the
statements that follow it within the body of the method (if the
node throwing an exception is not placed within a try block and
the method has a throws clause for the corresponding exception
to its declaration).

The handling of try and throw statements as pseudo-
predicates in the CFG affects the way that block-based regions
are formed in our approach, since block-partitioning depends
on branching nodes. As a result, our approach adds the required
control dependences directly on the PDG.

3.2. Block-based slicing

Traditional intraprocedural slicing algorithms use the entire
method body as a region where the slice may expand starting
from the statement of the slicing criterion. However, within the
context of slice extraction, where the goal is to extract the result-
ing slice as a new separate method, the extraction of a slice
that expands throughout the entire method body is not always
feasible. Maruyama introduced the concept of block-based slic-
ing (Maruyama, 2001) as a means for producing more than one
slice for a given slicing criterion. This is achieved by construct-
ing block-based regions within the body of a method, which
can be used to restrict the expansion of a slice within their
boundaries. In our approach, block-based slicing helps to deter-
mine regions of the original method where slices starting from
statements that belong to different blocks and concern the com-
putation of the same variable can be extracted together as a
union.

The block-based regions of method m can be determined
employing the following steps.

3.2.1. Decomposition of control flow graph into basic blocks

The control flow graph of method m is constructed in order
to decompose it into basic blocks. A basic block is a sequence
of consecutive statements in which flow of control enters at the
beginning and leaves at the end without halt or possibility of
branching except at the end. A block-partitioning algorithm (Aho
et al., 1986) marks as leader nodes the first node, the join nodes
(i.e. the nodes which have two or more incoming flow edges),
and the nodes that immediately follow a branch node (i.e. a node
which has two or more outgoing flow edges) in the control flow
graph of the method. For each leader node, its basic block con-
sists of itself and all subsequent nodes up to the next leader or the
last node in the control flow graph. Fig. 6 illustrates the control
flow graph (decomposed into basic blocks) for method state-
ment () used in a well-established refactoring example (Fowler
et al,, 1999).

3.2.2. Determination of reachable blocks

Maruyama defined as reachable blocks for basic block B, Reach(B),
the set of blocks that can be reached from B on the control
flow graph without traversing loopback edges. For example, the
reachable blocks for basic block B3z in the control flow graph of
Fig. 6 is the set Reach(B3)={Bs3, B4, Bs, Bg}, since the loopback
edge from statement 13 to statement 6 is excluded from being
traversed.



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

1765

public String statement () {

double totalAmount = 0;

int frequentRenterPoints = 0;
Enumeration rentals
String result "Rental Record for "

+

_rentals.elements();

It--first node

R(B1)
basic
t-""block

getName () + "\n";

while(rentals.hasMoreElements ()) {

R(Bz)

Rental each (Rental)
double thisAmount each.getCharge();
if (each.getMovie () .getPriceCode ()
&& each.getDaysRented() > 1)
frequentRenterPoints += 2;
else
frequentRenterPoints++;

WoJdJoULdbd WK

11
12
+ String.valueOf (thisAmount)
totalAmount += thisAmount;

+ I'l\nll;
13

rentals.nextElement () ;

result += "\t" + each.getMovie() .getTitle ()

R(Bs)

Movie.NEW RELEASE

TRk __branch
node
F

}
result += "Amount owed is
+ String.valueOf (totalAmount)

14
+ MAn'
15
+ " frequent renter points";

16 return result;

result += "You earned " + String.valueOf(frequentRenterPoints)

By

F-- join node

leader

Fig. 6. Method statement () and its corresponding control flow graph.

3.2.3. Construction of control dependence graph and
determination of dominated blocks

Next, the control dependence graph (i.e. the program depen-
dence graph containing only control dependence edges) of method
m is constructed. Fig. 7 shows the control dependence graph
of method statement () decomposed into basic blocks (block-
based CDG). The control dependence graph actually represents
the nesting of statements inside a method (assuming that the
code does not include unstructured control flow or exception
flow).

Assuming that node r is the node that directly dominates the
leader node of basic block B, Maruyama defined as dominated blocks
for basic block B, Dom(B), the set of blocks that are dominated by
node r (a block is considered dominated by r if there exists a tran-

Fig. 7. Control dependence graph of method statement ().

sitive control dependence from r to this block). For example, the
leader node of block B3 (node 7) is directly dominated by node 6
in the control dependence graph of Fig. 7. As a result, the domi-
nated blocks for basic block B; are the blocks that are dominated
by node 6, namely {Bs, B4, Bs, Bg}. It should be mentioned that the
notion of dominance in control dependence graphs is different from
dominance in control flow graphs.

3.2.4. Computation of boundary blocks

The sets of reachable and dominated blocks are used to compute
the set of boundary blocks for statement n, Blocks(n), in the following
way:

For each basic block B of method m compute the sets of blocks
Reach(B) and Dom(B).

If the basic block of statement n is contained in set Reach(B) N
Dom(B), then block B is added to the set of boundary blocks for
statement n.

For example, the boundary blocks for statement 8 in Fig. 6, which
belongs to basic block Bs, is the set Blocks(8)={B1, B2, B3}, since
block B3 is contained in the intersection of reachable and dominated
blocks for basic blocks B4, B and Bs.

3.2.5. Determination of block-based regions

Based on the definition of reachable blocks, Maruyama defined
as block-based region R(By,) for boundary block B, the set of nodes
which belong to Reach(By). Fig. 6 depicts the statements that belong
to regions R(Bq), R(By) and R(Bs3), respectively. In terms of program
dependency, a block-based region can be considered as a subgraph
of the program dependence graph of method m which contains
as dependence edges only the edges that start from and also end
in nodes of the region. It should be noted that a loop-carried data
dependence belongs to the region subgraph, if additionally the loop
node through which the dependence is carried belongs to the nodes



1766 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

of the region. Formally, the edges belonging to region R(B) is the set

Eg(R(B)) = {p—cq € E(m)|p, q e R(B)} U {p—qq € E(m)|p, q € R(B)}
Uip—amq € E(m)IL, p, q € R(B)}

where E(m) is the set of all edges in the PDG of method m,

p —¢q denotes a control dependence edge from node p to node q,
p—4q denotes a loop-independent data dependence edge from
node p to node q, and

P —4q) q denotes a loop-carried data dependence edge from node
p to node g which is carried by loop L

Assuming that slicing criterion (n, u) is given, which consists of
statement n belonging to method m and variable u that is defined
or used in statement n, the block-based regions in which a slice can
be computed are the regions of the boundary blocks for statement
n, Blocks(n). For example, the block-based regions for slicing crite-
rion (8, thisaAmount)are R(B1), R(B3) and R(B3), since the boundary
blocks for statement 8 is the set Blocks(8)={By, B, B3}.

3.3. Algorithms for the identification of Extract Method
refactoring opportunities

Our approach provides two main algorithms for the iden-
tification of Extract Method refactoring opportunities. The first
algorithm identifies refactoring opportunities where the complete
computation of a local variable or parameter (complete computation
slice) can be extracted, meaning that the resulting slice will con-
tain all the assignment statements modifying the value of the local
variable. The second algorithm identifies refactoring opportunities
where all the statements affecting the state of an object (object state
slice) can be extracted. The object reference can be a local variable
which is declared inside the body of the original method, a param-
eter of the original method, or a field of the class containing the
original method. Both algorithms do not require any user input (i.e.
selection of statements or variables) in order to operate.

3.3.1. Identification of complete computation slices

The proposed algorithm takes as input a method declaration m
and returns a set of slice extraction refactoring suggestions for each
variable declared inside method m whose value is modified by at
least one assignment statement, covering the complete computa-
tion of the corresponding variable. The algorithm consists of the
following steps:

1. Identify the set of local variables V which are declared inside
method m.

2. For eachvariable v € Videntify the set of seed statements C which
contain an assignment of variable v. These statements along with
variable v form a set of slicing criteria (c, v), where ce C.

3. For each statement c € C compute the set of boundary blocks
Blocks(c).

4. Calculate the common boundary blocks for the statements in set
Cas Blocks(C) = ﬂBlocks(c).

ceC

5. For each slicing criterion (c, v), where c € C, and boundary block
By € Blocks(C) compute the block-based slice Sg(c, v, By). Block-
based slice Sg(c, v, By) is the set of statements that may affect
the computation of variable v at statement ¢ (backward slice),
extracted from the program dependence subgraph correspond-
ing to region R(By).

6.

For each BpeBlocks(C) the union of slices USg(C,v,Bn) =
USB(C, v, By) is a slice that covers the complete computation

ceC
of variable v within the region R(Bp,).

This algorithm produces for each variable v declared inside

method m, a number of slices which is equal to the size of Blocks(C),
where Cis the set of statements containing an assignment of vari-
able v. The application of the algorithm will be demonstrated on
a well-established refactoring teaching example (Demeyer et al.,
2005). Fig. 8 illustrates method printDocument () and its control
flow graph decomposed into basic blocks.

Assume that the computation of variable author is intended

to be extracted as a separate method. The algorithm is applied as
follows:

. The assignment statements of variable author are statements

11 and 20 (underlined in the code of Fig. 8).

. The sets of boundary blocks for statements 11 and 20 are

Blocks(11)={B1, B2, B3, Bs} and Blocks(20) = {B1, B1o, B11 }, respec-
tively (as shown in the control flow graph of Fig. 8).

. The intersection of the two sets of boundary blocks is Blocks({11,

20})={B1} and as a result only block-based region R(B;) can be
used as region for the union of the resulting static slices.

. The block-based static slices for statements 11 and 20 are Sg(11,

author,By)=1{2,4,5,6,7,8,9,10,11} and Sg(20, author, B1)={2,
5,19, 20}, respectively.

. The union of the static slices is USg({11, 20}, author, B1)={2, 4,

5,6,7,8,9,10, 11, 19, 20}.

3.3.2. Identification of object state slices

The proposed algorithm takes as input a method m and returns

a set of slice extraction refactoring suggestions for each reference
inside method m pointing to an object whose state is affected by at
least one statement containing an appropriate method invocation
or a direct field modification (in the case encapsulation is violated).
The algorithm consists of the following steps:

4.

. Identify the set of object references R existing inside method m.

These references are local variables, parameters of m, or fields of
the class containing m having a non-primitive type.

. For each object reference r € R identify the set of fields F which

are modified through reference r by method invocations (or
direct field modifications) inside the body of m. This is achieved
by searching in the defined variables of each statement for com-
posite variables having reference r as first part.

. For each field f ¢ F; identify the set of seed statements C; within

the body of m that contain fin their set of defined variables. These
statements along with variable f form a set of slicing criteria (c,
f), where ceCy.

For each statement c e C; compute the set of boundary blocks
Blocks(c).

. Calculate the common boundary blocks for the statements in

each set Gy (referring to defined variable f) as Blocks(Cr) =
ﬂ Blocks(c).

CeCf

. Calculate the common boundary blocks for all Blocks(Cy), Vfe Fr

(referring to object reference r) as Blocks(r) = ﬂ Blocks(Cy).
feFr

. For each slicing criterion (c, f), where ceCy, fe Fr and bound-

ary block B;, € Blocks(r) compute the block-based slice Sg(c, f, Bn).
Block-based slice Sg(c, f, Bn) is the backward slice extracted from
the program dependence subgraph corresponding to region
R(Bn).



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

0O ~Jo 0w

11

12
13
14

15
16
17

18
19
20

21
22

public veoid printDocument (Packet document) {

String author = "Unknown";

String title = "Untitled";

int startPos = 0, endPos = 0;

if (document.message .startsWith("!PS")) {

startPos = document.message .indexOf ("author:"):
if (startPos >= 0) {

endPos = document.message .indexOf (

".", startPos + 7);

if (endPos < 0)

endPos = document.message_.length();
author = document.message .substring(
startPos + 7, endPos) ;

}
startPos = document.message_ .indexOf ("title:");
if (startPos >= 0) {
endPos = document.message_.indexOf (
".", startPos + 6);
if (endPos < 0)
endPos = document.message .length();
title = document.message_.substring(
startPos + 6, endPos);
}
} else {
title = "ASCII DOCUMENT";
if (document.message .length() >= 16)
author = document.message .substring(8, 16);

}
System.out.println (author);
System.out.println(title);

boundary blocks
-of statement 20

boundary blocks
of statement 11

Fig. 8. Method printDocument () and the corresponding control flow graph.

1767



1768 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

8. For each BjeBlocks(r) the union of slices for field f is

US(Cr. £, Ba) = | Salc. f. Bn).
ce Cf
9. For each B, eBlocks(r) the union of slices for reference r
USg(r, By) = U USg(Cy, f, Bn)is aslice that contains all the state-
feFr
ments in method m affecting the state of the object referenced
by r.

This algorithm produces for each reference r, a number of slices
which is equal to the size of Blocks(r). The application of the algo-
rithm will be demonstrated on a real example taken from an
open-source project, namely Violet 0.16 (Horstmann, 2006). Fig. 9
illustrates method removeSelected () and its control flow graph
decomposed into basic blocks.

Assume that the statements affecting the state of the object ref-
erenced by field graph are intended to be extracted as a separate
method. The algorithm is applied as follows:

a. The set of fields Fg,pn Which are modified through reference
graph consists of the following composite variables:

. graph.nodesToBeRemoved.elementData

. graph.nodesToBeRemoved.size

. graph.nodesToBeRemoved.modCount

. graph.needsLayout

. graph.edgesToBeRemoved.elementData

. graph.edgesToBeRemoved.size

. graph.edgesToBeRemoved.modCount

b. Fields 1-3 are defined at statement 6, while fields 4-7 are defined
at statements 6 and 8. The resulting slicing criteria are eleven in
total, based on the following sets of seed statements:

NOoO U WN =

- Cgraph,nodesToBeRemoved,elementData = {6}

. Cgraph.nodesToBeRemoved.size = {6}
Cgraph.nodesToBeRemoved.modCOUHt ={6}

. Cgraph.needsLayout ={6, 8}
Cgraph.edgesToBeRemoved.elementData = {6' 8}
Cgraph.edgesToBeRemoved.size = {6, 8}

Cgraph.edgesToBeRemoved.modCount = {6. 8}
c. The sets of boundary blocks for statements 6 and 8 are

Blocks(6)={B1, By, B3, B4} and Blocks(8)={B1, B,, B3, Bs, Bs},
respectively (as shown in the control flow graph of Fig. 9).

d. The resulting intersections of basic blocks are:

. BIOCkS(Cgraph.nodesToBeRemoved.elementData) ={B1, Bz, B3, B4}

. BIOCkS(Cgraph.nodesToBeRemoved.size)= {Bl , B2, B3, B4}

. BIOCkS(Cgraph.nodesToBeRemoved.modCount) ={B1, By, B3, B4}

. Blocks(Cgraph.needstayout) = {B1, B2, B3}

. BIOCkS(Cgraph.edgesToBeRemoved.elementData) ={B1, B2, B3}

- BIOCkS(Cgraph.edgesToBeRemoved.size ) = {Bl ,Ba, 33}

. BIOCkS(Cgraph.edgesToBeRemoved.modCount) = {Bl , Ba, BB}
e. The final intersection of basic blocks is Blocks(graph)={B1, B2,

B3} and as a result block-based regions R(B;), R(B2) and R(B3)
can be used as regions for the union of the resulting static slices.

. In this code example, the resulting slices are the same for all

slicing criteria. More specifically, Sg(c, f, B1)=1{2, 3,4, 5, 6, 7, 8},
Sg(c. f,B2)={3,4,5,6, 7,8} and Sg(c, f, B3)={4, 5, 6, 7, 8}, where
fe€Fgrapn and ce Cy.

g. Consequently, the resulting unions of slices are also the same for
all fields belonging to Fgp,pp. More specifically, USg(Cy, f, B1)={2,
3,4,5,6,7,8}, USg(C.f, B2)=1{3,4,5,6,7,8} and USg(C}, f, B3 ) = {4,
5,6, 7, 8}, where fe Fgraph-

h. Finally, the unions of slices for reference graph are USg(graph,
B1)={2, 3, 4, 5, 6, 7, 8}, USg(graph, B)={3, 4, 5, 6, 7, 8} and
USg(graph, B3)={4, 5, 6, 7, 8}, respectively.

Nooswn -

NOUhA W =

-

As it can be observed in the code of method removeSelected ()
in Fig. 9, statements 2-8 exhibit a distinct functionality compared
to the rest of the statements, which is related with the removal of
the selected nodes and edges from the graph object corresponding
to field graph.

3.3.3. Determination of indispensable statements and parameters
of the extracted method

Indispensable statements are statements that belong to a given
slice but should not be removed from the original method after slice
extraction to assure that the original method remains operational
(i.e. are statements required by the statements that remain in the
original method in order to operate correctly).

Maruyma’s formalization of indispensable statements
(Maruyama, 2001) concerns a single slice derived from a sin-
gle criterion (statement, variable) within a given region. We
have extended the formalization to handle the union of several
slices derived from multiple criteria within a given region. The
philosophy behind the determination of indispensable statements
is in both cases the same: the slices for the remaining statements
(i.e. method statements not belonging to the slice intended to
be extracted) are computed. The statements which are common
among the aforementioned slices and the slice to be extracted are
the indispensable statements. The determination of indispensable
statements can be formalized as follows:

Let N(m) be the set of all nodes and E(m) the set of all edges in
the PDG of method m. Let Sg be a block-based slice resulting from
the region of boundary block B, R(B). Let Ug be the set of remaining
nodes after the nodes of Sg are removed from N(m), Ug = N(m)\Sg.

Let Ncp be the set of nodes belonging to Sg on which nodes
belonging to Ug are control dependent (i.e. there exists a control
dependence edge from a node in Sg to a node in Up).

Nep(Se, Us)={peN(m)p—>cqeE(m)ApeSpArqeUg}, where
p —¢q denotes a control dependence from node p to node q.

Let Npp be the set of nodes belonging to Sz on which nodes
belonging to U are data dependent (i.e. there exists a data depen-
dence edge from a node in Sg to anode in Ug) due to a variable other
than the variable of the slicing criterion.

Npp(Sg, U, v)={peN(m)lp—>jqeE(m)au # vapeSpArqeUp},
where p -} q denotes a data dependence from node p to node q
due to variable u and v is the variable of the slicing criterion.

Control indispensable nodes Icp are the nodes of the slices that
result using (p, u, B) as slicing criteria, where p e Ncp(Sg, Ug) and u
belongs to the used variables of node p.

Ien(Ss, U) = {qeN(m)|q e Sp(p, u, B) A p € Ncn(Ss, Up) A e Use(p) }

Data indispensable nodes Ipp are the nodes of the slices that
result using (p, u, B) as slicing criteria, where p € Npp(Sg, Ug, v) and
u belongs to the defined variables of node p.

Ipp(Sg, Up, v) = {q € N(m)|q € Sg(p, u, B) A p € Npp(Sg, Ug, v)
ueDef(p)}

Eventually, the indispensable nodes Ij is the set resulting from
the union of Icp and Ipp sets (Ig = Icp U Ipp ). Indispensable nodes will
be duplicated in both the original and the extracted method after
slice extraction, while the set of nodes that can be actually removed
from the original method is Sg\Ig and the set of nodes that actually
remain in the original method is Ug U .

The parameters of the extracted method are the variables of
the original method for which a data dependence exists from the
set of remaining nodes Ug to the set of slice nodes Sg. Formally,
P(Sg, Ug)={ueV(m)lp -} qe E(m)Ap e Ug nqeSp}, where V(m) is
the set of variables which are declared within the body of method
m (including the parameters of method m).



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782 1769

public class GraphPanel extends JPanel {

private Graph graph; boundary blocks
private Set selectedItems; || [ )T of statement 6
1 public void removeSelected() {
2 ITterator iter = selectedItems.iterator():;
3 while (iter.hasNext()) {
4 Object selected = iter.next();
5 if (selected instanceof Node) {
6 graph.removeNode ( (Node) selected);
}
7 else if (selected instanceof Edge) {
8 graph.removeEdge ( (Edge) selected); boundary blocks
} " of statement 8
}
9 if (selectedItems.size() > 0)
10 setModified (true) ;
11 repaint();
}

public abstract class Graph {
private ArraylList nodes;
private Arraylist edges;
private transient ArrayList nodesToBeRemoved;
private transient ArrayList edgesToBeRemoved;
private transient boolean needsLayout;

public void removeNode (Node n) {
if (nodesToBeRemoved.contains (n))
nodesToBeRemoved.add (n) ;
// notify nodes of removals
for (int i = 0; i < nodes.size():;
Node n2 (Node) nodes.get(i):
n2.removeNode (this, n);

return;

i++)

{

}
for (int i = 0;
Edge e
aE

i < edges.size(); i++) {
(Edge) edges.get (1) ;
(e.getStart() == n || e.getEnd()

removeEdge (e) ;

== n)

}
needsLayout
}
public void removeEdge (Edge e) {
if (edgesToBeRemoved.contains(e))
edgesToBeRemoved.add (e) ;
for (int i nodes.size () 1;
Node n (Node)nodes.get (1) ;
n.removeEdge (this, e);

true;

return;

i >= 0; i--) {

}

needsLayout

true;

Fig. 9. Method removeSelected () and the corresponding control flow graph.

3.4. Rules regarding behavior preservation and usefulness of the
extracted functionality

The slices resulting from the algorithms of Section 3.3 are exam-
ined against a set of rules that exclude refactoring opportunities
corresponding to slices whose extraction could possibly cause a

change in program behavior. The rules are preventive in the sense
that they prescribe conditions that should not hold in order to
obtain extractable slices which preserve program behavior. More-
over, there is a category of rules which are used to reject some
extreme cases of slices that lead to extracted methods with limited
usefulness in terms of functionality.



1770

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

1l |public String statement () {
2 double totalAmount = 0;
3 int frequentRenterPoints = 0;
4 Enumeration rentals = _rentals.elements();
S5 String result = "Rental Record for " + getName() + "\n";
frequentRenterPoints = getFrequentRenterPoints (
frequentRenterPoints, rentals);
6 while (rentals.hasMoreElements ()) {
7 Rental each = (Rental) rentals.nextElement();
8 double thisAmount = each.getCharge():;
12 result += "\t" + each.getMovie().getTitle() + "\t"
+ String.valueOf (thisAmount) + "\n";
13 totalAmount += thisAmount;
}
14 result += "Amount owed is "
+ String.valueOf(totalAmount) + "\n";
15 result += "You earned " + String.valueOf(frequentRenterPoints)
+ " frequent renter points";
16 return result;
}
private int getFrequentRenterPoints (int frequentRenterPoints,
Enumeration rentals) {
6 while(rentals.hasMoreElements ()) {
7 Rental each = (Rental) rentals.nextElement();
9 if (each.getMovie() .getPriceCode () == Movie.NEW_RELEASE
&& each.getDaysRented() > 1)
10 frequentRenterPoints += 2;
else
11 frequentRenterPoints++;
}
return frequentRenterPoints;
}

Fig. 10. Slice extraction using block-based slice Sg(10,

3.4.1. Duplication of statements affecting the state of an object

In object-oriented code the invocation of a method may change
the state of the object being referenced. This change in object
state may in turn affect the execution of the code that follows
in a method. The duplication of such method invocations in both
the remaining and the extracted method may not preserve the
behavior of the program, since a duplicated statement is executed
twice (i.e. once in the remaining method and once in the extracted
method). To support our argument, two slice extraction examples
based on the code of Fig. 6 will be demonstrated. Both examples
concern the extraction of code from method statement using the
same slicing criterion (10, frequentRenterPoints) but different
block-based regions. The set of boundary blocks for statement 10 is
Blocks(10)={B1, Bo, B3, B4} (the layout of blocks is shown in Fig. 6),
and as aresult, four block-based slices can be derived from this slic-
ing criterion. Fig. 10 shows the remaining and the extracted method
when block-based slice Sg(10, frequentRenterPoints, By )isused.

As it can be observed in Fig. 10, after the execution of the
extracted method getFrequentRenterPoints () the Enumera-
tion rentals will not have any more elements to provide, since
the while loop inside the extracted method has already iterated
over all the elements of the enumeration. As a result, the while
loop that follows inside method statement () will not be exe-
cuted, since the invocation of method hasMoreElements () will
return false. Obviously, in this case the behavior of the program is
not preserved by slice extraction. The reason causing the change
of behavior is that the invocation of method nextElement () in
statement 7 affects the internal state of object reference rentals

frequentRenterPoints, By) causing change in behavior.

and at the same time statement 7 is duplicated in both the remain-
ing and the extracted method. An alternative slice extraction using
block-based slice Sg(10, frequentRenterPoints, By) is shown in
Fig. 11.

Asitcanbeobservedin Fig. 11, the slice extraction based on basic
block By, where slicing covers the entire source method, preserves
the behavior of the program in contrast with the slice extraction
based on basic block B,. The reason causing the preservation of
behavior is that apart from statement 7, the declaration of object
reference rentals (statement 4) is also duplicated in both the
remaining and the extracted method. As a result, the while loops
in the remaining and the extracted method iterate over two differ-
ent Enumeration references derived from the same vector object
(field _rentals).

Rule 1: The duplicated statements (i.e. the statements belonging
to the set of indispensable nodes Ig) should not contain composite
field variables (i.e. composite variables whose first part is an object
reference existing in the original method and last part is a field) in
their set of defined variables. From this rule are excluded the local
object references whose declaration statement is also included to
the duplicated statements. Formally, the rule is expressed as:

{pelslo.f € Def(p)\(p €lslo.f < Def(p) A 3q lglo < Decl(q)} = &

Def(p) denotes the set of variables which are defined at statement p,
Decl(q) denotes the set of variables which are declared at statement
q and o.f denotes a composite variable whose first part is object
reference o and last part is field f.



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

o dJo N

13

14

15

16

public String statement () {
int frequentRenterPoints = getFrequentRenterPoints() ;
double totalAmount = 0;
Enumeration rentals = _rentals.elements () ;
String result = "Rental Record for " + getName() + "\n";
while (rentals.hasMoreElements ()) {
Rental each = (Rental) rentals.nextElement () ;
double thisAmount = each.getCharge():;
result += "\t" + each.getMovie().getTitle() + "\t"
+ String.valueOf (thisAmount) + "\n";
totalAmount += thisAmount;
}
result += "Amount owed is
+ String.valueQOf(totalAmount) + "\n";
result += "You earned " + String.valueOf(frequentRenterPoints)
+ " frequent renter points";
return result;

"

private int getFrequentRenterPoints () {

1771

W ad0 W

else
11 frequentRenterPoints++;
}

int fregquentRenterPoints = 0;
Enumeration rentals = _rentals.elements();
while (rentals.hasMoreElements ()) {
Rental each = (Rental) rentals.nextElement ()
if (each.getMovie() .getPriceCode () == Movie.NEW RELEASE
&& each.getDaysRented() > 1)
10 frequentRenterPoints += 2;

return fregquentRenterPoints;

Fig. 11. Slice extraction using block-based slice Sg(10, frequentRenterPoints, By).

3.4.2. Duplication of statements containing a class instance
creation

In the same manner that a statement causing a change in the
state of an object can be duplicated, a statement creating an object
may also be duplicated. Let us assume that a statement initializing
or assigning reference r with a class instantiation (i.e. r = new Type())
is duplicated in both the original and the extracted method. Then
each reference r (one being in scope within the original method and
the other within the extracted method) will be referring to a differ-
ent object in memory. As a result, the existence of non-duplicated
statements affecting the state of the reference existing in the origi-
nal method or the extracted method would cause an inconsistency
of state between the two references. Such an inconsistency could in
turn affect statements depending on reference r, causing a change
in the behavior of the program.

Rule 2: A duplicated statement (i.e. a statement belonging to the
set of indispensable nodes Ig) initializing or assigning object refer-
ence r with a class instantiation, should not have a data dependence
due to variable r within the block-based region R(B) of slice Sg that
ends in a statement of the removable nodes Sg\Ig. Formally, the rule
is expressed as:

{p»rq eDp(R(B))lpelg AqeSp\Ilg AT e Inst(p)} =g

where Dg(R(B))={p —4 qlp, qeR(B)}U{p — 4, qll. p, q<R(B)},
p—4q denotes a loop-independent data-dependence edge from
node p to node g, p — () q denotes a loop-carried data-dependence
edge from node p to node q which is carried by loop [ and Inst(p)
denotes the set of object references which are instantiated at state-
ment p.

3.4.3. Preservation of existing anti-dependences

Another case that may cause change in behavior is the existence
of an anti-dependence between a statement that remains in the
original method and a statement belonging to the slice statements
that will be removed from the original method. An anti-dependence
(Komondoor and Horwitz, 2000) exists from statement p to state-
ment g (or statement g anti-depends on p) due to variable x,
when there is a control flow path starting from statement p that
uses the value of x and ending to statement g that modifies the
value of x (regardless of any intermediate statements that may
use the value of variable x). Just like data flow dependences, anti-
dependences can be either loop carried (i.e. carried by a specific
loop) or loop independent. Fig. 12 shows an example of code con-
taining a loop carried anti-dependence which is carried by the
while loop in statement 7 (this example is exactly the same with
the one used in the previous sections, with the only difference that
the declaration of variable thisamount has been placed outside
the while loop in order to make reasonable the extraction of its
computation over the entire method body). As it can be observed,
the value of variable thisamount is used at statement 14 and
in the next iteration of the while loop its value is modified at
statement 9.

Let us consider that slicing criterion (9, thisaAmount) is used for
the code of Fig. 12. The set of boundary blocks for statement 9 is
Blocks(9) = {B1, B3, B3} (the layout of blocks is shown in Fig. 6), and
as a result, three block-based slices can be derived from this slicing
criterion. The slice corresponding to the block-based region of block
B (region R(B7) contains all the statements of the original method)
is Sg(9, thisamount, B1)={4, 5, 7, 8, 9} and is extracted as shown
in Fig. 13.



1772

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

o JoUtde WwNhRP

[
o

[
=

12
13

14

15

16

17

public String statement () {
double totalAmount = 0;
int frequentRenterPoints = 0;
double thisAmount = 0;
Enumeration rentals = _rentals.elements();
String result = "Rental Record for " + getName() + "\n";
j-iwhile (rentals.hasMoreElements()) {
:: Rental each = (Rental) rentals.nextElement () ;
1 I thisAmount = each.getCharge();
: if (each.getMovie () .getPriceCode () == Movie.NEW RELEASE
: && each.getDaysRented() > 1)
1 frequentRenterPoints += 2;
: else
: frequentRenterPoints++;
| result += "\t" + each.getMovie().getTitle() + "\t"
: + String.valueOf (thisAmount) + "\n";
! _ totalAmount += thisAmount;
}
result += "Amount owed is
+ String.valueOf(totalBAmount) + "\n";
result += "You earned " + String.valueOf(frequentRenterPoints)
+ " frequent renter points";
return result;

} - --=>> loop-carried anti-dependence

Fig. 12. Code example containing a loop carried anti-dependence.

[

HoJdo0whN

12
13

14

15

16

17

W,

public String statement() {
double thisAmount = getThisAmount();
double totalAmount = 0;
int fregquentRenterPoints = 0;
Enumeration rentals = rentals.elements();
String result = "Rental Record for " + getName() + "\n";
while (rentals.hasMoreElements ()) {
Rental each = (Rental) rentals.nextElement();
if (each.getMovie () .getPriceCode () == Movie.NEW RELEASE
&& each.getDaysRented() > 1)
frequentRenterPoints += 2;
else
frequentRenterPoints++;
result += "\t" + each.getMovie().getTitle() + "\t"
+ String.valueOf (thisAmount) + "\n";
totalAmount += thisAmount;
}
result += "Amount owed is "
+ String.valueOf(totalAmount) + "\n";
result += "You earned " + String.valueOf(frequentRenterPoints)
+ " frequent renter points";
return result;

private double getThisAmount () {
double thisAmount = 0;
Enumeration rentals = rentals.elements();
while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement();
thisAmount = each.getCharge();
}

return thisAmount;

Fig. 13. Extraction of slice Sg(9, thisaAmount, B;) causing change in behavior.




N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782 1773

Asitcanbeobserved inFig. 13, the behavior of the programis not
preserved by the extraction of block-based slice Sg(9, thisamount,
Bq), since the extracted method returns the amount of charge cor-
responding to the last element of Vector _rentals. As a result, the
value of variable thisamount, which is used in statements 13 and
14 in the original method, is correct only in the last iteration of
the while loop inside the original method. Obviously, the final val-
ues of variables result and totalamount are affected due to the
incorrect value of variable thisamount at each iteration. The rea-
son causing this change in behavior is that the anti-dependence
that initially existed in the original method is altered after slice
extraction, since the statement from which it started remains in the
original method while the statement to which it ended is moved to
the extracted method thus affecting their order of execution.

Rule 3: There should not exist an anti-dependence (due to vari-
able u) within the block-based region R(B) of slice Sg starting from
a statement p of the remaining nodes Ug U Iz and ending to a state-
ment q of the removable nodes Sg\Ig, without the presence of a
data dependence due to variable u within the block-based region
R(B) between a statement k of the remaining nodes and statement
p. Formally, the rule is expressed as:

{p— qeAp(RB))IpeUpUlg AqeSp\p |\
{p — qeAg(R(B))peUg Ulg A qeSg\ig A3k
—~UplkeR(B)AkeUgUlg} = &

where Ag(R(B))={p—g qIp.q €R(B)} U{p -, qIL.p.q €R(B)},p ~aq
denotes a loop-independent anti-dependence edge from node p to
node g, p — 4y q denotes a loop-carried anti-dependence edge from
node p to node q which is carried by loop I and k — p denotes a
data dependence from node k to node p due to variable u.

The exception regarding the presence of a data dependence
between statement k (defining variable u) and p (using variable u)
of the remaining nodes is motivated by the fact that the definition
of u in statement k kills any previous definition, such as the one in
statement q which after the slice extraction would be placed before
k and p.

3.4.4. Preservation of existing output-dependences

Another case that may cause change in behavior is the exis-
tence of an output-dependence between a statement that remains
in the original method and a statement belonging to the slice
statements that will be removed from the original method. An
output-dependence (Komondoor and Horwitz, 2000) exists from
statement p to statement g (or statement q is output-dependent on
p) due to variable x, when there is a control flow path starting from
statement p that modifies the value of x and ending to statement
q that also modifies the value of x (regardless of any intermediate
statements that may use the value of variable x). Fig. 14 shows an
example of code containing two output-dependences from state-
ment 3 to statements 9 and 13 (this example is taken from class
ChartPanel in JFreeChart project).

Let us consider that the complete computation of variable
drawwWidth is intended to be extracted by using the entire method
body as region. Based on our approach, statements 3, 9 and 13 will
be used as seed statements and the slice resulting from the union
of the corresponding slices is USg({3, 9, 13}, drawwidth, B1)={3,
7,9, 11, 13}. The set of statements that should be duplicated is
Ig={3, 7, 11}. Statements 7 and 11 should be duplicated due to
the remaining statements within their bodies, leading eventually
to the duplication of statement 3. It becomes obvious, that if the
extracted method is invoked at the beginning of method paint-
Component (), statements 7 and 11 will be correctly executed, since
the value of variable drawwidth will be the same as the original pro-
gram (due to the duplication of statement 3). However, the value

of variable drawwidth will not be the same as the original pro-
gram at statement 15, due to its redefinition at statement 3 after its
initial definition at the beginning of the method through the invo-
cation of the extracted method. The reason causing this change in
behavior is that the output-dependences that initially existed in the
original method are altered after slice extraction, since the state-
ment from which they started remains in the original method while
the statements to which they ended are moved to the extracted
method.

It should be emphasized that in the code of Fig. 14 there also
exist anti-dependences (namely 7— 9,7 —13,8—9,11 — 13 and
12 — 13) which are not being preserved by slice extraction. How-
ever, these cases of anti-dependences do not activate the rule of
Section 3.4.3 due to the presence of duplicated statement 3 that
kills the initial definition of variable drawwidth at the beginning of
the method through the invocation of the extracted method.

Rule 4: There should not exist an output-dependence (due to
variable u) within the block-based region R(B) of slice Sg starting
from a statement p of the remaining nodes Ug Ulz and ending to
a statement q of the removable nodes Sg\Ig. Formally, the rule is
expressed as:

{p— qecOp(RB))peUpUlg AqeSp\lp} = &

where Op(R(B))={p —5 qIp, qeR(B)}U{p —5) qll, p. qeR(B)},
P —o q denotes a loop-independent output-dependence edge from
node p to node g, and p—)q denotes a loop-carried output-
dependence edge from node p to node g which is carried by loop
L

3.4.5. Rules regarding the usefulness of the extracted code in
terms of functionality

The goal of the rules defined in this section is to prevent
some extreme cases of slices from being suggested as refactoring
opportunities. These rules are related with the extent of the slice
compared to the number of seed statements and the size of the
original method, the degree of code duplication and the variable
which is returned by the original method.

a. The number of statements in the union of slice statements USg
should be greater than the number of seed statements used in
slicing criteria. In the case where the number of statements in
USg is equal to the number of seed statements used in slicing cri-
teria (this is actually the minimum number of statements that
can be extracted), the extracted code would be algorithmically
trivial, since no additional statements are required for the com-
putation of a given variable (or by the statements affecting the
state of a given object). This means that a slice should consist
of two statements at minimum, if we assume that a single seed
statement is used.

b. The number of statements in the union of slice statements USg
should not be equal to the number of statements in the original
method. In such a case the extracted method would be exactly
the same as the original method.

c. The statements which are duplicated in both the original and the
extracted method should not contain all the seed statements
used in slicing criteria. If all the seed statements used in slic-
ing criteria were duplicated, then the computation of a given
variable (or the statements affecting the state of a given object)
would exist in both the original and the extracted method mak-
ing the extraction redundant.

d. The variable which is returned by the original method should
be excluded from slice extraction. If the computation of a given
variable (or the statements affecting the state of a given object)
that is returned by the original method was extracted, then the
extracted method would contain a significant portion of the



1774 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

| )
11 i else if

1 |public void paintComponent (Graphics g) {
//create object RectangleZD available

2 boolean scale = false;

3 | drawWidth = available.getWidth();

4 |. .drawHeight = available.getHeight():

5 || |this.scaleX = 1.0;

6 | -this.scaleY = 1.0;

7 iiif (drawWidth < this.minimumDrawWidth) {

8 this.scaleX = drawWidth / this.minimumDrawWidth;

9 |Le>drawwidth = this.minimumDrawWidth;

10|: scale = true;

(drawWidth > this.maximumDrawWidth) {
this.scaleX = drawWidth / this.maximumDrawWidth;

drawWidth, drawHeight);

12
13|— >drawWidth = this.maximumDrawWidth;
14 scale = true;

}

//compute drawHeight
15 Rectangle2D chartArea

0.0; 0.0,
}

new RectangleZD.Double (

— - = output-dependence

Fig. 14. Code example containing output-dependences.

functionality of the original method and to a large extent would
serve the same purpose.

3.5. Limitations

Our approach employs block-based regions as a means to
demarcate the boundaries of slice expansion. This strategy enables
the extraction of slices which in some cases would not be feasible
if the entire method body was used as region. However, the bound-
aries of a block-based region are not always ideal as scope for slice
extraction. Clearly, there are cases where it would be preferable
to employ boundaries other than those implied by the block-
based regions. This could avoid the inclusion of additional variable
computations leading to the duplication of the corresponding state-
ments. On the other hand, the exploration of all possible boundaries
would introduce a significant computational cost and would dras-
tically increase the number of reported refactoring opportunities.

The proposed rules regarding behavior preservation may be too
strong on some cases causing the rejection of certain valid oppor-
tunities. For example, duplicating the invocation of a setter method
with the same argument would be safe, since the value of the cor-
responding field (and eventually the state of the corresponding
object) would remain the same even if the setter method would be
invoked twice after slice extraction. However, the determination
of whether the duplication of statements affecting the state of an
object eventually changes the behavior of code requires extensive
semantic analysis which is not covered by the employed tech-
niques. As a result, the rule of Section 3.4.1 can be regarded as a
worst-case rule.

Our approach does not handle labeled break and continue
statements which have a similar functionality with the goto state-
ments used in older programming languages. The reason is that
such statements affect drastically the ordinary control flow of pro-
grams and eventually the formation of block-based regions which
are essential in our approach. However, their use is generally dis-

couraged since they violate the structured programming principles
and are rarely used in modern programs (Gellerich et al., 1996;
Stamelos et al., 2002).

Finally, our approach does not handle return statements, since
the operation of a return statement is directly associated with the
method that it belongs to, and thus a return statement cannot be
copied to another method. As a result, if a return statement has a
direct or indirect incoming control dependence from a statement
belonging to a given slice, then this slice is rejected from being
suggested as a refactoring opportunity.

4. JDeodorant eclipse plug-in

The proposed methodology has been implemented as an Eclipse
plug-in (JDeodorant, 2010) that identifies Extract Method refactor-
ing opportunities on Java projects, highlights the code fragments
suggested to be extracted (by indicating with green color the state-
ments that will be moved to the extracted method and with red
color the statements that will be duplicated in both the original and
the extracted method) and automatically applies on source code the
refactorings which are eventually approved by the user. In order to
control the number and the quality of the identified refactoring
opportunities being reported, JDeodorant offers a preference page
where the user can define various threshold values regarding the
following properties:

e The minimum size (in number of statements) that a method
should consist of in order to be examined for potential refactoring
opportunities.

e The minimum number of statements that a slice should consist
of in order to be reported as a refactoring opportunity.

e The maximum number of duplicated statements (between the
original and the extracted method) that the extraction of a slice
may introduce in order to be reported as a refactoring opportu-
nity.



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782 1775

= Slice-based Cohesion Metrics

% )

id totalAmount frequentRenterPoints

W o =& ea =W o =

ol =
L= W= o

result

totalAmount
frequentRenterPoints
[T] rentals

[V] result

Metrics

Overlap: 0335
Tightness: 0.200
Coverage: 0.667

ok ||

Cancel

Fig. 15. JDeodorant calculator for slice-based cohesion metrics.

¢ The maximum ratio of duplicated to extracted statements (rang-
ing over the interval [0, 1]) that should apply for a slice extraction
refactoring in order to be reported.

In order to support the user in assessing the cohesion of a
given method (i.e. the degree of interdependence among the state-
ments required for the computation of the variables declared inside
a method), ]Deodorant offers a flexible calculator for slice-based
cohesion metrics (Ott and Thuss, 1993). The calculator automati-
cally computes the backward slices for all the local variables whose
scope is the block corresponding to the method body, constructs
the slice profile (Ott and Thuss, 1989) of the examined method
and highlights the statements which are common to all computed
slices, as shown in Fig. 15. The user has the ability to exclude from
the slice profile of the examined method any variables which can-
not be considered as output variables (i.e. variables playing an
auxiliary role in the computation of other variables and whose com-
putation is not intended to be extracted in a separate method) in
order to improve the accuracy of the calculated slice-based cohe-
sion metrics. Fig. 15 shows the slice profile and the calculated
slice-based cohesion metrics, namely overlap, tightness and cover-
age for the method of Fig. 6. As it can be observed, variable rentals
has been excluded from the slice profile, since it plays an auxiliary
role in the computation of the other variables.

Finally, JDeodorant sorts the identified refactoring opportuni-
ties according to their effectiveness as measured by the duplication
ratio (i.e. the ratio of the number of statements that will be dupli-
cated after the extraction of a slice to the number of statements
which are going to be extracted). First, the identified slice extraction
opportunities are grouped according to the variable or object refer-
ence that they concern (i.e. a slice that can be extracted using more
than one block-based regions is considered as a single refactoring
opportunity) in order to present relevant refactoring opportunities
in a consecutive way. The resulting groups are sorted according
to the average duplication ratio of the refactoring opportunities
belonging to each group in ascending order. In the case where

two groups have an average duplication ratio equal to zero (i.e.
none of the slice extraction opportunities belonging to the groups
causes duplication of statements), the groups are sorted according
to the maximum number of statements that can be extracted by
the refactoring opportunities belonging to each group in descend-
ing order. The reasoning behind this sorting mechanism is that the
extraction of slices causing significant duplication should be less
preferred, since such slices are generally cohesive with the method
from which they are extracted.

5. Evaluation

The evaluation of the proposed methodology consists of two
main parts. The first part concerns the evaluation on an open-source
project and includes an independent assessment of the identified
refactoring opportunities regarding their soundness and useful-
ness, an investigation of the impact of the suggested refactorings
on slice-based cohesion metrics and finally an investigation of the
impact of the suggested refactorings on the external behavior of the
program. The second part concerns the evaluation of the identified
refactoring opportunities against those identified by independent
evaluators on software that they developed.

5.1. Qualitative and quantitative evaluation on an open-source
project

The criteria for selecting an appropriate project for the evalua-
tion of the proposed methodology are the following:

(a) The source code of the project should be publicly available, since
JDeodorant performs source code analysis in order to identify
refactoring opportunities. Furthermore, source code availability
will make possible the reproduction of the experimental results.

(b) The project should be large enough in order to present a suffi-
cient number of refactoring opportunities.



1776 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

Table 1
Independent assessment of the identified refactoring opportunities.

Package org.jfree.chart Number of refactoring opportunities

Question a Question b
Identified Having distinct Removing Decomposing a Constituting a
functionality duplicated code complex method feature envy case
Complete computation 11 7 223 5 1P
Object state 53 50 13 6
Total 64 57 15 11 1

2 Two complete computation slices have been commented as both decomposing a complex method and removing duplicated code.
b One complete computation slice has been commented as both decomposing a complex method and constituting a feature envy case.

(c) The project should exhibit high test coverage to make feasible
the examination of behavior preservation after the application
of the identified refactoring opportunities.

The project which has been selected is JFreeChart. It is a rather
mature open-source chart library which has been constantly evolv-
ing since 2002. Version 1.0.0 consists of 771 classes and 95K lines
of source code (as measured by sloccount), while its average test
coverage is 63.7% (as measured by EclEmma code coverage tool).

5.1.1. Independent assessment

To consider an approach for identifying refactoring opportu-
nities successful, it must be able to suggest refactorings which
preserve program behavior, are conceptually sound and useful, and
have a positive impact on certain quality metrics. The conceptual
soundness and usefulness of the refactoring opportunities can only
be assessed by human expertise. To this end, an independent expert
was asked to express his opinion on the refactoring opportuni-
ties that were identified in package org.jfree.chart of JFreeChart
project. The independent designer had significant experience in
software design (he has been working for more than 13 years
as a telecommunications software designer) and deep knowledge
of object-oriented design principles. More specifically, the inde-
pendent designer had to answer the following questions for each
identified refactoring opportunity, which also form the research
questions in this part of the evaluation:

(a) Does the code fragment suggested to be extracted as a separate
method have a distinct and independent functionality com-
pared to the rest of the original method? If yes, describe its
functionality by providing the name of the extracted method. If
no, provide the reason for which the refactoring suggestion is
not acceptable.

(b) Does the application of the suggested refactoring solve an
existing design flaw (e.g. by decomposing a complex method,
removing a code fragment that is duplicated among several
methods, or extracting a code fragment suffering from Feature
Envy)?

Therefore, the hypothesis being examined can be stated as:

“the identified refactoring opportunities concern code frag-
ments having distinct and independent functionality and their
application resolves an existing design flaw”.

Package org.jfree.chart (excluding its sub-packages) consists of
18 classes, 301 methods with body and 4564 lines of source code.
It is actually the core package of JFreeChart library, since it is
responsible for generating all supported chart types. In order to
obtain meaningful refactoring suggestions we have excluded from
the report the methods having less than 10 statements and the
refactoring opportunities corresponding to slices with less than 4
statements by activating the appropriate property thresholds. The
activated threshold, which is related with the size of the methods

being examined for the identification of refactoring opportunities,
reduced the number of analyzed methods from 301 to 51, from
which 39 presented at least one refactoring opportunity (64 refac-
toring opportunities in total). The results of the evaluation are
summarized in Table 1. The identified slice extraction opportuni-
ties have been grouped according to the variable or object reference
that they concern (i.e. a slice that can be extracted using more than
one block-based regions is considered as one refactoring opportu-
nity).

As it can be observed in Table 1, the independent designer
reported that 57 out of 64 (89%) identified refactoring opportunities
correspond to code fragments having a distinct functionality com-
pared to the rest of the original method. The independent designer
disapproved 7 out of 64 (11%) identified refactoring opportunities
for the following reasons:

* The code fragment suggested to be extracted did not have an
obvious functionality and thus the extracted method would not
have a clear purpose. (2/7)

¢ The code fragment suggested to be extracted had a trivial func-
tionality and thus the extracted method would be useless. (1/7)

¢ The code fragment suggested to be extracted covered a large por-
tion of the original method and thus the remaining functionality
in the original method would be very limited after its extraction.
(2/7)

e The code fragment suggested to be extracted shared several
statements with other slices in the original method and thus its
extraction would cause significant code duplication between the
remaining and the extracted method. (2/7)

Furthermore, the independent designer reported that 27 out of 64
(42%) identified refactoring opportunities actually resolved (or in
some cases helped to resolve) an existing design flaw. More specif-
ically, 15 refactoring opportunities were utilized to remove three
groups of duplicated code. The largest group of duplicated code con-
sists of 11 cases that were extracted into a single method. Finally,
11 refactoring opportunities were utilized to decompose complex
methods and one refactoring opportunity resulted in an extracted
method suffering from Feature Envy that should be further moved
to the envied class.

Since the proposed methodology employs rules to avoid changes
in program behavior and non-useful slice extraction opportunities,
Table 2 lists the number of slices (along with the percentage over
the total number of slices) that have been rejected by each rule. It
should be emphasized that some slices have been rejected by more
than one rule.

Asitcanbe observed in Table 2, about 20-30% of the constructed
complete computation and object state slices are finally accepted
and presented as refactoring opportunities. Furthermore, the effect
of behavior preservation rules is much more intense on object state
slices compared to complete computation slices.



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782 1777

Table 2
Number of slices rejected by each rule.

Rules Description

Complete computation Object state

3.4.1 Duplication of statements affecting the state of an object
3.4.2 Duplication of statements containing a class instance creation
3.4.3 No preservation of existing anti-dependences

3.4.4 No preservation of existing output-dependences

Behavior preservation

3.4.5.a Slice statements are equal to seed statements 2
3.4.5.b Slice is equal to method body

3.4.5.c All seed statements are duplicated

3.4.5.d Variable or object reference associated with the slice is

Usefulness

returned by the original method

User threshold Slice size is less than 4 statements

Accepted slices
Total number of slices

12(6.5%) 182(34.9%)
7(3.8%) 102(19.6%)
18(9.7%) 24(4.6%)
27(14.6%) 79(15.2%)
7(14.6%) 85(16.3%)
0(0%) 7(1.3%)
8(4.3%) 78(15%)
8(4.3%) 12(2.3%)
96(51.9%) 147(28.2%)
36(19.5%) 154(29.6%)
185 521

5.1.2. Impact on slice-based cohesion metrics

The empirical study of Meyers and Binkley (2007) has shown
that slice-based metrics can be used to quantify the deterioration
that accompanies software evolution and measure the progress of
a reengineering effort. To provide an estimate of the improvement
in terms of cohesion introduced by the decomposition of methods,
we have measured the slice-based cohesion of the original method
(before slice extraction), the remaining method (after slice extrac-
tion) and the extracted method for the refactoring opportunities
that the independent designer has agreed on. The hypothesis being
examined in this part of the evaluation is that

“the application of the identified refactoring opportunities
improves the cohesion of the affected code”.

Ott and Thuss (1993) were the first that formally defined a set
of quantitative metrics in order to estimate the level of cohesion in
amodule. The defined cohesion metrics were based on slice profiles
(Ott and Thuss, 1989) which constitute a convenient representa-
tion for revealing slice patterns within a module. Let Vj; be the set
of variables used by module M and Vj be a subset of V,; containing
only the output variables of M. As output variables are considered:
(a) the variable which is returned by M, (b) the global variables
which are modified by M, and (c) the parameters which are passed
by reference and are modified by M. Finally, let SL; be the slice
obtained for variable v; € Vg and SL;;,; be the intersection of SL; over
all v; € Vp. The tightness, overlap and coverage of module M are
defined as:

, |SLint| Qolst, 4
Tightness(M) = Iengt%’ Overlap(M ‘VO|Z in
Vol
ISL;|
Coverage(M ‘Vo | Z Tength(M
Table 3

Average change of slice-based cohesion metrics.

Tightness expresses the ratio of the number of statements which
are common to all slices over the module length, while overlap
expresses the average ratio of the number of statements which
are common to all slices to the size of each slice. The higher the
tightness and overlap of a module is, the more cohesive the mod-
ule is. Obviously, in modules with high tightness or overlap the
number of duplicated statements between the remaining and the
extracted method will be large after the extraction of a slice. On
the other hand, coverage expresses the average slice size over the
module length and thus is not directly associated with the degree
of common statements among the slices. However, a high value
of coverage, which can be achieved when the slices extend over a
large portion of the module, indirectly indicates the existence of
several common statements among the slices.

In the Java programming language only a single variable can be
returned by a given method, since the parameters are passed by
value and thus their initial value is not possible to change during
the execution of the method. Obviously, using a single variable (i.e.
the returned variable)in the slice profile of a method would resultin
artificially high values of slice-based cohesion metrics which would
not sufficiently reveal the actual cohesion. To overcome this prob-
lem, we have considered as output variables all the variables whose
scope is the block corresponding to the body of the method under
examination, since these variables could be potentially returned at
the end of the method. Furthermore, the considered output vari-
ables which are simply accessed and not modified within the body
of the method are excluded from the slice profile.

Table 3 shows the average change of slice-based cohesion met-
rics caused by the application of the Extract Method refactorings
which have been approved by the independent expert (presented
by slice type and in total). More specifically, the values of the third
column have been calculated as the average difference between
the remaining method (i.e. the original method after the applica-
tion of the refactoring) and the original method. This expresses the
(expected) improvement in cohesion of the original method that

Slice type Metric Remaining — original Extracted (Extracted +remaining)/2 — original
Overlap +0.177 0.995 +0.305
Complete computation Tightness —0.038 0.989 +0.304
Coverage -0.123 0.995 +0.135
Overlap +0.302 0.876 +0.302
Object state Tightness +0.222 0.803 +0.322
Coverage 0 0.905 +0.110
Overlap +0.287 0.891 +0.303
Total Tightness +0.190 0.827 +0.319
Coverage -0.015 0.917 +0.113




1778

Table 4
Number of slices rejected by each rule for the methods associated with unit tests.

N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

Rules Description

Complete computation Object state

3.4.1 Duplication of statements affecting the state of an object

3.4.2 Duplication of statements containing a class instance creation 0
3.4.3 No preservation of existing anti-dependences 12
3.4.4 No preservation of existing output-dependences 1

Behavior preservation

3.4.5.a Slice statements are equal to seed statements 1

3.4.5.b Slice is equal to method body

Usefulness 3.4.5.c All seed statements are duplicated

3.4.5.d Variable or object reference associated with the slice is

returned by the original method

User threshold Slice size is less than 4 statements

Accepted slices
Total number of slices

6(7.7%) 41(18.4%)
(0%) 44(19.7%)
(15.4%) 8(3.6%)
(1.3%) 2(0.9%)

4(17.9%) 45(20.2%)

0(0%) 0(0%)

5(6.4%) 24(10.7%)

7(9%) 0(0%)

55(70.5%) 65(29.1%)

7(9%) 109(48.9%)

78 223

has been refactored. The fourth column indicates the average met-
ric values for the extracted methods which have been created after
the application of the refactorings. Finally, the values of the fifth col-
umn have been calculated as the average difference between the
average metric value for the extracted and the remaining method
(i.e. the changed/created methods after the application of the refac-
toring) and the original method (i.e. the method existing before
the application of the refactoring). This expresses the (expected)
improvement in the average cohesion of the two resulting methods
(remaining and extracted).

As it can be observed in the third and fifth columns of Table 3,
the improvement of slice-based cohesion metrics can be consid-
ered significant by taking into account that their values range over
the [0, 1] interval. Deterioration is observed in the average differ-
ence of coverage between the remaining and the original method
(third column) for the cases that resulted from the extraction of
complete computation slices. On the other hand, the average differ-
ence of coverage between the remaining and the original method
(third column) for the cases that resulted from the extraction of
object state slices is zero. Finally, as it can be observed in the
fourth column of Table 3, the slice-based cohesion metrics for the
extracted methods exhibit significantly high average values (espe-
cially for the methods that resulted from the extraction of complete
computation slices) indicating that the corresponding complete
computation and object state slices constitute strongly cohesive
code fragments.

5.1.3. Impact on program behavior

To assess the impact of the identified refactoring opportunities
on program behavior we have applied the corresponding refactor-
ing transformations on source code using the JDeodorant tool and
run the JUnit tests of the project under examination in order to
find out whether the applied refactorings caused test errors. The
hypothesis being examined in this part of the evaluation is that

“the application of the identified refactoring opportunities does
not modify program behavior”.

From the 39 methods presenting at least one refactoring oppor-
tunity in package org.jfree.chart of JFreeChart project, 21 were
actually associated with unit tests with an average test code cov-
erage equal to 87% (as measured by EclEmma code coverage tool).
The average test code coverage percentage can be considered suffi-
ciently high in order to assess the preservation of program behavior
after the application of the refactorings.

In total, 41 refactoring opportunities were identified for the
21 methods being tested in package org.jfree.chart of JFreeChart
project. After the application of each refactoring all unit tests of
the project were executed in order to examine whether the applied
refactoring caused test errors. All of the applied refactorings passed
the tests successfully without causing any test failure. Therefore,

we can conclude with a relative certainty that the defined behavior
preservation rules have successfully excluded refactoring opportu-
nities that could possibly cause a change in program behavior.

Table 4 lists the number of slices (along with the percentage over
the total number of slices) that have been rejected by each rule for
the 21 methods associated with unit tests in package org.jfree.chart
of JFreeChart project. It should be emphasized that some slices have
been rejected by more than one rule.

5.2. Evaluation of precision and recall against the findings of
independent evaluators

The goal of this part of the evaluation is to employ the refactoring
opportunities found by independent evaluators in selected pieces
of software that they developed. The opportunities that have been
identified by the evaluators have been considered as a golden set
(True Occurrences - TO), allowing the extraction of the precision
and recall of our approach.

The two evaluators that participated in this study are PhD can-
didates, having significant experience in object-oriented design,
while the analyzed projects have been developed within the con-
text of their research. The PhD students were unfamiliar with the
techniques and the underlying philosophy of our identification
approach. The first analyzed project is WikiDev 2.0 (Fokaefs et al.,
2010), which is a tool that adopts a wiki-based architecture for
integrating information feeds from a variety of tools that software-
team members use for design, development and communication.
WikiDev is the result of 2 years of development at the Service Sys-
tems Research Group, in the Department of Computing Science at
the University of Alberta, Canada. The second project is SelfPlanner
1.5.2 (Refanidis and Alexiadis, 2008), which is an intelligent Web-
based calendar application that plans the tasks of a user employing
an adaptation of the Squeaky Wheel Optimization framework. It
is the outcome of 3 years of development in the Artificial Intelli-
gence Group at the Department of Applied Informatics, University
of Macedonia, Greece.

Since the evaluation of the entire project would require a pro-
hibitive amount of time and effort by the evaluators, the analysis
has been restricted to a number of selected methods presenting
at least one refactoring opportunity (based on the findings of the
proposed approach) and having varying number of statements.

The hypothesis being tested in this part of the evaluation can be
stated as:

“The findings of the proposed approach match the refactoring
opportunities identified by human expertise to a large extent”.

The task assigned to the evaluators was to manually identify
Extract Method refactoring opportunities for the set of selected
methods in their projects, respectively. A secondary task was to
apply the corresponding refactorings either manually or by exploit-



Table 5

Precision and Recall of the proposed approach for project WikiDev 2.0.

Method

Cases found by the
evaluator (method
name - line numbers)

Ident. time
(m:s)

Appl. time
(m:s)

TO

#Cases found
by the tool

TP

FN

FP Precision (%)

Recall (%)

#1 clustering. Hierarchical::clustering

#2 clustering.
MatrixOperator::getFiedlerVector

#3 clustering. SammonsProjec-
tion::calculateDistanceMatrix
#4 RelationshipMiner::getRelationships

#5 ClusteringMain::main

#6 DataManager::getArtifactByTypeAndID

#7 Relationship-
Miner::relateChangeSetToTicket
#8 city3d.Layout::getLayout

#9 city3d.Layout::cityBlockInitialization
#10 city3d.IndustrialLayout::printCityBlocks
#11 city3d.Layout::pushBuildings

#12 city3d.CityLayout::printCityBlocks

#13 clustering.
MatrixOperator::getConnectedComponents

#14 clustering. SammonsProjection::iterate

clusters (26-31)
newDistances (50-81)
newDistances
(84-155)

L(25-38)
sortedEigenValues
(47-60)

minlndex (62-72)
eigenVectors (73-78)
No opportunities found

initializeDocuments
(100-137)
calculateTfidf
(139-171)
mineRelationships
(173-226)
totalClusters (53,
67-74)?

finalClusters (66-74)
coords (60, 76-81)?
writeClusterInDB
(85-101)

initArtifact (255-275)
initSpecialArtifact
(278-314)

ticket (290-297)
wiki (309-313)
communication
(299-306)

ids (295-310)

coords (34-42)

range (73-80)
cityBlocks (97-104)
line (354-365)

blockR (124-131)°
subblockCenters
(132-140)

line (211-232)
component (269-277)

No opportunities found

3:22

2:00

1:24

1:40

1:05

1:15
0:30

1:00
0:27

0:08

1:30

1:00

Overall

3:00

1:25

1:18

1:15

0:20
0:35
0:18

0:22
0:56

0:20
0:30

(=}

2 50.0

1 50.0

0 100.0

0 100.0

1 66.7

o

100.0
333
100.0

oN

2 333

50.0

NJ/A

333

60.0

100.0
100.0
100.0

100.0
50.0

100.0
0.0

N/A
63.3

All class names are preceded by package “ca.ualberta.cs.serl.wikidev.”
2 The evaluator moved the declaration of the variable of interest in order to make the statements consecutive.

b The initial selection of statements by the evaluator (118-131) could not be extracted, because it contained the computation of three variables. As a result, the evaluator reduced the number of selected statements (124-131).

7821-2521 (110Z) #8 210m3Jos pup swajsAS Jo [pu.nof ayJ / noisi0a31z3pyd 'y ‘Sypupsy ‘N

6LL1



Table 6
Precision and Recall of the proposed approach for project SelfPlanner 1.5.2.
Method Cases found by the Ident. time Appl. time TO #Cases found by TP FN FP Precision (%) Recall (%)
evaluator (method name (m:s) (m:s) the tool
- line numbers)
#1 app.domain.ManualPanel::redrawView yearViewPanel (144, 0:18 1:50 1 2 1 0 1 50.0 100.0
165-168, 186-187)?
#2 app.domain.TemplatePanel::setTemplates calcTemplates (301-318) 0:36 1:34 1 3 1 0 2 333 100.0
#3 square (179-199) 0:15 0:32 1 2 1 0 1 50.0 100.0
app.domain.TableSquareHolder::mouseDragged
#4 app.domain.DayPanel::initSquares daylight (65-76)° 0:14 1:20 1 1 0 1 1 0.0 0.0
#5 data.Domain::clone addClone (781-794) 0:06 0:56 1 1 0 1 1 0.0 0.0
#6 data.TaskManager::getPeriodicPartsOf calcPeriods (409-412) 0:08 0:50 1 2 1 0 1 50.0 100.0
#7 data.TaskManager::clone calcPastSolutions 0:37 0:26 1 2 1 0 1 50.0 100.0
(238-243)
#8 data.TaskManager::sortTasks min (487-495) 0:24 0:38 1 1 1 0 0 100.0 100.0
#9 app.HFTimeControl::addHours daylight (76-85)° 0:06 1:20 1 1 0 1 1 0.0 0.0
#10 periodicPartNames 0:38 0:34 1 1 1 0 0 100.0 100.0
app.PeriodicTaskListPanel::setPeriodicParts (273-298)
#11 validationOfTask 1:29 2:10 2 1 1 1 0 100.0 50.0
app.MFrame_Task::okButton_actionPerformed (242-422)
newTask (404-419)
#12 app.EditLocClassPanel::save createLocationClass 0:26 0:58 1 2 1 0 1 50.0 100.0
(131-151)
#13 app.PeriodicPanel::getPrefs period (302, 311-316) 0:24 0:42 1 1 1 0 0 100.0 100.0
#14 domain (131-185) 1:30 1:48 1 2 1 0 1 50.0 100.0
app.MFrame_QuickIns::okBut_actionPerformed
Overall 524 75.0

All class names are preceded by package “gr.uom.csse.ai.myplanner.”
2 The evaluator selected non-consecutive statements scattered through different cases of a switch statement.

b The evaluator reported a case of duplicated code.

¢ The initial selection of statements by the evaluator (242-383) could not be extracted, because it contained statements nested at different levels. As a result, the evaluator expanded the number of selected statements.

08L1

7821-2521 (110Z) #8 210m3Jos pup swaj3sAS Jo [pu.nof ayJ / nois10a31z3py) 'y ‘Sypupsy ‘N



N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782 1781

ing the Extract Method refactoring feature of the employed IDE
(Eclipse 3.6). For each identified refactoring opportunity, the evalu-
ator indicated the involved statements and a name for the extracted
method indicating its functionality. During this process, one of the
authors recorded the reported results by the evaluators and kept
track of the exact time required for the identification of the refac-
toring opportunities in each method and the application of the
corresponding refactorings. The author also recorded cases where
the application of an identified refactoring by the evaluators was
infeasible.

The measures required for the classification of the refactoring
opportunities identified by our approach are defined as follows:

e True Positive (TP): A refactoring opportunity identified by the
independent expert, and also by the proposed technique.

e False Positive (FP): A refactoring opportunity identified by the
proposed technique, but not by the independent expert.

e False Negative (FN): A refactoring opportunity identified by the
independent expert, but not by the proposed technique.

The results for this part of the evaluation are shown in
Tables 5 and 6 for each project, respectively. For each identified
refactoring opportunity by the evaluators the line numbers of the
involved statements are given within parentheses. Consecutive
statements are indicated with a dash between the first and the last
line number. The line numbers for non-consecutive statements are
separated with commas.

A first observation that can be made from the results shown in
Tables 5 and 6 is that both evaluators were able to mainly iden-
tify refactoring opportunities concerning consecutive statements.
Furthermore, none of the refactoring opportunities identified by
the evaluators caused any duplication of statements between the
remaining and the extracted method. These results indicate that a
human-guided identification process can reveal only relatively triv-
ial refactoring opportunities. Furthermore, both evaluators made
selections of statements which either could not be extracted (case
#11 in Table 5 and case #11 in Table 6) or required slight code
modifications (case #5 in Table 5) in order to make their extrac-
tion feasible. Considering also the time required for performing
identification and application activities, it becomes evident that
the manual selection of statements for extraction can be a rather
time-consuming and error-prone process, since it requires detailed
program analysis and understanding. As a result, software main-
tainers could greatly benefit from semi-automated approaches
like ours which identify feasible and behavior preserving refactor-
ing opportunities and leave the decision of applying them or not
on human judgment and expertise. In conclusion, our approach
demonstrated a precision of 51% and a recall of 69% on average,
showing that it has the ability to identify refactoring opportunities
that are usually found by human experts.

5.3. Threats to validity

All types of evaluation that have been presented in the previous
subsections suffer from the usual threat to external validity in the
sense that a limited number of projects and evaluators have been
employed. This threat limits the ability to claim that the proposed
approach will be effective in other experimental settings; however,
it has been partially alleviated by the fact that three projects from
different domains and three different evaluators, respectively, have
been employed. The availability of the proposed approach in the
form of an Eclipse plug-in provides the possibility to easily extend
the evaluation on other projects.

A threat to construct validity is related to the underlying phi-
losophy for identifying cohesive code fragments having a distinct
functionality. Slicing may be an ideal way for extracting the com-

putation of a variable as a separate method; however, there might
be other ways to split a method (e.g., based on conceptual criteria).
In any case, the examination of program dependences is a reliable
way of finding related statements within the body of a method.

6. Conclusions

The proposed approach aims at automatically identifying
Extract Method refactoring opportunities which are related with
the complete computation of a given variable (complete com-
putation slice) and the statements affecting the state of a given
object (object state slice). The aforementioned types of slices aim
to capture code fragments implementing a distinct and indepen-
dent functionality compared to the rest of the original method.
Furthermore, the approach proposes a set of rules that exclude
refactoring opportunities corresponding to slices whose extraction
could possibly cause a change in program behavior.

The evaluation has shown that the proposed methodology is
able to capture slices of code implementing a distinct and inde-
pendent functionality compared to the rest of the original method
and thus lead to extracted methods with useful functionality. At
the same time, the identified refactoring opportunities can help
significantly to resolve existing design flaws by decomposing com-
plex methods, removing duplicated code among several methods
and extracting code fragments suffering from Feature Envy. Fur-
thermore, the identified refactoring opportunities have a positive
impact on the cohesion of the decomposed methods and lead to
highly cohesive extracted methods. An evaluation based on unit
testing has shown that the defined behavior preservation rules can
successfully exclude refactoring opportunities that could possibly
cause a change in program behavior. Finally, the comparison of the
refactoring opportunities identified by independent evaluators to
the findings of our approach revealed a satisfactory level of preci-
sion and recall.

The proposed technique could be applied to search-based refac-
toring approaches (O’Keeffe and O Cinnéide, 2008; Harman and
Tratt, 2007; Qayum and Heckel, 2009) which treat the problem of
improving the design of an object-oriented system as a search prob-
lem in the space of alternative designs. The goal of these approaches
is to find a sequence of refactoring transformations leading to the
optimal design in terms of a fitness function (which is used to rank
the alternative designs). An indicative implementation of a search-
based approach based on genetic algorithms would be to consider
the statements of a method as a chromosome where the value
of each gene represents a method that the corresponding state-
ment should be placed. The slice formation algorithms and behavior
preservation rules of the proposed technique can be employed to
form the initial population as well as to guide the genetic operators
(crossover/mutation) producing the next generation population of
valid chromosomes (i.e. solutions representing feasible and behav-
ior preserving Extract Method refactorings). The selection process
can be guided by a fitness function combining a set of slice-based
cohesion and complexity metrics.

Acknowledgement

This work has been funded by the Research Committee of the
University of Macedonia.

References

Abadi, A, Ettinger, R., Feldman, Y.A., 2008. Re-approaching the refactoring rubicon.
In: Proceedings of the Second ACM Workshop on Refactoring Tools.

Aho, V., Sethi, R, Ullman, ].D., 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley.



1782 N. Tsantalis, A. Chatzigeorgiou / The Journal of Systems and Software 84 (2011) 1757-1782

Allen, M., Horwitz, S., 2003. Slicing Java programs that throw and catch exceptions.
In: Proceedings of the 2003 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation , pp. 44-54.

Ball, T., Horwitz, S., 1993. Slicing programs with arbitrary control flow. In: Pro-
ceedings of the First International Workshop on Automated and Algorithmic
Debugging , pp. 206-222.

Banker, R.D., Datar, S.M., Kemerer, C.F., Zweig, D., 1993. Software complexity and
maintenance costs. Communications of the ACM 36 (11), 81-94.

Bergeretti, ].-F., Carré, B.A., 1985. Information-flow and data-flow analysis of while-
programs. ACM Transactions on Programming Languages and Systems 7 (1),
37-61.

Binkley, D., Gallagher, K.B., 1996. Program slicing. Advances in Computers, 43.

Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P., 2006. Tool-supported
refactoring of existing object-oriented code into aspects. IEEE Transactions on
Software Engineering 32 (9), 698-717.

Cimitile, A., De Lucia, A., Munro, M., 1996. A specification driven slicing process for
identifying reusable functions. Software Maintenance: Research and Practice 8,
145-178.

De Lucia, A., Harman, M., Hierons, R., Krinke, J., 2003. Unions of slices are not slices.
In: Proceedings of the Seventh European Conference on Software Maintenance
and Reengineering , pp. 363-367.

Demeyer, S., Van Rysselberghe, F., Girba, T., Ratzinger, ]., Marinescu, R., Mens, T.,
Du Bois, B., Janssens, D., Ducasse, S., Lanza, M., Rieger, M., Gall, H., EI-Ramly,
M., 2005. The LAN-simulation: a refactoring teaching example. In: Proceedings
of the Eighth International Workshop on Principles of Software Evolution , pp.
123-134.

Ettinger, R., 2007. Refactoring via program slicing and sliding. Ph.D. Dissertation.
University of Oxford.

Ferrante, J., Ottenstein, K.J., Warren, ].D., 1987. The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Sys-
tems 9 (3), 319-349.

Fokaefs, M., Tansey, B., Ganev, V., Bauer, K., Stroulia, E., 2010. WikiDev 2.0: facilitat-
ing software development teams. In: Proceedings of the Fourteenth European
Conference on Software Maintenance and Reengineering.

Fowler, M., Beck, K., Brant, ., Opdyke, W., Roberts, D., 1999. Refactoring: Improving
the Design of Existing Code. Addison-Wesley.

Gallagher, K.B., Lyle, J.R., 1991. Using program slicing in software maintenance. IEEE
Transactions on Software Engineering 17 (8), 751-761.

Gellerich, W., Kosiol, M., Ploedereder, E., 1996. Where does GOTO go to? Lecture
Notes in Computer Science 1088, 385-395.

Gill, G.K., Kemerer, C.F., 1991. Cyclomatic complexity density and software main-
tenance productivity. IEEE Transactions on Software Engineering 17 (12),
1284-1288.

Harman, M,, Binkley, D., Danicic, S., 2003. Amorphous program slicing. The Journal
of Systems and Software 68 (1), 45-64.

Harman, M., Binkley, D., Singh, R., Hierons, R.M., 2004. Amorphous procedure extrac-
tion. In: Proceedings of the Fourth IEEE International Workshop on Source Code
Analysis and Manipulation , pp. 85-94.

Harman, M., Hierons, R.M., 2001. An overview of program slicing. Software Focus 2
(3), 85-92.

Harman, M., Tratt, L., 2007. Pareto optimal search based refactoring at the design
level. In: Proceedings of the Ninth Annual Conference on Genetic and Evolu-
tionary Computation, pp. 1106-1113.

Horstmann, C.S., 2006. Object-Oriented Design and Patterns, second ed. Wiley.

Horwitz, S., Reps, T.W., Binkley, D., 1990. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems 12 (1),
26-60.

JDeodorant, 2010. Available from: http://www.jdeodorant.com.

Jiang, T., Harman, M., Hassoun, Y., 2008. Analysis of procedure splitability. In:
Proceedings of the Fifteenth Working Conference on Reverse Engineering ,
pp. 247-256.

Kang, B.-K., Bieman, ].M., 1998. Using design abstractions to visualize, quantify, and
restructure software. The Journal of Systems and Software 42 (2), 175-187.
Komondoor, R., Horwitz, S., 2000. Semantics-preserving procedure extraction. In:
Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages , pp. 155-169.

Komondoor, R., Horwitz, S., 2003. Effective, automatic procedure extraction. In:
Proceedings of the Eleventh IEEE International Workshop on Program Compre-
hension, pp. 33-42.

Korel, B., Laski, J., 1988. Dynamic program slicing. Information Processing Letters 29
(3),155-163.

Kumar, S., Horwitz, S., 2002. Better slicing of programs with jumps and switches. In:
Proceedings of the Fifth International Conference on Fundamental Approaches
to Software Engineering , pp. 96-112.

Lakhotia, A., Deprez, J.-C., 1998. Restructuring programs by tucking statements into
functions. Information and Software Technology 40 (11-12), 677-690.

Landi, W., Ryder, B.G., Zhang, S., 1993. Interprocedural modification side effect anal-
ysis with pointer aliasing. In: Proceedings of the ACM SIGPLAN’'93 Conference
on Programming Language Design and Implementation , pp. 56-67.

Lanubile, F., Visaggio, G., 1997. Extracting reusable functions by flow graph-
based program slicing. IEEE Transactions on Software Engineering 23 (4),
246-259.

Larsen, L., Harrold, M.J., 1996. Slicing object-oriented software. In: Proceed-
ings of the Eighteenth International Conference on Software Engineering ,
pp. 495-505.

Liang, D., Harrold, M.J., 1998. Slicing objects using system dependence graphs. In:
Proceedings of the Fourteenth IEEE International Conference on Software Main-
tenance, pp. 358-367.

Maruyama, K., 2001. Automated method-extraction refactoring by using block-
based slicing. In: Proceedings of the Symposium on Software Reusability , pp.
31-40.

Meyers, T.M., Binkley, D., 2007. An empirical study of slice-based cohesion and cou-
pling metrics. ACM Transactions on Software Engineering and Methodology 17
(1), Article 2.

Murphy, G.C., Kersten, M., Findlater, L., 2006. How are Java software developers using
the eclipse IDE? IEEE Software 23 (4), 76-83.

Murphy-Hill, E., Parnin, C., Black, A.P., 2009. How we refactor, and how we know it.
In: Proceedings of the Thirty-First International Conference on Software Engi-
neering , pp. 287-297.

Ohata, F., Inoue, K., 2006. JAAT: Java alias analysis tool for program maintenance
activities. In: Proceedings of the Ninth IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing , pp. 232-244.

O’Keeffe, M., O Cinnéide, M., 2008. Search-based refactoring for software mainte-
nance. The Journal of Systems and Software 81 (4), 502-516.

Ott, L.M., Thuss, J.J., 1989. The relationship between slices and module cohesion. In:
Proceedings of the Eleventh International Conference on Software Engineering
, pp. 198-204.

Ott, L.M., Thuss, J.J., 1993. Slice-based metrics for estimating cohesion. In: Proceed-
ings of the First International Software Metrics Symposium , pp. 71-81.

Qayum, F., Heckel, R., 2009. Local search-based refactoring as graph transformation.
In: Proceedings of the First International Symposium on Search Based Software
Engineering , pp. 43-46.

Refanidis, 1., Alexiadis, A., 2008. SelfPlanner: planning your time! In: ICAPS 2008
Workshop on Scheduling and Planning Applications.

Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L., 2002. Code quality analysis in
open source software development. Information Systems Journal 12, 43-60.

Tip, F., 1995. A survey of program slicing techniques. Journal of Programming Lan-
guages 3 (3),121-189.

Tonella, P., 2003. Using a concept lattice of decomposition slices for program under-
standing and impact analysis. IEEE Transactions on Software Engineering 29 (6),
495-509.

Tsantalis, N., Chatzigeorgiou, A., 2009. Identification of extract method refactor-
ing opportunities. In: Proceedings of the Thirteenth European Conference on
Software Maintenance and Reengineering , pp. 119-128.

Weiser, M., 1984. Program slicing. IEEE Transactions on Software Engineering 10 (4),
352-357.

Nikolaos Tsantalis received the BS, MS and PhD degrees in applied informatics from
the University of Macedonia, Greece, in 2004, 2006 and 2010, respectively. He is cur-
rently a Postdoctoral Fellow at the Department of Computing Science, University of
Alberta, Canada. His research interests include design pattern detection, identifica-
tion of refactoring opportunities, and design evolution analysis. He is a member of
the IEEE and the IEEE Computer Society.

Alexander Chatzigeorgiou is an assistant professor of software engineering in
the Department of Applied Informatics at the University of Macedonia, Thessa-
loniki, Greece. He received the Diploma in electrical engineering and the PhD
degree in computer science from the Aristotle University of Thessaloniki, Greece,
in 1996 and 2000, respectively. From 1997 to 1999, he was with Intracom,
Greece, as a telecommunications software designer. His research interests include
object-oriented design, software maintenance, and metrics. He is a member of
the IEEE.


http://www.jdeodorant.com/

	Identification of extract method refactoring opportunities for the decomposition of methods
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Construction of the program dependence graph
	3.2 Block-based slicing
	3.2.1 Decomposition of control flow graph into basic blocks
	3.2.2 Determination of reachable blocks
	3.2.3 Construction of control dependence graph and determination of dominated blocks
	3.2.4 Computation of boundary blocks
	3.2.5 Determination of block-based regions

	3.3 Algorithms for the identification of Extract Method refactoring opportunities
	3.3.1 Identification of complete computation slices
	3.3.2 Identification of object state slices
	3.3.3 Determination of indispensable statements and parameters of the extracted method

	3.4 Rules regarding behavior preservation and usefulness of the extracted functionality
	3.4.1 Duplication of statements affecting the state of an object
	3.4.2 Duplication of statements containing a class instance creation
	3.4.3 Preservation of existing anti-dependences
	3.4.4 Preservation of existing output-dependences
	3.4.5 Rules regarding the usefulness of the extracted code in terms of functionality

	3.5 Limitations

	4 JDeodorant eclipse plug-in
	5 Evaluation
	5.1 Qualitative and quantitative evaluation on an open-source project
	5.1.1 Independent assessment
	5.1.2 Impact on slice-based cohesion metrics
	5.1.3 Impact on program behavior

	5.2 Evaluation of precision and recall against the findings of independent evaluators
	5.3 Threats to validity

	6 Conclusions
	Acknowledgement
	References


