
Identification of Move Method
Refactoring Opportunities

Nikolaos Tsantalis, Student Member, IEEE, and Alexander Chatzigeorgiou, Member, IEEE

Abstract—Placement of attributes/methods within classes in an object-oriented system is usually guided by conceptual criteria and

aided by appropriate metrics. Moving state and behavior between classes can help reduce coupling and increase cohesion, but it is

nontrivial to identify where such refactorings should be applied. In this paper, we propose a methodology for the identification of Move

Method refactoring opportunities that constitute a way for solving many common Feature Envy bad smells. An algorithm that employs

the notion of distance between system entities (attributes/methods) and classes extracts a list of behavior-preserving refactorings

based on the examination of a set of preconditions. In practice, a software system may exhibit such problems in many different places.

Therefore, our approach measures the effect of all refactoring suggestions based on a novel Entity Placement metric that quantifies

how well entities have been placed in system classes. The proposed methodology can be regarded as a semi-automatic approach

since the designer will eventually decide whether a suggested refactoring should be applied or not based on conceptual or other design

quality criteria. The evaluation of the proposed approach has been performed considering qualitative, metric, conceptual, and

efficiency aspects of the suggested refactorings in a number of open-source projects.

Index Terms—Move Method refactoring, Feature Envy, object-oriented design, Jaccard distance, design quality.

Ç

1 INTRODUCTION

ACCORDING to several principles and laws of object-
oriented design [18], [25], designers should always

strive for low coupling and high cohesion. A number of
empirical studies have investigated the relation of coupling
and cohesion metrics with external quality indicators. Basili
et al. [3] and Briand et al. [7] have shown that coupling
metrics can serve as predictors of fault-prone classes.
Briand et al. [8] and Chaumun et al. [12] have shown high
positive correlation between the impact of changes (ripple
effects, changeability) and coupling metrics. Brito e Abreu
and Melo [11] have shown that Coupling Factor [10] has
very high positive correlation with defect density and
rework. Binkley and Schach [4] have shown that modules
with low coupling (as measured by Coupling Dependency
Metric) require less maintenance effort and have fewer
maintenance faults and fewer runtime failures. Chidamber
et al. [14] have shown that high levels of coupling and lack
of cohesion are associated with lower productivity, greater
rework, and greater design effort. Consequently, low
coupling and high cohesion can be regarded as indicators
of good design quality in terms of maintenance.

Coupling or cohesion problems manifest themselves in
many different ways, with Feature Envy bad smell being the
most common symptom. Feature Envy is a sign of violating
the principle of grouping behavior with related data and
occurs when a method is “more interested in a class other
than the one it actually is in” [17]. Feature Envy problems

can be solved in three ways [17]: 1) by moving a method to
the class that it envies (Move Method refactoring); 2) by
extracting a method fragment and then moving it to the
class that it envies (Extract þ Move Method refactoring);
and 3) by moving an attribute to the class that envies it
(Move Field refactoring). The correct application of the
appropriate refactorings in a given system improves its
design quality without altering its external behavior.
However, the identification of methods, method fragments,
or attributes that have to be moved to target classes is not
always trivial since existing metrics may highlight cou-
pling/cohesion problems but do not suggest specific
refactoring opportunities.

Our methodology considers only Move Method refactor-
ings as solutions to the Feature Envy design problem.
Moving attributes (fields) from one class to another has not
been considered, since this strategy would lead to contra-
dicting refactoring suggestions with respect to the strategy
of moving methods. Moreover, fields have stronger con-
ceptual binding to the classes in which they are initially
placed since they are less likely than methods to change
once assigned to a class.

In this paper, the notion of distance between an entity
(attribute or method) and a class is employed to support the
automated identification of Feature Envy bad smells. To this
end, an algorithm has been developed that extracts Move
Method refactoring suggestions. For each method of the
system, the algorithm forms a set of candidate target classes
where the method can possibly be moved by examining the
entities that it accesses from the system classes (system
classes refer to the application or program under considera-
tion excluding imported libraries or frameworks). Then, it
iterates over the candidate target classes according to the
number of accessed entities and the distance of the method
from each candidate class. Eventually, it selects as the final

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009 347

. The authors are with the Department of Applied Informatics, University of
Macedonia, 54006 Thessaloniki, Greece.
E-mail: nikos@java.uom.gr, achat@uom.gr.

Manuscript received 15 Apr. 2008; revised 5 Dec. 2008; accepted 15 Dec.
2008; published online 6 Jan. 2009.
Recommended for acceptance by H. Ossher.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-04-0150.
Digital Object Identifier no. 10.1109/TSE.2009.1.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

target class the first one that satisfies a certain list of
preconditions related with the application of Move Method
refactorings. The examination of preconditions guarantees
that the extracted refactoring suggestions are applicable and
preserve the behavior of the code.

Obviously, in large applications, several refactoring
suggestions may be extracted hindering the designer to
assess the effect of each refactoring opportunity. To this
end, an Entity Placement metric is proposed to rank
the refactoring suggestions according to their effect on the
design. This metric is based on two principles: 1) The
distances of the entities belonging to a class from the class
itself should be the smallest possible (high cohesion) and
2) the distances of the entities not belonging to a class from
that class should be as large as possible (low coupling).

The actual application of the refactoring suggestions on
source code in order to calculate the Entity Placement
metric value that the resulting systems will have can be
very time-consuming, especially when the number of
suggestions is large. The proposed methodology offers the
advantage of evaluating the effect of a Move Method
refactoring without actually applying it on source code.
This is achieved by virtually moving methods and calculat-
ing the Entity Placement metric.

It should be emphasized that the proposed methodology
is by no means a fully automatic approach. In other words,
after the extraction of the refactoring suggestions, the
designer is responsible for deciding whether a refactoring
should be applied or not based on conceptual or other
design quality criteria. For example, cases that require the
designer’s knowledge on the examined system are User
Interface methods that should not be moved to classes
holding data due to the Model-View-Controller pattern, test
methods that should be not moved to the classes being
tested (such cases are discussed in Section 5.1), and
methods of a composing class that should not be moved
to its contained classes due to composition relationships.
The tool implementing the proposed methodology assists
the designer in determining the reason behind selecting a
specific target class over other possible target classes.

The evaluation of the proposed methodology consists of
four parts. The first part contains a qualitative analysis of
the refactoring suggestions extracted for an open-source
project, along with some interesting insights obtained from
the inspection and application of the suggestions. The
second part studies the evolution of coupling and cohesion
metrics when successively applying the refactoring sugges-
tions extracted for two open-source projects. In the third
part of the evaluation, an independent designer provides
feedback concerning the conceptual integrity of the refac-
toring suggestions extracted for the system that he devel-
oped. The last part refers to the efficiency of the
methodology based on the computation time required for
the extraction of refactoring suggestions on various open-
source projects.

The rest of the paper is organized as follows: Section 2
provides an overview of the related work. The proposed
methodology is thoroughly analyzed in Section 3, and
Section 4 presents the tool that implements it. The results of

the evaluation are discussed in Section 5. Finally, we

conclude in Section 6.

2 RELATED WORK

According to Mens and Tourwé [26], the refactoring process

consists of the following distinct activities:

1. Identify places where software should be refactored
(known as bad smells) and determine which
refactoring(s) should be applied.

2. Guarantee that the applied refactoring preserves
behavior.

3. Apply the refactoring.
4. Assess the effect of the refactoring on quality

characteristics of the software.
5. Maintain the consistency between the refactored

code and other software artifacts (such as documen-
tation, design documents, tests, etc.).

The proposed methodology covers activities 1-4 concerning

Move Method refactorings.
Simon et al. [32] define a distance-based cohesion metric,

which measures the cohesion between attributes and

methods. This metric aims at identifying methods that

use or are used by more features of another class than the

class that they belong to, and attributes that are used by

more methods of another class than the class that they

belong to. The calculated distances are visualized in a

three-dimensional perspective supporting the developer to

manually identify refactoring opportunities. However,

visual interpretation of distance in large systems can be a

difficult and subjective task. The approach does not

evaluate the effect of each refactoring on the architecture

of the resulting system inhibiting the selection of those

refactorings that will actually improve the design. More-

over, the case studies used for demonstrating their

approach are small systems written by the authors with

very obvious bad smells. Our approach is inspired by the

work of Simon et al. in the sense that it also employs the

Jaccard distance. However, the difference is that our

approach defines the distance between an entity (attribute

or method) and a class enabling the direct extraction of

refactoring suggestions, while the approach of Simon et al.

defines the distance between two entities and, thus, its

output requires the application of clustering techniques or

visual interpretation in order to extract Move refactoring

suggestions to specific classes. To summarize, our metho-

dology exhibits the following advantages:

1. It clearly indicates which methods and to which
class they should be moved.

2. It suggests refactorings which are applicable
and behavior-preserving by examining a list of
preconditions.

3. It efficiently ranks multiple Move Method refactor-
ing suggestions based on their positive influence on
the design of the system.

4. It has been evaluated on large-scale open-source
projects.

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

5. It has been fully automated and implemented as an
Eclipse plug-in, allowing the developer to apply the
suggested refactorings on the source code.

Tahvildari and Kontogiannis [33] use an object-oriented
metrics suite consisting of complexity, coupling, and
cohesion metrics to detect classes for which quality has
deteriorated and re-engineer detected design flaws. In
particular, they identify possible violations of design
heuristics by assessing which classes of the system exhibit
problematic metric values, and then select an appropriate
metapattern that will potentially improve the correspond-
ing metric values. A limitation of their approach is that it
indicates the kind of the required transformation but does
not specify on which specific methods, attributes, or
classes this transformation should be applied (this process
requires human interpretation). Moreover, in case of
multiple potential suggestions, the approach does not
evaluate their effect in order to rank them.

O’Keeffe and O’Cinneide [22] treat object-oriented de-
sign as a search problem in the space of alternative designs.
For this purpose, they employ search algorithms, such as
Hill Climbing and Simulated Annealing, using metrics from
the QMOOD hierarchical design quality model [2] as a
quality evaluation function that ranks the alternative
designs. The refactorings used by the search algorithms to
move through the space of alternative designs are only
inheritance-related (Push Down Field/Method, Pull Up
Field/Method, and Extract/Collapse Hierarchy).

Seng et al. [31] use a special model that examines a set of
pre and postconditions in order to simulate the application of
Move Method refactorings and a genetic algorithm to
propose Move Method refactoring suggestions that improve
the class structure of a system based on a fitness function.
Their approach also includes an initial classification process
which excludes from optimization, methods playing special
roles in the system’s design, such as getter and setter
methods, collection accessors, delegation methods, state
methods, factory methods, and methods participating in
design patterns. The methodology proposed by Seng et al. has
the following differences compared to our methodology:

1. It produces as output a sequence of refactorings that
should be applied in order to reach an optimal system
in terms of the employed fitness function. If the
designer decides not to apply some of the suggested
refactorings, then the resulting system might be worse
than a system resulting from other sequences that
have not been presented as solutions to the designer.
Moreover, the application of the refactoring sugges-
tions might lead to new refactoring opportunities (not
originally present in the initial system), which are not
taken into account in the proposed solution. On the
contrary, a stepwise approach in which, after the
application of each refactoring, the system is re-
evaluated and a new list of refactorings that improve
the current system is extracted (including any new
refactoring opportunities that might have arisen),
provides the possibility to the designer to assess the
conceptual integrity of the suggestions at each step.
Consequently, the designer is able to determine a
sequence of refactoring applications that are concep-
tually sound and at the same time optimize certain
software metrics.

2. It employs genetic algorithms that make random
choices on mutation and crossover operations and, as
a result, the outcome of each execution on the same
input system may differ. Moreover, the outcome
depends on initial parameter settings decided by the
user. On the contrary, a deterministic approach
which suggests refactorings based on Feature Envy
criteria always results in the same solution for a
certain system.

3. Its efficiency is limited by the following factors: a) It
requires numerous generations in order to converge
to a solution; b) the algorithm has to be executed
several times (10 times in the example of the
evaluation) in order to gather the common refactor-
ing suggestions from all executions that will be
reported as final results since each execution might
lead to different results; and c) the algorithm
includes in the optimization process all movable
methods regardless of whether they suffer from
Feature Envy problems or not.

4. It requires the definition of an arbitrary trapezoidal
function for the normalization of certain metrics
(such as WMC and NOM), a calibration run for
optimizing each metric separately, and the specifica-
tion of weights used in the definition of the
employed fitness function. On the contrary, the
Entity Placement metric does not rely on any
arbitrary definition.

Concerning the evaluation of refactoring effect on design
quality, the following approaches appear in the literature.

Kataoka et al. [21] propose a quantitative evaluation
methodology to measure the maintainability enhancement
effect of refactoring. They define three coupling metrics
(return value, parameter, and shared variable coupling) in
order to evaluate the refactoring effect. By comparing the
metric values before and after the application of refactor-
ings, they evaluate the degree of maintainability enhance-
ment. The definition of each metric contains a coefficient
that accounts for interclass coupling. The coefficient values
are based on the specific characteristics of the system under
study. However, the authors do not provide a systematic
approach for estimating the coefficient values. Moreover,
they did not include cohesion as a metric for evaluating the
modification of maintainability caused by refactorings.

Du Bois et al. [15] theoretically analyze the best and
worst-case impact of refactorings on coupling and cohesion
dimensions. The refactorings they studied are Extract
Method, Move Method, Replace Method with Method
Object, Replace Data Value with Object, and Extract Class.
According to the authors, moving a method that does not
refer to local attributes or methods, or is called upon by only
few local methods will increase cohesion. Additionally,
moving a method that calls external methods more
frequently than it is called will decrease import coupling.
These observations are in agreement with the principles on
which our methodology is based.

The cumulative effect of move refactorings (in the sense
that their application eventually leads to a system where
behavior and data are grouped together properly) could
also be theoretically achieved by clustering techniques.
However, the object-oriented clustering techniques found in
the literature [27], [24] refer to the partitioning and

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 349

modularization of systems at class level rather than method
level. Clustering techniques at method level could possibly
lead to an optimal system in terms of coupling and cohesion.
However, such techniques would present a solution that is
an aggregate of multiple Move Method refactorings which
the designer should accept or reject in its entirety. A
stepwise approach, on the other hand, might not lead to an
optimal solution but offers the advantage of gradual change
of a system, allowing the designer to assess the conceptual
integrity of the refactoring suggestions at each step.

3 METHODOLOGY

An object-oriented system is considered to be well-designed
in terms of coupling and cohesion when its entities
(attributes/methods) are grouped together according to their
relevance. During analysis, relevance is usually evaluated on
a conceptual basis. However, during design and implemen-
tation, relevance can be practically assessed considering the
attributes and methods that a method accesses.

The notation required for the rest of the methodology is
graphically illustrated in the UML class diagram of Fig. 1.
The model represents the types, properties, and relation-
ships which are necessary in order to identify Feature Envy
bad smells for a given Java program.

Within the context of the above model, a program
has as property the ClassTypes that it contains (denoted
as program.classTypes), excluding imported library or
framework class types.

3.1 Definition of Distance

A class in object-oriented programming consists of attributes
and methods. Attributes may also be references to other

classes of the system (i.e., attributes whose type is a system
class), in order to provide access to the functionality of these
classes. As a result, a method can access directly attributes
and methods of the class that it belongs to and also attributes
and methods of other classes through references. Likewise,
an attribute can be accessed directly from methods of the class
that it belongs to and also from methods of other classes that
have a reference to that class.

For each entity (attribute/method), we define a set of the
entities that it accesses (if it is a method) or the entities that
it is accessed from (if it is an attribute).

The entity set of an attribute attr contains the following
entities:

. the methods directly accessing attr that belong to the
same class with attr;

. the methods accessing attr that belong to other classes
of the system (accesses can be performed either
through getter and setter invocations or in excep-
tional cases, directly when attr has public visibility).

The entity set of a method m contains the following entities:

. the directly accessed attributes that belong to the
same class with m;

. the accessed attributes that belong to other classes of
the system;

. the directly accessed methods that belong to the
same class with m;

. the accessed methods through reference that belong
to other classes of the system.

Apart from the entity sets of methods and attributes, the
entity set of a class C is also defined and contains the
following entities:

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Fig. 1. UML model for the notation of the proposed methodology.

. all attributes that belong to class C;

. all methods that belong to class C.

For the formation of entity sets, the following rules should

be taken into account. Rules are given in both a descriptive

and a formal manner (auxiliary functions are defined in

Appendix A).

1. Attributes that are references to classes of the system
are not considered as entities nor added to the entity
sets of other entities since such references are
essentially a pipeline to the state or behavior of
another class.

a. if 9f 2 c:fields where f:type 2 program:classTypes _
ðelementType ¼ elementTypeOfCollectionðfÞ 6¼ null ^
elementType 2 program:classTypesÞ
then do not add f to the entity set of Class c

b. if 9 variable 2 m:methodBody:variableAccesses

where variable:declaration is

Field f ^ ðf:type 2 program:classTypes _
ðelementType ¼ elementTypeOfCollectionðfÞ 6¼ null ^
elementType 2 program:classTypesÞÞ
then do not add f to the entity set of Method m

2. Getter and setter methods are neither considered as
entities nor added to the entity sets of methods and

attributes, since they do not offer functionality

except for access to attributes. However, the attri-

butes to which they provide access are added to the

entity sets. For an attribute that is a collection of

objects, we consider as getters the methods that

return an element at a specific position, or return an

iterator/enumeration of the elements. As setters, we
consider the methods that add an element to or

replace an element of that collection.

a. if 9 m 2 c:methods where ðisGetterðmÞ 6¼ null _
isSetterðmÞ 6¼ null _ isCollectionGetterðmÞ 6¼ null _
isCollectionSetterðmÞ 6¼ nullÞ
then do not add m to the entity set of Class c

b. if 9 methodInv 2 m:methodBody:methodInvocations

where

ðField f ¼ isGetterðmethodInv:declaringMethodÞ 6¼ null _
Field f ¼ isSetterðmethodInv:declaringMethodÞ 6¼ null _
Field f ¼ isCollectionGetterðmethodInv:
declaringMethodÞ 6¼ null _
Field f ¼ isCollectionSetterðmethodInv:
declaringMethodÞ 6¼ nullÞ
then do not add methodInv:declaringMethod to the

entity set of Method m

if f 6¼ null ^ ðf:type 62 program:classTypes _
ðelementType ¼ elementTypeOfCollectionðfÞ 6¼ null

^ elementType 62 program:classTypesÞÞ
then add f to the entity set of Method m

3. Static attributes and methods are neither considered
as entities nor added to the entity sets of methods
and attributes, since they can be accessed or invoked
from any method without having any reference to

the class that they belong to. An instance method
requires the existence of a reference to a target class
in order to be moved to that class, and as a result, it
cannot be moved to a class from which it accesses
only static members.

a. if 9 f 2 c:fields where f:modifiers 3 static

then do not add f to the entity set of Class c

b. if 9 m 2 c:methods where m:modifiers 3 static

then do not add m to the entity set of Class c

c. if 9 variable 2 m:methodBody:variableAccesses

where variable:declaration is Field f ^ f:modifiers 3
static

then do not add f to the entity set of Method m

d. if 9 methodInv 2 m:methodBody:methodInvocations

where methodInv:declaringMethod:modifiers 3 static

then do not add methodInv:declaringMethod to the

entity set of Method m

4. Delegate methods are neither considered as entities
nor added to the entity sets of methods, since they
do not offer functionality except for delegating a
responsibility to another method. However, the
method to which they delegate is added to the
entity sets. The treatment of delegations is recursive
(in the case of a chain of delegations, only the final
nondelegate method is considered).

a. if 9 m 2 c:methods where isDelegateðmÞ 6¼ null

then do not add m to the entity set of Class c

b. if 9 methodInv 2 m:methodBody:methodInvocations

where

nonDelegateMethod ¼
finalNonDelegateMethodðmethodInv:declaringMethodÞ 6¼
null ^
ðField f ¼ isGetterðnonDelegateMethodÞ ¼ null ^
Field f ¼ isSetterðnonDelegateMethodÞ ¼ null ^
Field f ¼ isCollectionGetterðnonDelegateMethodÞ ¼
null ^
Field f¼ isCollectionSetterðnonDelegateMethodÞ¼nullÞ
then add nonDelegateMethod to the entity set of

Method m

if f 6¼ null ^ ðf:type 62 program:classTypes _
ðelementType ¼ elementTypeOfCollectionðfÞ 6¼ null

^ elementType 62 program:classTypesÞÞ
then add f to the entity set of Method m

5. In case of a recursive method, the method itself is not
added to its entity set, since a self-invocation does
not constitute a dependency with the class that the
method belongs to.

if 9 methodInv 2 m:methodBody:methodInvocations

where methodInv:declaringMethod ¼ m
then do not add methodInv:declaringMethod to the entity

set of Method m

6. Access to attributes/methods of classes outside the
system boundary (e.g., library classes) is not taken

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 351

into account. That is because, in our approach, the
library classes are assumed to be fixed from the
programmer’s perspective and, therefore, are not
subject to refactoring.

The similarity between a method and a class should be

high when the number of common entities in their entity

sets is large. In order to calculate the similarity of the entity

sets, the Jaccard similarity coefficient is used. For two sets A

and B, the Jaccard similarity coefficient is defined as the

cardinality of the intersection divided by the cardinality of

the union of the two sets

similarityðA;BÞ ¼ jA \BjjA [Bj:

The Jaccard distance measures the dissimilarity between

two sets. For two sets A and B, the Jaccard distance is

defined as

distance A;Bð Þ ¼ A [Bj j � A \Bj j
A [Bj j ¼ 1� A \Bj j

A [Bj j
¼ 1� similarityðA;BÞ:

Let e be an entity of the system, C a class of the system,

and Sx the entity set of entity or class x. The distance

between an entity e and a class C is calculated as follows:

Definition 1. If the entity e does not belong to the class C, the

distance is the Jaccard distance of their entity sets

distanceðe; CÞ ¼ 1� Se \ SCj j
Se [SCj j ; where SC ¼

[

ei2C
feig:

Definition 2. If the entity e belongs to the class C, e is not

included in the entity set of class C

distanceðe; CÞ ¼ 1�
Se \ S0C
�� ��
Se [S0C
�� �� ; where S

0
C ¼ SCnfeg:

In this way, we ensure that all distance values range over

the interval [0, 1]. If we calculate the distance between a

class and an entity that belongs to it without excluding e

from the entity set of the class, the intersection of their

entity sets can never be equal to their union and, thus, the

distance could never obtain the value 0.

3.2 Move Method Refactoring Preconditions

According to Opdyke [28], each refactoring is associated with

a set of preconditions which ensure that the behavior of a

program will be preserved after the application of the

refactoring. In order to describe the preconditions that should

be satisfied for a Move Method refactoring in a formal

manner, we define the following set of auxiliary functions:

boolean matchingSignatureðMethod m1;Method m2Þ �
ðm1:name ¼ m2:nameÞ ^
ðm1:returnType ¼ m2:returnTypeÞ ^
ðsize of m1:parameters ¼ size of m2:parametersÞ ^
for i ¼ 1 to size of m1:parameters

m1:parameters½i�:type ¼ m2:parameters½i�:type

boolean abstractðMethod mÞ �
m:ownerClass is interface _ m:modifiers 3 abstract

ðset of FieldÞ inheritedFieldsðClass cÞ �
return f 2
finheritedFieldsðc:superclassÞ [c:superclass:fieldsg
where f:accessModifier 6¼ private

ðset of MethodÞ inheritedMethodsðClass cÞ �
return m 2
finheritedMethodsðc:superclassÞ [c:superclass:methodsg
where m:accessModifier 6¼ private ^ � abstractðmÞ

*In the case where class c does not explicitly inherit a
superclass, then its superclass is java.lang.Object.

ðset of MethodÞabstractMethodsToBeOverridenðClass cÞ�
return m1 2
fabstractMethodsToBeOverridenðc:superclassÞ [
c:superclass:methodsg where abstractðm1Þ ^
ð6 9 m2 2 c:methods ^matchingSignatureðm1;m2ÞÞ

*An abstract method cannot be declared as final, static, or
private.

ðset of MethodÞ interfaceMethodsToBeImplemented

ðClass cÞ �
for i ¼ 1 to size of c:implementedInterfaces

return m 2 finterfaceMethodsToBeImplemented

ðc:implementedInterfaces½i�Þ [
c:implementedInterfaces½i�:methodsg

*An interface may extend more than one interface.
The preconditions that should be satisfied for a Move

Method refactoring are divided into three categories,
namely, compilation preconditions which ensure that the
code will compile correctly, behavior-preservation precon-
ditions which ensure that the behavior of the code will be
preserved, and quality preconditions which ensure that
certain design quality properties will not be violated. In all
of the precondition functions, the method parameter
(m or m1) refers to the method to be moved and the class
parameter (t) refers to the target class.

3.2.1 Compilation Preconditions

1. The target class should not contain a method having
the same signature with the moved method.

noSimilarLocalMethodInTargetClassðMethod m1;

Class tÞ �
6 9 m2 2 t:methods ^matchingSignatureðm1;m2Þ

This issue can be resolved by renaming the moved
method.

2. The method to be moved should not override an
abstract method. Moving a method that overrides an
abstract method would lead to compilation pro-
blems, since the overriding of abstract methods is
obligatory for concrete classes.

notOverridesAbstractMethodðMethod m1Þ �
6 9 m2 2 fabstractMethodsToBeOverridenðm1:ownerClassÞ[
interfaceMethodsToBeImplementedðm1:ownerClassÞg ^
matchingSignatureðm1;m2Þ

352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

This issue can be resolved by keeping the original

method as delegate to the moved method.
3. The method to be moved should not contain any

super method invocations.
4. The target class should not be an interface, since

interfaces contain only abstract methods and not
concrete ones.

3.2.2 Behavior-Preservation Preconditions

1. The target class should not inherit a method having
the same signature with the moved method. Moving
a method which has the same signature with an
inherited method of the target class would lead to
the overriding of the inherited method, affecting the
behavior of the target class and its subclasses.

noSimilarInheritedMethodInTargetClassðMethod m1;

Class tÞ �
6 9 m22 inheritedMethodsðtÞ ^matchingSignatureðm1;m2Þ

This issue can be resolved by renaming the moved

method.
2. The method to be moved should not override an

inherited method. Moving a method that overrides a
concrete method would affect the behavior of the
source class and its subclasses since the source class
would inherit the behavior of the method defined in
its superclass.

notOverridesInheritedMethodðMethod m1Þ �
6 9 m2 2 inheritedMethodsðm1:ownerClassÞ ^
matchingSignatureðm1;m2Þ

This issue can be resolved by keeping the original

method as delegate to the moved method.
3. The method to be moved should have a reference to

the target class either through its parameters or
through source class fields (including inherited
fields) of target class type. In order to preserve the
behavior of the code, the methods originally invok-
ing the method to be moved should be modified to
invoke it through that particular reference after its
move. On the contrary, a local variable of target class
type declared inside the body of the method to be
moved cannot serve as a reference to target class,
since it is not accessible outside the method.

validReferenceToTargetClassðMethod m;Class tÞ �
9 variable 2 m:methodBody:variableAccesses where

variable:declaration 2
fm:parameters [m:ownerClass:fields [
inheritedFieldsðm:ownerClassÞg ^
variable:declaration:type ¼ t:type

4. The method to be moved should not be synchro-
nized. The synchronization mechanism of Java
ensures that when one thread is executing a
synchronized method of an object, all other threads
that invoke synchronized methods of the same object
suspend the execution until the first thread is done
with the object. As a result, the move of a
synchronized method could create concurrency
problems to the objects of the source class.

3.2.3 Quality Preconditions

1. The method to be moved should not contain assign-
ments of a source class field (including inherited
fields). In that case, the assigned field cannot be
passed as parameter to the moved method, since
parameters are passed by value in Java, and as a
result, the value of the field will not change after the
invocation of the moved method. The alternative
approach of passing a parameter of source class type
to the moved method and invoking the setter method
of the assigned field would increase the coupling
between the source and target class, since the moved
method would get coupled to the source class.
Moreover, a method that changes the value of a
field has stronger conceptual binding with the class
to which the field belongs to compared to a method
that simply accesses the value of the field.

noSourceClassFieldAssignmentðMethod mÞ �
6 9 assignment 2 m:methodBody:assignments

where assignment:leftHandSide 2
fm:ownerClass:fields [inheritedFieldsðm:ownerClassÞg ^
6 9 postfixExpression2m:methodBody:postfixExpressions

where postfixExpression:operand 2
fm:ownerClass:fields [inheritedFieldsðm:ownerClassÞg ^
ð6 9 prefixExpression 2 m:methodBody:prefixExpressions

where prefixExpression:operand 2
fm:ownerClass:fields [inheritedFieldsðm:ownerClassÞg ^
ðprefixExpression:operator ¼ ‘þþ’ _
prefixExpression:operator ¼ ‘��’ÞÞ

2. The method to be moved should have a one-to-one
relationship with the target class. In this way, a
method which participates in a one-to-many com-
position relationship cannot be suggested to be
moved from the composing class (the source class
that it originally belongs to) to the contained class
(target class).

one-to-oneRelationshipWithTargetClassðMethod m;

Class tÞ �
6 9 variable 2 m:methodBody:variableAccesses where

variable:declaration 2
fm:ownerClass:fields [inheritedFieldsðm:ownerClassÞ [
m:parameters [
m:methodBody:localVariableDeclarationsg ^
ððvariable:declaration:type is ArrayType aType ^
aType:type ¼ t:typeÞ _
ðelementType ¼ elementTypeOfCollectionðvariable:
declarationÞ 6¼ null ^
elementType ¼ t:typeÞÞ

3.3 Extraction of Move Method Refactoring
Suggestions

The algorithm used for the extraction of Move Method

refactoring suggestions is applied to all method entities of a

system and consists of four main parts:

1. Identification of the set of candidate target classes T
by examining the entity set of method m.

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 353

2. Sorting of set T according to the number of entities
that method m accesses from each target class in
descending order at the first level and according to
the distance of method m from each target class in
ascending order at the second level.

3. Examination of whether method m modifies a data
structure in the candidate target classes.

4. Suggestion of moving methodm to the first candidate
target class that satisfies all of the preconditions,
following the order of the sorted set T .

It should be noted that the Jaccard distance which is used

for sorting the candidate target classes when the method

under examination accesses an equal number of entities

from two or more classes ensures that the candidate target

classes will be examined in an order that promotes the

classes having fewer entities. This property is desired since
it leads to the decomposition of God classes [30] and the

equal redistribution of functionality among the system

classes. The notion of distance is also employed as a means

to rank multiple refactoring suggestions, as will be

explained in Section 3.4.
The third part of the algorithm aims at identifying cases

where the method under examination modifies a data

structure in a candidate target class by invoking an

appropriate method of the target class and passing as

argument one of its parameters. In such a case, we consider

that the method under examination has a strong conceptual

binding with the specific target class regardless of the
number of entities that the method accesses from the

candidate target classes. For example, in Fig. 2a, method

removeLocation(Location) has three candidate target

classes, namely, TaskManager, LocationManager, and

Location. It accesses one entity from each candidate target

class and none from the source class. It invokes method
removeLocation() through field locationManager

and passes parameter loc as argument to the invoked
method. More importantly, method removeLocation()

of class LocationManager (Fig. 2b) actually removes the
passed argument from list locations that contains objects
of Location class type. As a result, class LocationManager
is considered a better choice for moving the method under
examination compared to the other candidate target classes.

A formal description of the algorithm used for the
extraction of Move Method refactoring suggestions is
shown in Fig. 3.

Function modifiesDataStructureInTargetClass(Method m,
Class t), which determines whether method m modifies a
data structure in the candidate target class t, is formally
described in Appendix B. Function preconditionsSatisfied
(Method m, Class t) returns true if all preconditions of
Section 3.2 are satisfied. In the case where method m
accesses the same number of entities and has the same
distance from two or more candidate target classes, then
suggestions are extracted for all the classes for which the
preconditions are satisfied.

3.4 Evaluation of Refactoring Effect
on Design Quality

In a large software system, it is reasonable to expect that
several Move Method refactoring suggestions will be
extracted. In that case, we should be able to distinguish
the most effective refactorings in terms of their impact on
the design.

Our approach follows the widely accepted principle of
low coupling and high cohesion [19]. To this end, the
distances of the entities belonging to a class (inner entities)
from the class itself should be the smallest possible (high

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Fig. 2. Example of method modifying a data structure of a candidate target class. (a) Method under examination. (b) Method invoked from candidate

target class.

cohesion). At the same time, the distances of the entities not
belonging to a class (outer entities) from that class should be
as large as possible (low coupling). This can be ensured by
considering for each class the ratio of average inner to
average outer entity distances. For each class, the closer to
zero this ratio is, the safer it is is to conclude that inner
entities have correctly been placed inside the class and outer
entities to other classes. A formula that provides the above
information for a class C is given by

EntityP lacementC ¼

P
ei2C

distance ei; Cð Þ
entities 2 Cj jP

ej 62C
distance ej; Cð Þ

entities 62 Cj j

;

where e denotes an entity of the system. In the special case
where a class does not have inner entities, the above
formula cannot be calculated.

The weighted metric for the entire system which
considers the number of entities in each class is given by

EntityP lacementSystem

¼
X

Ci

entities 2 Cij j
all entitiesj j EntityP lacementCi :

The lower the value of this metric is, the more effective the
specific refactoring for the entire system is. The classes that do
not have inner entities are not included in the above metric.

3.5 Virtual Application of Move
Method Refactoring Suggestions

In order to evaluate which of the Move Method refactoring
suggestions are the most effective ones, we could apply
each one of them on source code and then recalculate the
distances between the entities and the classes to measure
the Entity Placement metric for each of the resulting

systems. However, the actual application of the suggested

refactorings on source code adds a significant overhead due

to disk write operations (once for applying each refactoring

and once for undoing it).
To overcome this problem, all suggested refactorings are

virtually applied. This is achieved by updating the entity

sets of the entities/classes which are involved in the move

of the corresponding method and calculating the Entity

Placement metric for the resulting entity sets.
The virtual move of a method from the source class to a

target class is performed as follows:

1. The tag indicating to which class the method belongs
is changed from source class to target class.

2. The entity sets of all methods accessing the method
are updated according to the new tag.

3. The entity sets of all attributes that are being
accessed by the method are updated according to
the new tag.

4. The method is removed from the entity set of the
source class.

5. The method is added to the entity set of the target
class.

The distances which have to be recalculated after the

virtual application of a refactoring are: 1) the distances from

the source and the target class of the entities whose entity

set has been affected from the virtual application (i.e.,

methods that access the moved method and fields being

accessed from the moved method) and 2) the distances from

the source and the target class of the entities whose entity

set contains at least one entity of the source and/or the

target class. The rest of the distances remain unchanged

since the entity sets of the classes that do not participate in

the refactoring are the same compared to the initial system.

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 355

Fig. 3. Algorithm used for the extraction of Move Method refactoring suggestions.

The extracted refactoring suggestions are ranked in an
ascending order according to the corresponding Entity
Placement metric values. Eventually, all refactoring sugges-
tions for which the resulting system has a lower Entity
Placement value than the current system are considered as
refactorings that can improve the design of the system.

3.6 Demonstration of the Methodology on a
Refactoring Teaching Example

To demonstrate the application of the methodology, we

have used a widely known example for refactorings,

namely, Fowler’s Video Store [17]. The initial version of

the program is intentionally not well designed. Its design is

gradually improved by applying successive refactorings.

We have taken a snapshot of the evolving system exactly

before the application of the first Move Method refactoring.

The UML class diagram of the snapshot that we

examined is shown in Fig. 4. The arrow indicates the move

of method getCharge(Rental) from class Customer to

class Rental, as suggested by the author of the example.

To calculate the distances between the entities and the

classes of the system, we need first to construct their entity

sets, as shown in Table 1. The entity set of each entity

contains the attributes and methods that it accesses (if it is a

method) and the methods accessing it (if it is an attribute).
As can be observed from Table 1, the attributes that

are references to classes of the system, namely, Custo-
mer::_rentals and Rental::_movie are not consid-
ered as entities and do not participate in the entity sets of
other system entities. The getter and setter methods of
the system, namely, Customer::addRental(Rental),

Customer::getName(), Rental:: getDays-

Rented(), Rental::getMovie(), Movie:: getPri-

ceCode(), Movie::getTitle(), Movie::

setPriceCode() are also not considered as entities.
However, the attributes to which they provide access
(Customer::_name, Rental::_daysRented, Mo-

vie::_priceCode, Movie::_title) are added to
the entity sets of the system entities. The static attributes
Movie::CHILDRENS, Movie::NEW_RELEASE and Mo-

vie::REGULAR are also not considered as entities and
do not participate in the entity sets of the system entities
accessing them. Finally, the method Customer::

amountFor(Rental) that delegates to Customer::

getCharge(Rental) is not considered as entity and
its invocation from method Customer::statement() is
replaced with the method that it delegates to.

To extract refactoring suggestions for method Customer

::getCharge(Rental), a set of candidate target
classes T should be identified by examining its entity set.

The entity set of method getCharge(Rental) is

SgetChargeðÞ ¼fMovie :: priceCode;Rental :: daysRentedg

and, consequently, the set of candidate target classes for
getCharge(Rental) is

TgetChargeðÞ ¼ fMovie; Rentalg:

Since method getCharge(Rental) accesses an equal
number of entities from both candidate target classes (i.e.,
entity _priceCode from Movie and _daysRented from Rental),
the two candidate target classes will be sorted according to
their distance from method getCharge(Rental).

356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 1
Information Required for Extracting the Entity Sets of All System Entities

Fig. 4. UML class diagram of the Video Store before the application of the first Move Method refactoring.

The entity sets of the candidate target classes are the
following:

SRental ¼ fRental :: daysRentedg;
SMovie ¼ fMovie :: title;Movie :: priceCodeg:

The distances between method Customer::getChar-

ge(Rental) and the candidate target classes are
calculated as:

distance getChargeðÞ;Rentalð Þ ¼ 1�
SgetChargeðÞ \ SRental
�� ��
SgetChargeðÞ [SRental
�� ��

¼ 1� 1

2
¼ 0:5;

distance getChargeðÞ;Movieð Þ ¼ 1�
SgetChargeðÞ \ SMovie

�� ��
SgetChargeðÞ [SMovie

�� ��

¼ 1� 1

3
¼ 0:667:

The target class having the lowest distance from method
getCharge(Rental) is Rental and, since all precondi-
tions are satisfied with the specific target class, a Move
Method refactoring suggestion is extracted, indicating the
move of method getCharge(Rental) to class Rental.
The second candidate target class Movie will not be
examined by the algorithm since a Move Method refactor-
ing suggestion has been already extracted. However, it
should be noted that if class Movie was examined as target
class, the preconditions would not be satisfied since method
getCharge(Rental) has a local reference to class Movie
which is not accessible outside the method.

4 JDEODORANT ECLIPSE PLUG-IN

The proposed methodology has been implemented as an
Eclipse plug-in [1], [16] that not only identifies Feature Envy
bad smells but also allows the user to apply the refactorings
that resolve them on source code. Moreover, the tool
preevaluates the effect on design quality of all refactoring
suggestions, assisting the user to determine the most
effective sequence of refactoring applications. The plug-in
employs the ASTParser of Eclipse Java Development Tools
(JDT) to analyze the source code of Java projects and the

ASTRewrite to apply the refactorings and provide undo

functionality. JDeodorant offers some novel features con-

cerning the application of Move Method refactorings:

1. It automatically determines whether the original
method should be turned into a method that
delegates to the moved one. The delegate method
is necessary when other classes apart from the
source class invoke the method to be moved and it
prevents these classes from changing the way in
which they invoke the moved method.

2. It automatically identifies dependencies between the
refactoring suggestions and provides tooltip support
aiding the user to resolve them (Fig. 5). For example, if
the method associated with refactoring suggestion X
invokes a method which is associated with another
Move Method refactoring suggestion Y , a tooltip
informs that suggestion Y (corresponding to the
invoked method) should be applied before X
(corresponding to the invoking method).

3. It automatically moves to the target class all of the
private methods of the source class which are
invoked only by the moved method.

4. When the user inspects a method which is suggested
to be moved, the tool provides tooltip support
indicating the number of members that it accesses
from each class (Fig. 6). In this way, the user can
more easily realize the Feature Envy problem.

5 EVALUATION

The proposed methodology has been evaluated in four

ways:

1. To provide a qualitative analysis of the refactoring
suggestions extracted by the proposed methodology,
we have listed, categorized, and discussed the
results for an open-source project.

2. To assess the effect on two aspects of design quality,
namely, coupling and cohesion, we have measured
their evolution when successively applying the
suggested refactorings on two open-source projects.

3. To have an independent assessment that takes into
account issues of conceptual integrity, we requested

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 357

Fig. 5. Tooltip indicating a dependency between two refactoring suggestions.

from a designer to provide feedback on the
refactoring suggestions extracted by the proposed
methodology for the system that he developed.

4. To evaluate the efficiency of the proposed metho-
dology, we measured the computation time with
regard to the size of various open-source projects.

For the purpose of evaluation, we have used open-source
projects developed in Java, which are relatively active and
mature, namely, JFreeChart, JEdit, JMol, and Diagram.

5.1 Qualitative Analysis

In order to investigate the kind of Move Method refactoring
suggestions extracted by the proposed methodology, we
have divided the suggestions into three main categories,
according to the characteristics of the method to be moved:

1. The method does not access any entity from the
source class.

2. The method accesses more entities from the target
class than the source class.

3. The method accesses an equal number of entities
from the source and target classes.

The suggestions belonging to the first category consti-
tute relatively clear cases of Feature Envy. The second and
third categories refer to cases where the method to be
moved has dependency on fields and/or methods of the
class that it belongs to. The philosophy behind the
suggestions of the third category is that, when a method
accesses the same number of fields/methods from the
source and target classes, it should be placed to the smaller
class (in terms of the total number of fields/methods) since
smaller classes are more easily maintained [9]. Obviously,
for all categories, the designer should take into account
conceptual parameters in order to decide whether the
refactoring should be applied or not.

The application of the proposed methodology to JFree-
Chart 0.9.6 resulted in 23 Move Method refactoring sugges-
tions, leading to a system with lower Entity Placement metric
value than the initial system. Table 2 contains the source class,
method, and target class for each suggestion along with the
number of members (fields/methods) that the method

accesses from the source and target classes. The suggestions
are sorted in ascending order according to the corresponding
Entity Placement metric values.

To illustrate the soundness of the extracted suggestions,
we analyze the first suggestion of Table 2. Method draw

RangeMarker() shown in Fig. 7 does not access any field
or method from class HorizontalIntervalBarRen-

derer that it belongs to. The method has six parameters
in total from which two are not used at all inside the body
of the method (CategoryPlot plot, Shape dataClip

Region), while two others correspond to Java API class
types (Graphics2D g2, Rectangle2D axisDataArea)

and, thus, their types cannot constitute valid target classes.
Consequently, method drawRangeMarker() has two
candidate target classes, namely, ValueAxis and Marker.
It invokes two methods of class Marker through parameter
marker and one method of class ValueAxis through
parameter axis and, therefore, is suggested to be moved to
class Marker. Moreover, class Marker is sufficiently
smaller than class ValueAxis and constitutes a Data class
[17] since it contains only fields and getter methods. This
refactoring suggestion is a typical case of moving behavior
close to data.

As can be observed from Table 2, in 13 out of
23 refactoring suggestions, the target class belongs to a
different package than that of the source class. The
suggestion of such kind of refactorings is desirable since
their application may reduce the degree of package
dependencies. Moreover, it is harder to identify such
refactoring opportunities by manual inspection of the
source code since they require the examination of classes
that belong to different packages.

Table 3 shows the refactoring suggestions belonging to
each category.

As can be observed from Table 3, about half of the
suggestions (12 out of 23) refer to methods that do not
access any field or method from the source class. More-
over, 10 out of 11 suggestions belonging to categories 2
and 3 refer to methods that access only fields (no methods)
from the source class. In these cases, the accessed fields
can be passed as parameters to the moved method

358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Fig. 6. Tooltip indicating the number of members that the highlighted method accesses from each class.

resulting in a method that is no longer coupled to the

source class. On the contrary, if a method invokes methods

of the source class, a parameter of source class type should

be added to the moved method in order to be able to

invoke them after its move. In this case, the moved method

remains coupled to the source class. The Entity Placement

metric promotes suggestions where methods access only

fields from the source class, since such refactorings lead to

less coupled methods.

The analysis of the refactorings suggested by the

proposed methodology offered some additional interesting

insights:

1. By successively applying the suggested refactor-
ings in JFreeChart 0.9.6, three cases of already
existing duplicated code emerged. Specifically, the
application of the suggestions 1 and 6 (Table 2)
resulted in the move of two identical methods
named drawRangeMarker to class Marker that

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 359

Fig. 7. Method drawRangeMarker() corresponding to the first extracted suggestion for JFreeChart 0.9.6.

TABLE 2
Move Method Refactoring Suggestions for JFreeChart 0.9.6

not only had the same signature but also the same
body. Two similar cases of duplicated code have
been revealed by suggestions 7, 8 and 10, 14
(Table 2), respectively. Both pairs of suggestions
had as result the move of identical methods
(drawRangeMarker, getX) to a common target
class (Marker, RegularTimePeriod, respec-
tively). Obviously, it is easier for a designer to
detect duplicate methods when they exist in the
same class, rather than when they are scattered
throughout different system classes.

2. The inspection of the refactoring suggestions in JEdit
4.3pre12 revealed that several Move Method sugges-
tions were extracted due to the special handling of
delegate methods by the proposed methodology. In
the example of Fig. 8, method lineComment() of
class org.gjt.sp.jedit.textarea.TextArea

invokes methods getLineText() and getLine

StartOffset() that delegate to methods of
JEditBuffer through field buffer. Moreover, it
accesses three methods rangeLineComment(),

getSelectedLines(), selectNone(), and one
field caret of class TextArea, while it invokes five
methods of class JEditBuffer through field
buffer. A methodology that does not properly
handle delegate methods would erroneously con-
sider that method lineComment()accesses six
entities of class TextArea and five entities of class
JEditBuffer, thus prohibiting the suggestion of
moving the method to class JEditBuffer. On the
other hand, a methodology that properly handles
delegate methods would consider that method
lineComment()accesses seven entities of class
JEditBuffer and four entities of class TextArea.

3. The refactoring suggestions 20, 21, and 23 (Table 2)

extracted for JFreeChart 0.9.6 refer to cases where the

source class is a Graphical User Interface (GUI) class

which extends class JPanel from Java Swing API

(CompassDemo, ThermometerDemo). The corre-

sponding source class methods (adjustData,

setMeterValue, and pick1PointerAction-

Performed) actually modify attributes (through

setter methods) of source class fields which can be

considered as references to classes holding data.

These methods are invoked by ActionListeners

which are implemented in the source class and are

used to handle ActionEvents on various GUI

components (such as buttons and combo boxes)
placed on the user interface of the source class. The

methodology suggests that the methods could be

moved to the corresponding data classes (Default-

MeterDataset and CompassPlot). Although

these suggestion can be considered as valid in terms

of the number of accessed members, they are not

conceptually sound since the methods which are
related to UI functionality should be separate from

the data classes that they may access (according to

the Model-View-Controller pattern). This kind of

suggestion can be avoided by applying the metho-

dology separately on the various modules that the

system under examination may consist of (e.g.,

domain classes, GUI classes, database classes, etc.).

To this end, our tool offers to the designer the
capability of applying the methodology on a specific

package (including its subpackages) of the examined

project. This issue could also be resolved by exclud-

ing from examination the methods which are

invoked by implemented UI Listener methods (such

as method actionPerformed of the ActionLis-

tener interface) using an appropriate precondition.
4. In several of the examined projects, we have

observed that they contain test classes along with
the application source code. A test class is respon-
sible for testing whether the behavior of an applica-
tion class is correct. It usually creates an instance of
the class being tested and contains special methods
that invoke methods of the tested class with a given
input in order to compare the returned result with the
expected one. Obviously, the suggestion of moving a
test method to the class being tested is not concep-
tually sound. To this end, our tool automatically
excludes from the analysis the classes that either
extend class junit.framework.TestCase from
JUnit 3.x API, or contain at least one method annotated
with the @Test annotation (JUnit 4.x API).

5.2 Evaluation with Software Metrics

In this part of the evaluation, we have successively applied

the most effective refactoring suggestions according to the

Entity Placement metric value to open-source projects and

studied the evolution of coupling and cohesion. The

underlying assumption is that refactorings leading to

systems with reduced coupling and increased cohesion

have a positive effect on design quality. For the analysis, we

have selected two projects, namely, JEdit 3.0 (425 classes)

and JFreeChart 0.9.6 (459 classes).

5.2.1 Description of the Metrics Used in the Evaluation

There is a wide variety of coupling and cohesion metrics

found in the literature [5], [6]. The criterion for choosing the

appropriate metrics for the evaluation of the proposed

methodology is that the metrics should be sensitive enough

360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 3
Categorization of Refactoring Suggestions for JFreeChart 0.9.6

to capture small code changes in an object-oriented system,
such as the move of a method from one class to another.

We have employed the Message Passing Coupling
(MPC) metric [23] for measuring the evolution of coupling.
MPC for a class C is defined as the number of invocations of
methods not implemented in class C by the methods of
class C. Among the import coupling metrics that consider
method-method interactions, MPC evaluates coupling
employing the total number of method invocations, while
the others measure the number of distinct methods invoked
(e.g., RFC [13]). Other more coarse-grained metrics, such as
CBO [13] and Coupling Factor [10], have not been
considered because they estimate coupling based on the
number of coupled classes and, therefore, their value might
not change when a method is moved.

We have employed the redefined Connectivity metric by
[5], which was originally proposed by [20], for measuring
the evolution of cohesion. Connectivity for a class C is
defined as the number of method pairs of class C, where
one method invokes the other or both access a common
attribute of class C, over the total number of method pairs
of class C. Its difference with the other cohesion metrics is
that it considers two methods m1;m2 to be cohesive, not
only if they access a common attribute but also if m1

invokes m2 or vice versa. In the implementation of
Connectivity metric, we have not considered as methods

the constructors and the accessor (getter and setter)
methods since the cohesion of a class is artificially increased
if constructors are taken into account and decreased if
accessor methods are taken into account [5].

While there is some degree of definitional relevance
between Entity Placement and the aforementioned metrics,
their major difference lies in the fact that the Jaccard
distance (on which Entity Placement is based) is essentially
a similarity metric, while MPC and Connectivity are based
on an absolute count.

Concerning cohesion, Connectivity considers two meth-
ods either as cohesive or noncohesive, while a distance in
the numerator of Entity Placement quantifies the degree of
similarity between a method and the class to which it
belongs. For example, a class might have a Connectivity
value of 1 (absolute cohesion) because all of its methods
invoke each other; however, in the case where these
methods also invoke methods from other classes, the
numerator of Entity Placement will reveal that the similarity
of these methods to the class to which they belong is not
absolute (i.e., the average distance is not zero).

Concerning coupling, MPC does not capture the “posi-
tive” coupling (expressed by messages being sent from a
class to itself), while a distance in the denominator of Entity
Placement quantifies for a given class also the similarity of
foreign entities from the classes to which they belong. For

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 361

Fig. 8. Handling of delegate methods in a refactoring suggestion for JEdit 4.3pre12.

example, the existence of a method that invokes only
methods from its class is not being taken into account in the
value of MPC, while it is considered (positively) in the
denominator of Entity Placement. Moreover, the MPC
metric does not have an upper limit representing the worst
case, while the worst case for the denominator of Entity
Placement occurs when, for a given class, all foreign entities
access all entities from this class and none from the class to
which they belong (i.e., the average distance is zero).

5.2.2 Results

The evolution of Entity Placement, MPC, and Connectivity
for projects JEdit and JFreeChart is shown in Figs. 9 and 10,
respectively. At each step, the refactoring corresponding to
the lowest Entity Placement metric value has been applied.
The x-axis represents the successive refactorings that have
been performed.

As can be observed, the application of successive Move
Method refactorings, which according to the methodology
reduces the Entity Placement metric value, in general,
reduces coupling and increases cohesion. The Pearson
correlation coefficient between Entity Placement and
Message Passing Coupling/Connectivity for the two pro-
jects is shown in Table 4.

The correlation between Entity Placement and coupling,
as measured by MPC, is strongly positive and statistically
significant for both projects. The correlation between Entity
Placement and cohesion, as measured by Connectivity, is
strongly negative and statistically significant for both
projects. Thus, it can be argued that a measure of how well
methods and attributes are placed in classes according to
the Jaccard distance is a good criterion for ranking Move
Method refactoring suggestions.

5.3 Independent Assessment

In this experiment, an independent designer assessed the
conceptual integrity of the refactoring suggestions ex-
tracted by the proposed methodology for the system that
he developed.

The project that has been examined is called SelfPlanner
[29] and is an intelligent Web-based calendar application
that plans the tasks of a user using an adaptation of the
Squeaky Wheel Optimization framework. It is the outcome
of a research project of the Artificial Intelligence Group at the
Department of Applied Informatics, University of Macedo-
nia, Greece. It consists of a planning engine developed in
C++ and a client/server application developed in Java. The
evaluation focused on the client/server application, since
JDeodorant analyzes Java source code. The application
(version 1.11) consists of 34 classes and 5,800 lines of code.
The reasons for selecting the specific project are:

. It is a rather mature research project which has been
constantly evolving for more than a year. Moreover,
it has been subject to continuous adaptive main-
tenance due to constant requirement changes. There-
fore, it is reasonable to expect that it offers several
refactoring opportunities.

. The client/server part of the application was
designed and developed by a single person. As a
result, the developer that participated in the experi-
ment had complete and deep knowledge of the
system’s architecture.

. The developer that participated in the experiment is
an experienced programmer with knowledge of
object-oriented design principles that enabled him
to assess the refactoring suggestions extracted by

362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Fig. 10. Evolution of metrics for JFreeChart 0.9.6.

Fig. 9. Evolution of metrics for JEdit 3.0.

TABLE 4
Correlation between Entity Placement (EP) and MPC/Connectivity (Co)

the proposed methodology and provide valuable
feedback.

. The developer that participated in the experiment
was able to dedicate a significant amount of time on
studying and commenting on the refactoring sug-
gestions extracted by the proposed methodology.

The refactoring suggestions extracted by the proposed

methodology for SelfPlanner along with the opinion of the

independent designer are shown in Table 5.
As can be observed from Table 5, the independent

designer agreed in 8 out of 10 refactoring suggestions.

Moreover, 9 out of 10 refactoring suggestions refer to

methods that do not access any field or method from the

source class, and therefore, constitute clear cases of Feature

Envy. The method corresponding to suggestion 5 accesses

two fields from the source class.
Method saveData() corresponding to suggestion 3

(Fig. 11) has one candidate target class, namely, MyPlanner

Data. It invokes two methods of the target class through

parameter data and its purpose is to save the data of the

corresponding user as a serialized object. The independent

designer supported that the methods which are exclusively

related to file operations should be located in class

FileManager, and thus, disagreed with this suggestion.

Method concerns() corresponding to suggestion 10

(Fig. 12) invokes method equals() of class Location

through two different fields (l1, l2) that can serve both as

reference to target class. By moving this method to class

Location, one of the fields will be replaced with this

reference and the other will be passed as the parameter,

resulting in a method with three parameters of Location

type. The independent designer stated that the method will

become more complicated if it is moved.

5.4 Evaluation of Efficiency

The process which is required for the extraction of Move

Method refactoring suggestions in a given system consists

of the following steps:

1. Parsing of the system under study using the Abstract
Syntax Tree (AST) Parser of Eclipse JDT.

2. Determination of system entities and construction of
the corresponding entity sets.

3. Calculation of the distances between all system
entities and system classes.

4. Application of the algorithm for the extraction of
Move Method refactoring suggestions to all method
entities of the system. Moreover, all extracted refac-
toring suggestions are virtually performed in order to

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 363

TABLE 5
Move Method Refactoring Suggestions for SelfPlanner

Fig. 11. Method corresponding to suggestion 3 for SelfPlanner.

Fig. 12. Method corresponding to suggestion 10 for SelfPlanner.

calculate the Entity Placement metric value that the
system would have if they were actually applied.

Table 6 contains various size measures for four open-
source projects. The measure of examined methods refers to
the methods that constitute entities of the system under
study. This means that the constructors, accessor methods,
static methods, and delegate methods are not included in
this measure. The measure of total suggestions also includes
the refactoring suggestions having a higher Entity Place-
ment value than the initial system.

Table 7 presents the required computation time for each
step of the process.

As can be observed from Table 7, the most time-
consuming part of the process is the virtual application of
the extracted refactoring suggestions. The calculation of the
Entity Placement metric value that the system will have
after the virtual application of a refactoring suggestion
requires a recalculation of distances between the entities
and the classes which are affected by the move of the
corresponding method. This part can be very time-consum-
ing, since it involves the construction of the union and
intersection between several entity sets.

The total CPU time required for the last step primarily
depends on the number of the extracted refactoring sugges-
tions. This is evident from the CPU time required for JMol,
which has the largest number of refactoring suggestions
compared to the other examined systems. The CPU time
required for the last step is also affected by the size of the
system since, in larger systems, more distances have to be
calculated. The results satisfy the intuition, since perfor-
mance is affected by the size of the underlying problem.

6 CONCLUSIONS

The cumulative effect of several simple refactoring steps and
the tool support for their automated application has made the
refactoring process a widely accepted technique for improv-
ing software design. However, identifying the places where

refactoring should be applied is neither trivial nor supported
by tools. In this paper, we have proposed a methodology for
locating Feature Envy bad smells and evaluating the effect of
the Move Method refactorings that resolve them.

The qualitative analysis of the refactoring suggestions for
an open-source project revealed that they can be useful in
assisting the designer to improve design quality. The study of
coupling and cohesion evolution on two open-source projects
has shown that the refactorings suggested by the methodol-
ogy have a positive impact on both coupling and cohesion.
The assessment by an independent designer of the suggested
refactorings for a system that he developed indicated that the
proposed methodology is capable of extracting conceptually
sound suggestions. Finally, CPU time measurements have
shown that the efficiency of the approach primarily depends
on the number of extracted refactoring suggestions, and
second, on the size of the system under study.

APPENDIX A

The following auxiliary functions examine whether a given
method is an accessor or delegate method. The description
of the functions assumes that such methods are written in a
certain way, following the most common conventions.

ðField or nullÞ isGetterðMethod mÞ �
size of m:parameters ¼ 0 ^
size of m:methodBody:statements ¼ 1 ^
9 ReturnStatement r 2 m:methodBody:statements where

r:returnedExpression is VariableAccess v ^ v:declaration

is Field f ^
f:type ¼ m:returnType

return f

ðField or nullÞ isSetterðMethod mÞ �
size of m:parameters ¼ 1 ^
size of m:methodBody:statements ¼ 1 ^
9 AssignmentStatement a 2 m:methodBody:statements

where

364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 6
Various Size Measures for the Examined Open-Source Projects

TABLE 7
CPU Times for Each Step Required for the Extraction of Refactoring Suggestions

ða:assignment:leftHandSide is VariableAccess v1 ^
v1:declaration is Field fÞ ^
ða:assignment:rightHandSide is VariableAccess v2 ^
v2:declaration ¼ m:parameters½0�Þ ^
f:type ¼ m:parameters½0�:type

return f

ðType or nullÞ elementTypeOfCollection
ðVariableDeclaration dÞ �

if d:type is CollectionType cType ^ cType:type 2
{Collection, List, AbstractCollection,

AbstractList, ArrayList, LinkedList, Vector,

Set, AbstractSet, HashSet, LinkedHashSet,

SortedSet, TreeSet}

return cType:elementType

else if d:type is MapType mType ^mType:type 2 {Map,

AbstractMap, HashMap, Hashtable, SortedMap,

TreeMap, IdentityHashMap, WeakHashMap}

return mType:valueType

*the element type is inferred by the generic type(s) of the

field type, or by the type of the parameter of the collection

setter methods corresponding to the field

ðField or nullÞ isCollectionGetterðMethod mÞ �
ðsize of m:parameters ¼ 0 ^
size of m:methodBody:statements ¼ 1 ^
9 ReturnStatement r 2 m:methodBody:statements where

r:returnedExpression is MethodInvocation methodInv ^
methodInv:invokeExpression is VariableAccess v ^
v:declaration is Field f ^ elementTypeOfCollectionðfÞ 6¼
null ^
methodInv:name 2 fiterator; toArray; listIterator,

elements; keySet; entrySet; valuesg
return fÞ _
ðsize of m:parameters ¼ 1 ^
size of m:methodBody:statements ¼ 1 ^
9 ReturnStatement r 2 m:methodBody:statements where

r:returnedExpression is MethodInvocation methodInv ^
methodInv:invokeExpression is VariableAccess v ^
v:declaration is Fieldf ^
elementType ¼ elementTypeOfCollectionðfÞ 6¼ null ^
methodInv:name 2 fget; elementAtg ^ elementType ¼
m:returnType ^
positionOfArgumentðmethodInv;m:parameters½0�Þ 6¼ �1

return fÞ

ðField or nullÞ isCollectionSetterðMethod mÞ �
size of m:parameters ¼ 1 ^
size of m:methodBody:statements ¼ 1 ^
9 MethodInvocationStatement s 2 m:methodBody:

statements where

s:methodInvocation:invokeExpression is VariableAccess v ^
v:declaration is Fieldf ^ elementTypeOfCollectionðfÞ 6¼
null ^
s:methodInvocation:name 2 fadd; remove; addAll;
removeAll; retainAll; addElement; removeElement;

putg ^

positionOfArgumentðs:methodInvocation;m:

parameters½0�Þ 6¼ �1

return f

int positionOfArgumentðMethodInvocation inv;

Parameter paramÞ �
for i ¼ 1 to size of inv:arguments

if inv:arguments½i� is VariableAccess arg ^
arg:declaration ¼ param

return i

return� 1

ðMethod or nullÞ isDelegateðMethod mÞ �
ðsize of m:methodBody:statements ¼ 1 ^
9 MethodInvocationStatement s 2 m:methodBody:

statements where

s:methodInvocation:declaringClass:type 2 program:

classTypes ^
ððs:methodInvocation:invokeExpression

is VariableAccess v ^ v:declaration 2
fm:ownerClass:fields [m:parameters [
inheritedFieldsðm:ownerClassÞgÞ _
ðs:methodInvocation:invokeExpression is

MethodInvocation methodInv2 ^
Field f ¼ isGetterðmethodInv2:methodDeclarationÞ 6¼
null ^
f 2 fm:ownerClass:fields [
inheritedFieldsðm:ownerClassÞgÞ _
s:methodInvocation:invokeExpression ¼ nullÞ
return s:methodInvocation:declaringMethodÞ _
ðsize of m:methodBody:statements ¼ 1 ^
9 ReturnStatement r 2 m:methodBody:statements where

r:returnedExpression is MethodInvocation methodInv ^
methodInv:declaringClass:type 2 program:classTypes ^
methodInv:declaringMethod:returnType ¼
m:returnType ^
ððmethodInv:invokeExpression is VariableAccess v ^
v:declaration 2
fm:ownerClass:fields [m:parameters [
inheritedFieldsðm:ownerClassÞgÞ _
ðmethodInv:invokeExpression is MethodInvocation

methodInv2 ^
Fieldf¼ isGetterðmethodInv2:methodDeclarationÞ 6¼null ^
f 2 fm:ownerClass:fields [inheritedFields

ðm:ownerClassÞgÞ _
methodInv:invokeExpression ¼ nullÞ
return methodInv:declaringMethodÞ

ðMethod or nullÞfinalNonDelegateMethodðMethod mÞ �
nonDelegateMethod ¼ m
whileðdelegatedMethod ¼
isDelegateðnonDelegateMethodÞ 6¼ nullÞ
nonDelegateMethod ¼ delegatedMethod

finalNonDelegateMethodðnonDelegateMethodÞ
if nonDelegateMethod ¼ m:declaringMethod

return null

else

return nonDelegateMethod

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 365

APPENDIX B

boolean modifiesDataStructureInTargetClassðMethod m;

Class tÞ �
for i ¼ 1 to size of m:parameters

parameter ¼ m:parameters½i�
F ¼ one-to-manyAssociationRelationships ðt;
parameter:typeÞ

if F 6¼ �
for j ¼ 1 to size of m:methodBody:methodInvocations

methodInv ¼ m:methodBody:methodInvocations½j�
if methodInv:declaringClass ¼ t ^
pos¼positionOfArgumentðmethodInv; parameterÞ6¼�1

methodDecl ¼ methodInv:declaringMethod

methodDeclParam ¼ methodDecl:parameters½pos�
for k ¼ 1 to size of F

Field f ¼ F ½k�
if modifiesDataStructureðmethodDecl; f;
methodDeclParamÞ

return true

ðset of FieldÞ one-to-manyAssociationRelationshipsðClass

fromClass;Type toTypeÞ �
return f 2 fromClass:fields

whereðf:type is ArrayType aType ^ aType:type¼
toTypeÞ _

elementTypeOfCollectionðfÞ ¼ toType

boolean modifiesDataStructureðMethod m; Field f;

Parameter paramÞ �
if f:type is ArrayType aType return

9 assignment 2 m:methodBody:assignments

where assignment:leftHandSide is arrayAccess of

VariableAccess v1 ^
v1:declaration ¼ f ^ aType:type ¼ param:type ^
assignment:rightHandSide is VariableAcess v2 ^
v2:declaration ¼ param

else if elementType ¼ elementTypeOfCollectionðfÞ 6¼ null

return

9 methodInv 2 m:methodBody:methodInvocations

where methodInv:invokeExpression is VariableAccess v1 ^
v1:declaration ¼ f ^
methodInv:name 2 {add, remove, addElement,

removeElement, set, setElementAt,

insertElementAt, put} ^
positionOfArgumentðmethodInv; paramÞ 6¼ �1 ^
elementType ¼ param:type

* arrayAccess of variable array is expression

array[indexExpression]

ACKNOWLEDGMENTS

The authors would like to thank Anastasios Alexiadis and
Ioannis Refanidis for their contribution to the independent
assessment of the refactoring suggestions.

REFERENCES

[1] “Bad Smell Identification for Software Refactoring,” http://
www.jdeodorant.org, 2007.

[2] J. Bansiya and C.G. Davis, “A Hierarchical Model for Object-
Oriented Design Quality Assessment,” IEEE Trans. Software Eng.,
vol. 28, no. 1, pp. 4-17, Jan. 2002.

[3] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,” IEEE Trans.
Software Eng., vol. 22, no. 10, pp. 751-761, Oct. 1996.

[4] A.B. Binkley and S.R. Schach, “Validation of the Coupling
Dependency Metric as a Predictor of Runtime Failures and
Maintenance Measures,” Proc. 20th Int’l Conf. Software Eng.,
pp. 452-455, 1998.

[5] L.C. Briand, J.W. Daly, and J. Wust, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems,” Empirical
Software Eng., vol. 3, no. 1, pp. 65-117, 1998.

[6] L.C. Briand, J.W. Daly, and J.K. Wust, “A Unified Framework for
Coupling Measurement in Object-Oriented Systems,” IEEE Trans.
Software Eng., vol. 25, no. 1, pp. 91-121, Jan./Feb. 1999.

[7] L.C. Briand, J. Wust, S.V. Ikonomovski, and H. Lounis, “Investi-
gating Quality Factors in Object-Oriented Designs: An Industrial
Case Study,” Proc. 21st Int’l Conf. Software Eng., pp. 345-354, 1999.

[8] L.C. Briand, J. Wust, and H. Lounis, “Using Coupling Measure-
ment for Impact Analysis in Object-Oriented Systems,” Proc. Int’l
Conf. Software Maintenance, pp. 475-482, 1999.

[9] L.C. Briand and J. Wust, “Modeling Development Effort in Object-
Oriented Systems Using Design Properties,” IEEE Trans. Software
Eng., vol. 27, no. 11, pp. 963-986, Nov. 2001.

[10] F. Brito e Abreu, “The MOOD Metrics Set,” Proc. Ninth European
Conf. Object-Oriented Programming Workshop Metrics, Aug. 1995.

[11] F. Brito e Abreu and W. Melo, “Evaluating the Impact of Object-
Oriented Design on Software Quality,” Proc. Third Int’l Software
Metrics Symp., pp. 90-99, 1996.

[12] M.A. Chaumun, H. Kabaili, R.K. Keller, F. Lustman, and G. Saint-
Denis, “Design Properties and Object-Oriented Software Change-
ability,” Proc. Fourth European Conf. Software Maintenance and
Reeng., pp. 45-54, 2000.

[13] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[14] S.R. Chidamber, D.P. Darcy, and C.F. Kemerer, “Managerial Use
of Metrics for Object-Oriented Software: An Exploratory Analy-
sis,” IEEE Trans. Software Eng., vol. 24, no. 8, pp. 629-639, Aug.
1998.

[15] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring—Improving
Coupling and Cohesion of Existing Code,” Proc. 11th Working
Conf. Reverse Eng. pp. 144-151, Nov. 2004.

[16] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “JDeodorant:
Identification and Removal of Feature Envy Bad Smells,” Proc.
23rd Int’l Conf. Software Maintenance, pp. 519-520, Oct. 2007.

[17] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Addison Wesley,
1999.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley,
1995.

[19] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering, second ed. Prentice Hall, 2003.

[20] M. Hitz and B. Montazeri, “Measuring Coupling and Cohesion in
Object-Oriented Systems,” Proc. Int’l Symp. Applied Corporate
Computing, Oct. 1995.

[21] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A Quantitative
Evaluation of Maintainability Enhancement by Refactoring,” Proc.
18th IEEE Int’l Conf. Software Maintenance, pp. 576-585, Oct. 2002.

[22] M. O’Keeffe and M. O’Cinneide, “Search-Based Software Main-
tenance,” Proc. 10th European Conf. Software Maintenance and
Reeng., pp. 249-260, Mar. 2006.

[23] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” J. Systems and Software, vol. 23, no. 2, pp. 111-
122, 1993.

[24] O. Maqbool and H.A. Babri, “Hierarchical Clustering for Software
Architecture Recovery,” IEEE Trans. Software Eng., vol. 33, no. 11,
pp. 759-780, Nov. 2007.

[25] R.C. Martin, Agile Software Development: Principles, Patterns and
Practices. Prentice Hall, 2003.

[26] T. Mens and T. Tourwé, “A Survey of Software Refactoring,” IEEE
Trans. Software Eng., vol. 30, no. 2, pp. 126-139, Feb. 2004.

366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

[27] B.S. Mitchell and S. Mancoridis, “On the Automatic Modulariza-
tion of Software Systems Using the Bunch Tool,” IEEE Trans.
Software Eng., vol. 32, no. 3, pp. 193-208, Mar. 2006.

[28] W.F. Opdyke, “Refactoring Object-Oriented Frameworks,” PhD
dissertation, Univ. of Illinois at Urbana-Champaign, 1992.

[29] I. Refanidis and A. Alexiadis, “SelfPlanner: An Intelligent Web-
Based Calendar Application,” Proc. 17th Int’l Conf. Automated
Planning and Scheduling Systems, Sept. 2007.

[30] A.J. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[31] O. Seng, J. Stammel, and D. Burkhart, “Search-Based Determina-

tion of Refactorings for Improving the Class Structure of Object-
Oriented Systems,” Proc. Eighth Ann. Conf. Genetic and Evolutionary
Computation, pp. 1909-1916, 2006.

[32] F. Simon, F. Steinbrückner, and C. Lewerentz, “Metrics Based
Refactoring,” Proc. Fifth European Conf. Software Maintenance and
Reeng., pp. 30-38, Mar. 2001.

[33] L. Tahvildari and K. Kontogiannis, “A Metric-Based Approach to
Enhance Design Quality through Meta-Pattern Transformations,”
Proc. Seventh European Conf. Software Maintenance and Reeng.,
pp. 183-192, Mar. 2003.

Nikolaos Tsantalis received the BS and MS
degrees in applied informatics from the Univer-
sity of Macedonia, in 2004 and 2006, respec-
tively. He is currently working toward the PhD
degree in the Department of Applied Informatics
at the University of Macedonia, Thessaloniki,
Greece. His research interests include design
patterns, refactorings, and object-oriented qual-
ity metrics. He is a student member of the IEEE
and the IEEE Computer Society.

Alexander Chatzigeorgiou received the Diplo-
ma in electrical engineering and the PhD degree
in computer science from the Aristotle University
of Thessaloniki, Greece, in 1996 and 2000,
respectively. From 1997 to 1999, he was with
Intracom, Greece, as a telecommunications
software designer. He is currently an assistant
professor of software engineering in the Depart-
ment of Applied Informatics at the University of
Macedonia, Thessaloniki, Greece. His research

interests include software metrics, object-oriented design, and software
maintenance. He is a member of the IEEE and the IEEE Computer
Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TSANTALIS AND CHATZIGEORGIOU: IDENTIFICATION OF MOVE METHOD REFACTORING OPPORTUNITIES 367

