
API Finder: Accurate Extraction of Method Binding
Information from Call Sites without Building the Code

Diptopol Dam

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

May 2023

© Diptopol Dam, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Diptopol Dam

Entitled: API Finder: Accurate Extraction of Method Binding Information from

Call Sites without Building the Code

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Tse-Hsun (Peter) Chen

Examiner
Dr. Joey Paquet

Supervisor
Dr. Nikolaos Tsantalis

Approved by
Dr. Leila Kosseim, Graduate Program Director

2023
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

API Finder: Accurate Extraction of Method Binding Information from Call Sites without
Building the Code

Diptopol Dam

Researchers and practitioners have introduced many static analysis tools to enhance the quality

of software. Several tools (e.g., WALA 1) are highly effective and based on mature compilers. How-

ever, all of these tools usually require a complete codebase to compile the project under analysis.

In many scenarios, academics and practitioners need to analyze partial programs collected from the

web or online source code repositories. A partial program is a subset of the complete codebase. The

compiler requires a complete codebase to resolve all binding information to identify type informa-

tion of program elements (e.g., the return type and the argument types of method invocation, type

of field instance), and as a result, most of the static analysis tools cannot extract type information

for program elements in partial programs.

In this paper, we introduce API Finder, a tool that can accurately extract method binding infor-

mation from method references (i.e., call sites) in partial programs. Our approach requires only the

Java version of the project, the dependent external library artifacts, and the method invocation as

inputs in order to generate precise method-binding information. We also provide support for extract-

ing the Java version of the project, as well as dependent external library artifacts for the Gradle and

Maven build systems. We evaluated the accuracy of the method-binding information generated by

our tool with the Eclipse JDT (Java Development Tool) Compiler across eleven complete projects.

Our tool has an accuracy rate ranging between 93% to 99% in our evaluated projects. Our tool also

has an average response time of 381 milliseconds for any method-binding information extraction.

In addition, as an application of our tool, we have implemented a Chrome browser extension for

displaying the method signature upon clicking on any method reference for the GitHub platform.
1https://wala.sourceforge.net

iii

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Nikolaos Tsantalis. In the perusal of

my research, his guidance and support were invaluable. His feedback and direction assisted me in

overcoming the challenges encountered during my research.

In addition, I would like to thank my committee members, Dr. Joey Paquet and Dr. Tse-Hsun

(Peter) Chen, for allocating their valuable time to reviewing the thesis work.

Finally, I would also like to thank my colleagues for sharing their research experiences and

giving me the opportunity to gain knowledge.

Thank you.

Diptopol Dam

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 2

1.1.1 Practitioner Perspective . 2

1.1.2 Researcher Perspective . 3

1.1.3 Limitations of Existing Tools . 5

1.2 Contribution . 5

2 Literature Review 7

2.1 Partial Program Analysis . 7

2.2 Limitation of the existing approaches . 9

3 Background 12

4 Approach 19

4.1 Artifact & Java Version Extraction . 19

4.1.1 Input . 20

4.1.2 Determination of Build System . 20

4.1.3 Extraction of Java Version & Artifacts . 22

4.1.4 Extraction Of Java Core Packages . 23

v

4.1.5 Extraction of Artifact Archives . 23

4.1.6 Storing process . 23

4.1.7 Output . 24

4.2 Method Binding Information Resolution . 24

4.2.1 Invocation context information extraction 24

4.2.2 Resolution of Appropriate Method Binding Information 34

4.2.3 Post-Processing of Method Binding Information: 64

4.2.4 Conversion of variadic Argument: . 67

5 Implementation 68

5.1 “API Finder” API . 68

5.2 “API Finder” API Using Fluent Builder Pattern 71

5.3 Storage . 74

5.4 Chrome Extension for GitHub . 76

5.4.1 Comparison between “API Finder” extension and GitHub Code Navigation 77

6 Evaluation 80

6.1 Evaluation Setup . 80

6.1.1 Project Selection . 80

6.1.2 Evaluation Process . 82

6.2 RQ 1: What is the accuracy of our proposed approach? 83

6.3 What is the execution time for resolving method binding information? 92

6.4 Comparison between “API-Finder” and “JavaSymbolSolver” 98

6.5 Limitations and Threats to Validity . 100

7 Conclusion and Future Work 103

7.1 Applications of “API Finder” . 104

7.2 Future Work . 104

Bibliography 105

vi

List of Figures

Figure 1.1 Diff View Collected From a Pull Request of JFreeChart2 2

Figure 1.2 GROUM Representation . 4

Figure 3.1 A Simple Java Program with the corresponding AST 13

Figure 3.2 POM File . 15

Figure 3.3 Gradle Build File . 17

Figure 4.1 Overview of our approach . 20

Figure 4.2 Overview of Java Version & Artifact Extraction 21

Figure 4.3 Overview of Method Binding Information Resolution 25

Figure 5.1 Entity Relationship Diagram . 75

Figure 5.2 “API Finder” Chrome Extension (Collected from JFreeChart 3) 76

Figure 5.3 No Consideration of Invocation Context (Collected from JFreeChart 4) . . . 78

Figure 5.4 No Consideration of Number of Method Arguments (Collected from JFreeChart5) 78

Figure 6.1 Box-plot of Execution Time for Projects 95

Figure 6.2 Median of execution Time over Resolved Method Count 97

Figure 6.3 Execution Time for Internal and External Method Invocation 98

Figure 6.4 Execution Time for Method Invocation Expressions 99

vii

List of Tables

Table 3.1 AST Node types for Method Invocation Expression 13

Table 4.1 Type Representation . 28

Table 4.2 Eligible Widening Primitive Type Conversions 52

Table 4.3 Eligible Narrowing Primitive Type Conversions 52

Table 4.4 Primitive Types and their corresponding Wrapper Class 54

Table 4.5 Conversion Type and their corresponding Distance 63

Table 4.6 Type With Generic Signature . 65

Table 5.1 API for Loading Project Java and Dependent Artifacts [TypeInferenceAPI Class] 69

Table 5.2 “API Finder” API [TypeInferenceV2API Class] 69

Table 5.3 “API Finder” API Using Fluent Builder Pattern [TypeInferenceFluentAPI Class] 72

Table 6.1 Java Projects for Evaluation . 82

Table 6.2 Distribution of Method Invocation Type . 84

Table 6.3 Evaluation of Accuracy . 85

Table 6.4 Mismatch Distribution . 86

Table 6.5 Execution Time . 96

Table 6.6 Distribution of execution time for Number of Resolved Methods 96

Table 6.7 Accuracy comparison between API-Finder and JavaSymbolSolver 100

viii

Chapter 1

Introduction

Static program analysis plays a vital role in software development and software engineering

research. Several static analysis tools help developers with the optimization of the programs and

maintaining standard code conventions in the software development process. In addition, they are

heavily used for the detection of feature location [1], bug detection [2], analysis of external API

usage [3] research.

There are several situations that require partial program analysis [4], including mining bugfixes

for automatic patching [5], defect prediction [6], analyzing code fragments from forum threads for

recommendation [7] and ranking code search results [8].

Binding Information connects references to types, methods, fields, and variables to their actual

declaration (i.e., type, method, field, variable declarations). Leveraging the connection between

reference and declaration, binding information can provide a few key valuable pieces of information

regarding the particular type, method, or field (e.g., name of the class where the method is declared,

types of the method argument, type parameters of any parameterized argument type). A compiler

can extract binding information after building the complete codebase. However, a compiler cannot

generate binding information for partial programs.

1

Figure 1.1: Diff View Collected From a Pull Request of JFreeChart1

1.1 Motivation

1.1.1 Practitioner Perspective

We wish to illustrate a motivating scenario in which a software developer is performing the

task of code review for a pull request. Figure 1.1 shows a portion of the change set written in Java

programming language, that is part of a pull request. During the review process, the developer may

want to know additional information which will be useful for the code review. Information such as:

• The class name of the invoked method

• Type of the arguments of the invoked method

• The nature of invoked method (e.g., whether belongs to external libraries, nature of the exter-

nal libraries)

Extraction of method binding information can provide us with such information. A Java com-

piler can generate method binding information for any method invocation expression. However,

there are a few challenges that restrict us to use compilers to generate method binding information

for this scenario. The challenges are:

• The change set is partial and the access to the complete code base may not be accessible.

However, the compiler will require the access to complete code base in order to build and

generate the method binding information.

• The change set may not be buildable which restricts the compiler to generate the method

binding information.
1https://github.com/jfree/jfreechart/pull/286/commits/f4b5bc7cd5ea6b44a36ce57d0a1f19f5786839a2

2

• To access the complete code base, we may need to clone the project and make the project

accessible to the compiler. However, cloning a project is a time-consuming task for large

projects. To ensure the usability of this feature, we need to identify method binding informa-

tion in a quick manner. Therefore, we cannot rely upon the compiler to generate the method

binding information.

GitHub has implemented symbolic code navigation [9] for the GitHub platform where users

can click on any method invocation expression and GitHub will present a list of probable method

declarations in a tooltip. Users can navigate through the declarations of the method. However, the

approach has several limitations. The limitations are:

• Code navigation does not show method declaration instances that are outside of the project.

• To show appropriate method declaration, they do not take consideration of types of arguments,

or type of the method invoker expression.

We have provided a more in-detail explanation of all the limitations in Section 5.4.1.

1.1.2 Researcher Perspective

Many researchers often perform large-scale empirical studies on a large number of commits.

In many cases, they may need to extract different representations from the source code. GROUM

[10] is such a representation, which is very useful to recognize patterns with control and conditional

structure that can be helpful for anomaly detection, as well as source code pattern recognition.

Figure 1.2 shows the GROUM representation of a code snippet (Figure 1.2a). In Figure 1.2b, each

invoked method is represented as a node and the representation requires the class name where the

method is declared. Using method binding information, we can generate such a representation.

However, a recent study [11] has shown that only 38% of the change history of software systems

can be successfully compiled, and thus we cannot rely on the compiler to generate the binding

information.

3

(a) Code Snippet (b) GROUM Representation [10]

Figure 1.2: GROUM Representation

4

1.1.3 Limitations of Existing Tools

Dagenais et al. [4] have proposed a framework named PPA that attempts to tackle this challenge

of identifying type information via heuristics from only the set of partial sources that are available.

Hao Zhong et al. [12] also introduced an approach named GRAPA to improve the inference strate-

gies of PPA and make partial programs viable for the static analysis tool WALA. However, there are

several limitations.

• The inability to support new Java language functionalities (i.e., consideration of lambda ex-

pressions, generics).

• The reliance of GRAPA on the existing complete code analysis tools, such as WALA makes

it tightly coupled with complete source code analysis tools making it difficult for other prac-

titioners to implement for their own system.

More details about the limitations of these tools are provided in Section 2.2.

1.2 Contribution

In this research paper, we present “API Finder”, an accurate extraction of method binding in-

formation from method invocation expressions in a partial program. Binding is the information that

connects references to types, methods, fields, and variables to their actual declaration (i.e., type,

method, field, and variable declarations). We present a streamlined approach to generating binding

information for any method invocation expression. We performed an evaluation of our approach

against binding information generated by the compiler. Our approach has performed with higher

accuracy (above 93%) and the execution time for resolving each method invocation expression has

been on average 380 milliseconds.

This thesis provides the following major contributions:

• Our approach provides a streamlined API for extracting appropriate method-binding infor-

mation from any method invocation expression. We process the new language syntax (i.e.,

generics, lambda expressions) to generate accurate method binding information. We support

5

Java language versions up to Java SE 11. Our API implementation will help practitioners

easily integrate the approach into their systems.

• We facilitate the extraction of dependent artifacts from project build files. Gradle and Maven

are two of the most popular build systems for Java projects. Our approach supports pars-

ing build files from both build systems to collect all dependent external library artifacts and

determine the Java version of the source code.

• We have developed a Chrome extension for displaying declared method signatures from any

invocation expression on GitHub. In several scenarios, we have outperformed the suggestions

provided by the state-of-the-art source code navigation of GitHub for the Java programming

language.

The rest of the thesis is organized as follows: The second chapter provides a related literature

review on partial program analysis. Chapter 3 provides the background information required to un-

derstand the rest of the thesis. In Chapter 4, we explain our approach to identifying and extracting

accurate method-binding information. In Chapter 5, we discuss our implementation. Chapter 6 de-

scribes the evaluation process for our methodology. Finally, in Chapter 7, we present our conclusion

and discuss potential future research directions.

6

Chapter 2

Literature Review

This section will begin with a discussion of studies relevant to partial program analysis and

identifying program elements from partial programs. The limitations of these existing studies will

next be discussed.

2.1 Partial Program Analysis

Thummalapenta et al. [13] have proposed an approach to suggest relevant method invocation se-

quences for converting a source object to a destination object for existing frameworks and libraries.

Identifying all the types associated with method invocation statements (e.g., types of arguments,

return type) from partial programs is one of the problems that they tried to solve in their method-

ology. They proposed a few heuristics for identifying type information. Five heuristics have been

introduced to resolve method invoker object type and method argument types. Additionally, ten

heuristics have been introduced to identify the return type of the method. However, only two major

heuristics for identifying the type of return object were explained in the paper.

• In an initialization expression, the return type of a method invocation statement will be the

same type as the declared variable.

• The return type of a method invocation that resides on a return statement is the same as the

return type of the method declaration that encloses it.

7

Dagenais et al. [4] have also presented a framework named Partial Program Analysis [PPA] to

perform partial type inference and have used heuristics to resolve syntactic ambiguities to recover

the declared types of the expressions. The framework produces a complete typed Intermediate

Representation (IR). The authors conducted an empirical study for the framework on four large

open-source projects, which shows that the framework recovers most of the declared types, with

91.2% correct types and 2.7% erroneous types where only one class is accessible. The authors have

listed 11 inference strategies for determining the type of the expression and identifying appropriate

method bindings.

Zhong et al. [12] have presented a general approach named GRAPA where they resolve the miss-

ing binding information or unknown code names for partial programs using the project’s released

archivables and various inference strategies. The authors view released archivable as a complete

context of the program. At first, they try to identify the release version of the archivable where the

partial program may belong. To accomplish that task they try to look for all the code names that are

available in the partial programs in the different release versions. As the next step, they compile the

partial program in the context of release archivable. Resolving all unknown bindings has allowed

them to compile the partial program and makes the partial program ready to be analyzed by the static

analysis tool WALA, which is usually used for analyzing complete programs. They implemented a

tool leveraging WALA to generate a system dependency graph for partial programs. To demonstrate

the accuracy of GRAPA, they performed an evaluation on 8,198 partial commits from four popular

open-source projects. GRAPA has successfully resolved unknown bindings for 98.5% of bug fixes

with a rate of accuracy of 96.1%.

Gagnon et al. [14] have presented a type inference algorithm for byte code representation. They

have performed type resolution for the local variables in byte code representation. They have mod-

eled the problem of type inference into a constraint system represented as a directed graph. The

graph consists of the hard node which represents an explicit type, the soft node which represents

a type variable, and a direct edge to represents constraint between nodes. In three stages, the al-

gorithm attempts to merge intermediate soft nodes into hard nodes using the assignment inference

strategy and tries to reduce the redundant transitive constraint edges until all types are resolved given

that all the required constraints are satisfied. The authors implemented their algorithm in the soot

8

framework [15] and evaluated against 17000 methods and all the types were successfully resolved.

99.8% of them were resolved in the first stage and only 0.2% of them required the second stage, and

no method was required in the third stage.

Clem et al. [9] implemented symbolic code navigation for the GitHub platform which lets the

user click on a named identifier in a source code and go to the definition of the entity. This code

navigation is built upon tree-sitter, an incremental parsing tool that extracts name-binding infor-

mation from source code. This approach indexed and stored name-binding information from each

incremental push on the GitHub platform. This code navigation system supports nine programming

languages. The system can process and index 1,000 pushes per minute and serve 30,000 requests of

symbol lookup per minute.

Gasparini et al. [16] proposed an approach to enhance the GitHub interface for the pull request

changeset under review. They introduced two lateral bar views to show the method definition and

all other usages for any method invocation that is available in that changeset. To determine the

appropriate method definition, they search the source files that are part of the changeset and they

relied on JavaSymbolSolver 1 to resolve the binding information. JavaSymbolSolver is a part of

the JavaParser project. JavaParser library parses Java source code and creates abstract syntax trees.

Additionally, JavaSymbolSolver provides the functionality to connect each program element to its

declaration.

2.2 Limitation of the existing approaches

In this section, we will discuss some of the key limitations of the existing literature and how our

proposed approach will mitigate these limitations.

Consideration of external dependencies: The approaches proposed by Thummalapenta et al.

[13] and Dagenais et al. [4] have attempted to resolve type information without considering external

libraries and frameworks. However, projects typically depend on a large number of external libraries

and frameworks. Leveraging the information collected from dependent external libraries and frame-

works, we can identify binding information with more precision. Clem et al. [9] also consider only
1https://github.com/javaparser/javaparser

9

the internal method declarations of the project as candidates; hence, the approach cannot resolve

method binding information, which is part of external dependencies as well as the Java API. On the

other hand, our approach considers all the dependent external libraries and frameworks archivable,

and the project archivable in order to identify the appropriate method-binding information.

Support of java version: PPA [4] supports Java 1.4, which is very old. Language features such

as generics and auto-boxing are not available in Java 1.4. Hence, PPA does not provide support

for such language features. Java has evolved drastically over the years. Java has introduced new

language features (i.e., enumeration, variable arguments, functional interfaces, lambda expressions),

and consideration of those features will help the precision of determining binding information. Our

approach supports up to Java Version 11. Oracle provides long-term support for Java Version 11.

After Java Version 11, currently, only Java Version 17 has long-term support.

Reliance on Inference Strategies: The approaches proposed by Thummalapenta et al. [13],

Dagenais et al. [4], and Zhong et al. [12] relies heavily on limited number of different inference

strategies. However, these inference strategies do not cover all language constructs. As a result,

these approaches may suffer in accuracy for newer Java Versions. Instead, a systematic approach

should be proposed which uses the grammar of the language to identify the binding information.

Our approach relies on the Java language grammar (e.g., inheritance, consideration of the order of

import statements) to solve the binding information.

Support for resolving formal type parameters for Generics: Generics is one of the highly

utilized language features in Java. Resolving the appropriate types for formal parameters will help

us understand the original types of arguments of a method or the return of the type of a method

during invocation. JavaSymbolParser has very limited support for resolving formal type parameters

declared on method definitions. JavaSymbolParser only considers type parameters that are directly

passed during invocation. However, in newer language versions, type parameters are inferred from

the type of the arguments or type of variable where the return type of the method invocation is

assigned. Our approach provides extensive type inference support where we consider the param-

eterized invoker types, type of arguments, and type of assigned variable to determine the original

type of formal type parameters.

Reliance on existing tools: The proposed approach GRAPA [12] depends on complete code

10

analysis tools. JavaSymbolParser is developed on top of JavaParser, an AST parsing library. On the

other hand, the core philosophy of our approach is to build a tool that can extract data from differ-

ent sources (e.g., Eclipse JDT Parser, JavaParser), construct our own representation, and perform

the method binding information resolution. Our core underlying API is not tightly coupled with

any parsing library. Hence, practitioners can integrate our API into their existing system with the

minimum code change.

11

Chapter 3

Background

In this chapter, we will explain the key concepts which are related to our problem domain. We

will also explain a few terminologies that we will use throughout the paper.

Abstract Syntax Tree(AST): Abstract Syntax Tree (AST) is a tree-based representation of the

source code which preserves the structural and content-related information. Figure 3.1 illustrates an

example of a java program and its corresponding Abstract Syntax Tree(AST). In this representation,

each node, known as AST Node, represents a construct occurring in a source code. For java, there

are a few well-known libraries (e.g., Eclipse JDT 1, JavaParser2) to generate AST from source code.

Our approach provides functionality to take any method invocation AST node as input and extract all

the necessary information that is required for our analysis and provide appropriate method binding

information. Our current implementation supports AST nodes generated from Eclipse JDT as input.

In this paper, we have followed the same name naming convention as Eclipse JDT for all AST nodes.

AST Node: AST Node represents source code constructs such as name, type, expression, state-

ment, or declaration. From figure 3.1, we can see the AST representation where CompilationUnit

is the root AST node, and MethodInvocation is the leaf AST Node. Our approach supports any

method invocation expression as input in order to produce appropriate method-binding information

for that expression. Table 3.1 shows the five types of method invocation expression AST Node and

their representation on the source code.
1https://www.eclipse.org/jdt/overview.php
2 https://javaparser.org/

12

1 package com.example.helloworld

2

3 public class HelloWorld {

4 public void print()

5 {

6 System.out.println("Hello World") ;

7 }

8 }

CompilationUnit

TypeDeclaration

MethodDeclaration

Block

ExpressionStatement

MethodInvocation

Abstract Syntax TreeJava Program

Figure 3.1: A Simple Java Program with the corresponding AST

Table 3.1: AST Node types for Method Invocation Expression

Type Source Code Representation
MethodInvocation Math.add(1, 2);

SuperMethodInvocation super.print(“hello-world”);
ClassInstanceCreation new Box();
ConstructorInvocation this();

SuperConstructorInvocation super();

13

Build System: Build system facilitates the compilation of code, executing tests, performing

tasks, and producing deliverables. Typically build systems invoke commands in an orderly fashion

in order to generate the deliverable. A deliverable can be an executable file or a packaged file format.

Some build system also takes the responsibility of managing external dependencies such as third-

party libraries the project is depending on. Typically, the Build system has a build specification file

where users define the list of external dependencies as well as build-related configuration. The build

system takes all the necessary configuration from the specification file and executes tasks such as

compiling the projects, running tests, and finally generating the deliverable.

Maven: Maven3 is a popular build system for java projects. Maven provides a unified and

defined build process where it follows different steps or phases (e.g., validate, compile, test) to

produce the deliverable, also known as a project artifact. The artifact can be a JAR or POM. Maven

also provides support for managing external dependencies. The feature of resolving third-party

libraries is facilitated by downloading the deliverable (e.g., JAR, POM) of external dependencies

from specified remote artifact repositories. A POM-type deliverable consists of a list of jars. Maven

uses a set of identifiers known as coordinates to uniquely identify a project and specify the packaging

of the project deliverables. The set of identifiers are:

(1) Group ID: Group ID indicates the group or individual that created the project.

(2) Artifact ID: Artifact ID is the name of the project.

(3) Version: Version represents the project version.

In this paper, we will use artifact terminology to represent project maven coordinates. We have

also used archivable and archive interchangeably to represent the packaged file format the project

produces after a successful build.

Project-Object-Model (POM): Project-Object-Model or POM is a build specification file for

Maven projects. It is an XML file that contains project and build configuration details. Typically

POM file is located under the root directory. If the project is a multi-module project, then each sub-

module will also contain a POM file. Usually, POM files are defined as pom.xml or files with pom

3https://maven.apache.org/

14

file extension. Figure 3.2 shows the structure of a typical POM file. From the figure, we can see

the project artifact and all external project artifacts are defined under the dependency tag. Maven

provides a plugin framework to execute every phase of the build life-cycle. In the figure, a maven-

compiler-plugin is defined to specify the java language version for the compilation as well as for the

build.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.helloworld</groupId>
 <artifactId>helloworld</artifactId>
 <version>1.0-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>org.eclipse.jdt</groupId>
 <artifactId>org.eclipse.jdt.core</artifactId>
 <version>3.16.0</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <source>11</source>
 <target>11</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

Dependent Artifact
Declaration

Build Task
Java

Version

Project
Identification

Figure 3.2: POM File

Super POM: Maven has a default build configuration file, which is known as Super POM. All

the user-defined POM files will extend the build configuration from Super POM. So user defined

POM files can override the default build configuration.

Effective POM: Effective POM is the culmination of Super POM and user-defined POM. Ef-

fective POM is the final output where all the default configurations will remain unless are overridden

15

by the user-defined POM.

Maven Artifact Repository: Maven Artifact Repository can hold the deliverable artifacts (e.g.,

JAR, WAR) produced by the build system. Maven offers two types of artifact repositories.

(1) Local: Local artifact repository is a directory for storing the artifacts, created on the user’s

system during Maven installation. This directory can contain artifacts downloaded from re-

mote artifact repositories and temporary build artifacts which are not been released yet.

(2) Remote: Remote artifact repository holds the published project artifacts which can be ac-

cessed using various protocols (e.g., HTTP). Practitioners can host private or public reposi-

tories to host their artifacts. Maven offers one of the largest public artifact repository servers

(i.e., repo.maven.apache.org).

Gradle: Gradle4 is another popular build automation tool for java projects. The build process is

performed via the execution of different tasks (e.g., compile, test, build). A task can have multiple

dependent tasks. Gradle will ensure the execution of dependent tasks before executing the task.

Every task will be executed once. Gradle allows project identification similar to Maven. Maven

coordinates are used to define project as well as find external third-party dependencies from remote

artifact repositories. Gradle build specification files can be written in groovy DSL5 or Kotlin. Typi-

cally build specification file will be named as build.gradle or build.gradle.kts. Gradle also supports

multi-module projects where each module will also contain a build specification file.

Figure 3.3 shows the structure of a typical Gradle build file written in groovy DSL. Lever-

aging the command-chain feature of groovy all the configurations are written. Using this fea-

ture any method invocation with an argument can be written as space-separated. For example

group(’org.example’) can be written as group ’org.example’. From the figure, we can see the de-

pendent artifacts declaration as well as the Java version configuration for compilation and build.

Gradle Tooling API: Gradle provides a programmatic API, known as Tooling API for executing

Gradle tasks programmatically. This API is used by the majority of modern Integrated Development

Environments (IDE) to integrate Gradle build process into the development environment. This
4https://gradle.org/
5http://docs.groovy-lang.org/docs/latest/html/documentation/core-domain-specific-languages.html

16

plugins {
 id 'java'
}

group 'org.example'
version '1.0-SNAPSHOT'

java {
 sourceCompatibility = "11"
 targetCompatibility = "11"
}

repositories {
 mavenCentral()
}

dependencies {
 testImplementation 'org.junit.jupiter:junit-jupiter-api:5.8.1'
 testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.8.1'
}

test {
 useJUnitPlatform()
}

Dependent Artifact
Declaration

Java
Version

Project
Identification

Figure 3.3: Gradle Build File

tooling API provides more granular control over command line invocation. This tooling API can

also run independently of the version of the Gradle project.

Method Binding Information: Method binding refers to identifying a method or constructor

declaration from its invocation reference. Method binding offers information about the declared

form of the method (e.g., name of the class the method belongs to, type of the arguments of the

method, return type of the method). Additionally, Method binding contains all the resolved type

parameters of generic methods. The objective of our approach is to provide method binding as a data

transfer object (DTO) that will contain all the information extracted from the method declaration.

We capture all method binding information decompiling class files from java core API packages,

project deliverables, and external project dependency deliverables.

Invocation Context: In this paper, invocation context refers to the context where the method

invocation occurred. We collect information from the invocation context such as type of arguments,

type of method invoker, type arguments, and invocation context class, which is the class where the

method was invoked. Additionally, we also collect all the superclasses and inner classes of the

17

invocation context class.

Variadic Argument: Java programming language supports the functionality of passing a vari-

able number of arguments to a method. Java will consider all the arguments as an array argument.

This type of argument is called a variadic argument. In Java, variadic argument is also known as

varargs argument. In this paper, we have used variadic argument and varargs argument interchange-

ably.

18

Chapter 4

Approach

This chapter will outline the approach used to resolve the appropriate method-binding infor-

mation. There are two stages to our approach. We can view each step as an API call where the

user provides input to receive a set of outputs. The first stage 4.1, encompasses the extraction of

the project’s Java version and dependent external library artifacts from the build system and the

storing process of all class metadata (e.g., fields, methods, superclass hierarchy). We collect class

metadata by extracting Java core packages based on the project’s Java version and archives of all

dependent artifacts. In the second stage, 4.2, we perform the extraction of accurate method-binding

information for method invocation expression. The approach’s overview is shown in figure 4.1.

4.1 Artifact & Java Version Extraction

To extract external artifacts and the Java version of the project, as a first step, we determine the

project’s build system. We take different approaches based on the project’s build system to extract

the Java version and dependent artifacts. Our methodology currently supports the project’s Java ver-

sion and artifact extraction from the Maven and Gradle build systems. After the extraction process,

we retrieve all the archive files of dependent artifacts from Maven’s public artifact repositories. We

extract all the class metadata from archive files using a byte-code decompiler and store the metadata

in our system. Figure 4.2 illustrates an overview of this procedure.

19

1. Github Project URL
2. Commit ID
3. Project Name

Artifact & Java Version Extraction

Method Binding Information
Resolution

Method Invocation
Expression

Method Binding
Information

Figure 4.1: Overview of our approach

4.1.1 Input

Our approach will require three inputs for the extraction of the project’s java version and depen-

dent artifacts. The three inputs are:

(1) GitHub Project URL: The URL that identifies the project on GitHub.

(2) Commit ID: specifies the specific commit ID in the commit history.

(3) Project Name: identifies the project in our system.

4.1.2 Determination of Build System

There are a few distinguishing characteristics that can be used to identify the build system of a

project. The presence of a pom.xml file or a file with the .pom extension in the root directory of the

project will indicate a Maven build system. On the other hand, in a Gradle build system, the root

directory will have a build.gradle or build.gradle.kts file.

20

1. Github Project URL
2. Commit ID
3. Project Name

Determine Build
System

Extract Java Version & Artifact
Information

Not Supported

Extract Artifact ArchivePublic Artifact
Repositories

Extract Java Core Package
Archive

DB
Exists in Database Extract class files Using Java

byte-code Decompiler

1. Java Version
2. Artifact

Information

Other

No

Yes

Local Storage of Major JDK
Package Archive

Maven or Gradle

Figure 4.2: Overview of Java Version & Artifact Extraction

21

4.1.3 Extraction of Java Version & Artifacts

Depending on the type of build system, the procedure for extracting the Java version and de-

pendent artifacts from build specifications varies. We additionally consider the project as another

dependent artifact, as we wish to consider all the packages of the project to determine the appropri-

ate method binding.

For Maven build systems, we need to parse POM files to determine the project’s Java version

and all external dependencies. The Gradle Tooling API can be used to retrieve the Java version and

project dependencies from any Gradle build system.

Maven Build System To extract artifacts and the Java version of the project, we depend on Ef-

fective POM. Effective POM is a culmination of Super POM and user-defined POM configuration.

In order to generate Effective POM, we need to extract all the POM files from the project. For the

extraction of build configuration files (i.e., POM, build.gradle) we support two functionality.

(1) Remote Fetch: Remote fetch functionality allows us to use GitHub API to fetch only the

build configuration files from GitHub repositories.

(2) Local Fetch: Local fetch functionality allows us to clone the project directory locally and

perform the extraction of build files from the locally cloned directory.

We have implemented two API endpoints to provide the support for selecting two different fetch

types 5.1.

After the extraction of all the POM files, we perform the generation of Effective POM using

Apache Maven Invoker 1. Apache Maven Invoker provides an API to perform the tasks by building

up a conventional Maven command line from the options given. Finally, we parse the XML file to

extract the Java version and dependent artifacts information.

Gradle Build System For Gradle build systems, we depend on Gradle tooling API to extract the

Java version of the project and dependent artifacts information. We also support two types of fetch

mechanisms for Gradle build systems. For remote fetch type extraction of build files, in certain
1https://maven.apache.org/shared/maven-invoker/

22

scenarios, extracting additional custom build-related files is required. The build scripts usually

contain the location of these additional files. We provide a simple regex-based operation to perform

the extraction of all build-related files.

4.1.4 Extraction Of Java Core Packages

Every Java Development Kit (JDK) includes core API packages (e.g., java.lang, java.util) that

can be accessed in projects without declaring any external dependencies. We maintain local storage

of all the archives of all major Java versions. For all the Java versions up to 8, core packages are

archived as jar. For JDK 9 and later versions, a new archive format called jmod is introduced,

which can contain additional files in addition to classes and resource files. We collect the Java core

package archives based on the project’s Java version.

4.1.5 Extraction of Artifact Archives

We leverage the support of the Apache Maven Artifact Resolver 2 to extract the artifact archives

from public artifact repositories. We can package a project’s deliverables in different types (e.g.,

JAR, POM, maven-plugin, bundle). Apache Maven Artifact Resolver helps us in the extraction of

all the related archives for the project. For example, if a project is packaged as POM file, there can

be sub-module archives that need to be extracted as well. Apache Maven Artifact Resolver helps us

in the extraction of those dependent artifact archives.

4.1.6 Storing process

We extract the class metadata from all the archives of the Java core packages and dependent

artifacts. We perform a check to verify whether our storage system already contains the archive’s

class metadata, and if we cannot find any evidence of its existence in our storage system, we continue

the process of extracting class metadata from the archive. We utilize a byte-code decompiler to

extract all the class metadata and store the data in our system.
2https://maven.apache.org/resolver/index.html

23

4.1.7 Output

The extracted information, such as the project’s Java version and dependent artifact informa-

tion, is sent as output. The next stage will require this extracted information as inputs to perform

subsequent operations.

4.2 Method Binding Information Resolution

In this section, we explain the process of identifying appropriate method-binding information

from any method invocation expression. Figure 4.3 depicts the procedure we followed to generate

the correct method binding information. The entire process can be divided into three stages.

(1) Invocation context information extraction

(2) Identify appropriate method declaration and generate method binding information

(3) Post-processing of method binding information

4.2.1 Invocation context information extraction

In the first stage, we extract information from the invocation context that will help us iden-

tify the appropriate method declaration candidate. We will present the invocation context-specific

information we collect and explain the necessity for locating the appropriate candidate.

Import Statement Extraction We extract all the import statements of the source file. Import

statements are used to bring a class, a method, or classes inside a package into visibility for a class

file. Visibility is required to declare a class or method inside a class file without a fully qualified

name. Hence, extracting import statements will help us identify all the possible class candidates to

which the declared method may belong.

Invocation Context Class Information Extraction An invoked method can be declared on the

invocation context class or any of its superclasses or inner classes. In such scenarios, import state-

ments are not required for a class’s visibility. Thus, we also collect four key invocation context class

information.

24

1. Java Version
2. Dependent Artifact List
3. Method Invocation Expression

Import Statement Extraction

Invocation Context Class Information
Extraction

Identification of Type of Method Invoker
Expression

Identification of Types of Method
Argument Expression

Resolution of Appropriate Method Binding
Information

Post-Processing of Method Binding

Method Binding
Information

DB

Invocation Context
Information Extraction

Figure 4.3: Overview of Method Binding Information Resolution

25

(1) Qualified Name of Invocation Context Class: The invocation context class is the class where

the method invocation happened. If the invocation resides in a nested inner class, the imme-

diate enclosing inner class will be the invocation context class.

(2) Qualified Class Name Hierarchy: Java is an object-oriented programming language and sup-

ports inheritance. Thus, a child class can have access to any attributes or methods of super-

classes, and we have to consider the superclass hierarchy of the invocation context class in

order to determine the appropriate method declaration. We collect all the superclass names

and their inner class names, preserving their hierarchical order.

(3) Invocation Context Class Declaration Order: We also collect an ordered list of qualified names

of all classes in the superclass hierarchy, preserving their declaration order in the class file.

In the case of multiple candidates where all other conditions are satisfied, the class with the

earlier position in the declaration order will have priority.

(4) Invocation Context Formal Type Parameter List: We also extract a list of FormalTypeParam-

eterInfo for a generic invocation context class. We use the list of FormalTypeParameterInfo

to resolve the formal type parameters in the post-processing of method binding information

4.2.3 stage.

Identification of Type of Method Invoker Expression A method invocation can have an invoker

expression. The invoker expression represents the expression upon which the method invocation

occurred. An invoker expression can be a declared variable, a fully qualified class name, or a field

instance. In figure 3.1, System.out represents the invoker expression. In this instance, out is the

name of a field instance declared on java.lang.System class, and the qualified class name of the type

of the field instance is java.io.PrintStream. Identifying the appropriate type representation of the

invoker expression will help us narrow down the eligible classes to which the method declaration

belongs.

Identification of Types of Method Argument Expressions An invocation of a method may re-

quire one or more arguments. Identifying the type representation of the method argument expression

26

will help us identify the appropriate candidate. We compare the type of argument expression with

the type of declared method parameters to identify the appropriate method declaration. Listing 1

demonstrates a case in which we can identify the appropriate method declaration by comparing

types of arguments among multiple overloaded method declarations.

Listing 1 Identification of accurate method declaration from Type of Arguments in Invocation Con-
text

1

2 //Method Invocation Context
3 public strictfp class Range implements Serializable {
4 ...
5 private static double min(double d1, double d2) {
6 ...
7 return Math.min(d1, d2);
8 }
9 }

10 // Method Declaration Context
11 public final class Math {
12 ...
13 public static double min(double a, double b) {
14 ...
15 }
16

17 public static float min(float a, float b) {
18 ...
19 }
20 }

Type Representation In order to represent the type of any expression, we have developed our

own type representation system, which allows us to keep the necessary data for our computation.

We have converted the types of invoker expressions as well as the types of method arguments into

our type representation. We have used this uniform and simplified representation of the type system

throughout our entire approach. Table 4.1 shows the complete list of type representations in our

system. We have introduced a total of ten representations to depict all the Java types.

PrimitiveTypeInfo represents the primitive types (e.g., int, char, boolean), and QualifiedType-

Info represents a fully qualified class name. In addition, we also introduced SimpleTypeInfo, which

will contain the non-qualified name of the class. In Java, any generic class instantiated with a type

27

Table 4.1: Type Representation

Type Name Represents
PrimitiveTypeInfo All primitive types (e.g., int, char, boolean)
QualifiedTypeInfo Any object data types
SimpleTypeInfo Object data types used for user input

ParameterizedTypeInfo Any parameterized type with type arguments
FormalTypeParameterInfo Generics formal parameters

ArrayTypeInfo array
VarargTypeInfo varargs
NullTypeInfo null

FunctionTypeInfo lambda expression, Method References
VoidTypeInfo void

argument is called parameterized type. To represent a parameterized type, we have used Parame-

terizedTypeInfo. In ParameterizedTypeInfo representation, we store the fully qualified name of the

generic class together with a list of type arguments. Each type argument can itself be a type rep-

resentation (i.e., QualifiedTypeInfo, FormalTypeParameterInfo, ParameterizedTypeInfo, or Array-

TypeInfo). FormalTypeParameterInfo represents the formal type parameter and we store the name

of the type parameter and base type info in this representation. In Java, we can assign an upper

bound (i.e., extends) or lower bound (i.e., super) class in the definition of a formal type parame-

ter. In our representation, the bound class name is stored as the base type. The default base type is

java.lang. Object. ArrayTypeInfo and VarargTypeInfo represent array and variadic argument respec-

tively and we store the class name of type inside our representation. Additionally, ArrayTypeInfo

will contain the dimension of the array. We represent any lambda expression or method references

(e.g., constructor references, static method reference) with FunctionTypeInfo which only stores the

return type and argument types of the respective methods. Finally, NullTypeInfo and VoidTypeInfo

are used to represent the null and void type, respectively.

To convert an expression into our type representation, we need to identify the appropriate bind-

ing information for the expression. From the binding information, we can construct our type repre-

sentation. There are two types of binding information we may need to extract from an expression.

(1) Identifying Class Binding Information from type or expression name.

(2) Identifying Field Binding Information from expression name.

28

Identifying Class Binding Information from Type or Expression Name Identifying class-binding

information from type or expression names is a multi-stage process. The visibility of a class or

package in a partial program requires one of these conditions.

(1) The class or package is internal to the project.

(2) The class or package is internal to the Java core API.

(3) The class or package is declared in dependent artifact archives.

In the Artifact and Java Version Extraction stage 4.1, we identify the project’s Java version,

dependent artifact information, and the project’s artifact information. Based on the above-mentioned

conditions, we can claim that the class of any defined expression in the partial program will belong

to packages that are declared in the Java core API archive, dependent artifact archive, or project

archive.

In addition, there are two ways a type or class can be declared in an expression (i.e., simple type

and qualified type). In qualified type representation, the fully qualified class name is available in the

expression. On the other hand, in simple type representation, only the class name is available in the

expression. However, the visibility of the class name requires one of the following conditions:

(1) The fully qualified class name is declared on the import statement.

(2) The class is declared as one of the inner classes inside the invocation context class.

(3) The class is declared in one of the parent classes of the invocation context class.

Based on the conditions mentioned above, we have formulated our algorithm. Algorithm 1

shows the algorithm for detecting class binding information. Our algorithm requires dependent

artifact information, Java version, extracted import statements 4.2.1, invocation context class infor-

mation 4.2.1, and type or expression name as input to extract appropriate class binding information.

We expect the output produced in the section 4.1 should be used as inputs for dependent artifact

information and the Java version.

On line 1, we initialize an empty eligible class binding information list. On line 2, we extract

all the class binding information of the Java core API archives and dependent artifact archives from

29

our storage. If the expression is a qualified type where the expression contains the fully qualified

class name, we perform a modification on line 6 where we add the fully qualified class name in

importedClassNameList and convert the qualified name of the expression to the simple name. A

simple name only contains the name of the class without package information. In lines 3 and 4, we

extract the imported class names and package names from the import statement. In line 8, we iterate

over the class binding list that we constructed on line 2 and check the existence of the qualified name

of particular binding information in the list of imported class names, packages, or invocation context

class hierarchy on line 10. Upon fulfillment of any condition, we perform the name matching on

line 7 and add it to our eligible class binding list. Finally, we perform priority-based filtration on the

eligible class binding list to narrow down the eligibility and identify the appropriate class binding

information.

Algorithm 1 Identify class binding information c from type or expression name n

Input: D is a set of dependent artifact information, J is Java Version, invocationConCI is a Data-Object-
Model containing invocation context class information, I is a list of import statements, n is the name of
the type or expression

Output: c is the eligible class from type name N

1: Initialize eligibleClassBindingInfoList
2: classBindingInfoList← getAllClassBindingInfo(D,J)
3: importedClassNameList← getAllImportedClass(I)
4: importedPackageList← getAllImportedPackage(I)

5: if isQualifiedType(n) then
6: n← processModification(n, importedClassNameList)
7: end if

8: for i = 1, i <= classBindingInfoList.size(), i++ do
9: cBindingInfo = classBindingInfoList.get(i)

10: if importedClassList.contains(cBindingInfo.getQName())
or importedPackageList.contains(cBindingInfo.getPackageName())
or invocationConCI.getClassNameHierarchy().contains(cBindingInfo.getQName()) then

11: if cBindingInfo.getName().equals(n) then
12: eligibleClassBindingInfoList.add(class)
13: end if
14: end if
15: end for

16: eligibleClassBindingInfoList← priorityBasedF iltering(eligibleClassBindingInfoList)
17: c← eligibleClassBindingInfoList.get(0)

18: return c

30

For priority-based filtering, we have followed a heuristics-based approach adopted from the Java

language convention. We processed the filtering in four steps in an orderly fashion and try to narrow

down the eligible class list.

Algorithm 2 describes the priority-based filtration process. On line 2, we check whether any

eligible class binding information is declared on the import statement as a class. In that scenario,

we prioritize that class binding information as eligible and return it as output. On line 5, we check

whether the eligible class binding information is declared in the invocation context class hierarchy

4.2.1. If we can find any eligible candidate, we prioritized those class binding information as eligible

and return it as output. In the next step, on line 8, we check if any class binding information is

declared under the Java core API packages (i.e., java.lang). In such a scenario, we consider

those class binding information as eligible and return it as result. Finally, on line 11, we check

whether the type or expression itself is a qualified type. In that scenario, we prioritize the eligible

class list using the matched fully-qualified name and return it as result.

Algorithm 2 Priority Based Filtering on cBindingInfoList

1: function PRIORITYBASEDFILTERING(importedClassNameList,invocationConCI , n,
cBindingInfoList)

2: if Any getClassQNameList(cBindingInfoList) exists in importedClassNameList then
3: return getF ilteredListOnlyDeclaredInImports(cBindingInfoList,

importedClassNameList)
4: end if

5: if Any getClassQNameList(cBindingInfoList) exists in
invocationConCI.getClassQNameHierarchy() then

6: return getF ilteredListOnlyPartOfClassHierarchy(cBindingInfoList,
invocationConCI.getClassQNameHierarchy())

7: end if

8: if cBindingInfoList exists in the Java core API package then
9: return getF ilteredListOnlyPartOfJavaDefaultPackage(cBindingInfoList)

10: end if

11: if isQualifiedType(n) then
12: return getF ilteredListMatchesQualifiedTypeName(cBindingInfoList, n)
13: end if

14: return cBindingInfoList
15: end function

31

Identifying Field Binding Information from Expression We perform the extraction of field bind-

ing information in five stages. We can construct the type representation from field binding informa-

tion. Hence, identifying appropriate field binding information will help us construct an appropriate

type representation of the field instance. We identify appropriate binding information from different

scopes or perspectives. We gradually increase the scope to resolve appropriate binding informa-

tion. If we can find any eligible candidate in any of the scopes, we return the candidates as output;

otherwise, in the end, we return an empty list.

Algorithm 3 shows the five-stage approach of identifying appropriate field binding informa-

tion from expression. In lines 1-3, we initialize fBindingList and extract the class names and

package names from import statements. On line 4, we extract the field name from the expression.

The expression can contain a simple or fully qualified class name associated with the field name.

Therefore, if a fully qualified class name is available we extract the class name and append it to

importedClassList inside the processF ieldName method.

We start our process through the initialization of fBindingList which will contain the ap-

propriate field binding information list. On lines 2 and 3, we perform the extraction of quali-

fied class names and package names defined in import statements. In the first stage, we con-

sider the field expression scope. A field instance may contain a qualified class name associated

with it in the expression. In such a scenario, we start our search process for finding appropri-

ate field binding information from the fully qualified class name. On line 8, we invoke the function

getF ieldBindingInfoListForExpressionScope to get the eligible field binding candidates. Al-

gorithm 4 presents the search process. We start our search for the field instance from the qualified

class name. If we can find a field instance with fieldName in that class, we will consider the

instance an eligible candidate and return from the function. Otherwise, we in an iterative fashion,

traverse the superclasses of the qualified class name and try to find the field instance. If we cannot

find any instance that matches fieldName we return an empty list.

At the end of stage 1, if we cannot find any eligible field binding information we move to the

next stage. The scope of this stage is the method invocation context where we assume the field

instance is declared in the method invocation context. On line 15, We start our search for the field

from the invocation context class and traverse all superclasses. If we can identify eligible field

32

Algorithm 3 Identify field binding information f from expression e

Input: D is a set of dependent artifact information, J is Java Version, invocationConCI is a Data-Object-
Model containing instance context class information, I is a list of import statements, e is the field expres-
sion

Output: fBindingList is the list of eligible field binding information that can be inferred from the expres-
sion e

1: Initialize fBindingList
2: importedClassList← getAllImportedClass(I)
3: importedPackageList← getAllImportedPackage(I)
4: fieldName← processF ieldName(e, importedClassList)
5: ▷ Stage 1: Field expression scope
6: if expression e contains a fully qualified class name with field name then
7: qClassName← extractQualifiedClassName(e)
8: fBindingList← getF ieldBindingInfoListForExpressionScope(D,J, qClassName,

fieldName)
9: if isNotEmpty(fBindingList) then

10: return fBindingList
11: end if
12: end if

13: ▷ Stage 2: Method Invocation context scope
14: if isNotEmpty(invocationConCI.getClassNameHierarchy()) then
15: while Iterate over invocationConCI.getClassNameHierarchy() do
16: classSet← instanceConCI.getClassNameHierarchy().get(index)
17: fBindingList← getF ieldBindingInfoList(D,J, classSet, fieldName)
18: end while
19: if isNotEmpty(fBindingList) then
20: return fBindingList
21: end if
22: end if

23: ▷ Stage 3: Directly imported class scope
24: fBindingList← getF ieldBindingInfoList(D,J, importedClassList,

fieldName)
25: if isNotEmpty(fBindingList) then
26: return fBindingList
27: end if

28: ▷ Stage 4: Imported package scope
29: fBindingList← getF ieldBindingInfoList(D,J,

importedPackageList, fieldName)
30: if isNotEmpty(fBindingList) then
31: return fBindingList
32: end if

33

33: ▷ Stage 5: Super classes of all imported classes scope
34: classSet← importedClassList
35: while classSet has superclass or interface AND isEmpty(eligibleF ieldList) do
36: classSet← getImmediateSuperClassOrInterface(classSet)
37: fBindingList← getF ieldBindingInfoList(D,J, classSet, fieldName)
38: end while

39: return fBindingList

binding information, we return from the algorithm. Otherwise, we move to the next stage.

In stage 3, on line 24, we will only consider the directly imported classes as a scope and try

to find the field binding information. On line 29, we move to stage 4, we look into all the classes

of imported packages and try to find the field instance, and if there is any eligible field binding

information we will return from the algorithm.

Finally, in stage 5, we will look into all the superclasses of all the classes (both directly imported

or via package import). We will gradually traverse into the superclass hierarchy until we reach

java.lang.Object. If we can find field binding information, we can return it as an eligible

candidate otherwise we will return an empty list.

Algorithm 4 Function for finding field binding information from Field Expression Scope
1: function GETFIELDBINDINGINFOLISTFOREXPRESSIONSCOPE(D,J ,qClassName,fieldName)
2: initialize eligibleF ieldBindingInfoList, classSet
3: classSet.add(qClassName)

4: while isNotEmpty(classSet) AND isEmpty(eligibleF ieldBindingInfoList) do
5: eligibleF ieldBindingInfoList← getF ieldBindingInfoList(D,J, classSet, fieldName)

6: if isEmpty(eligibleF ieldBindingInfoList) then
7: classSet← getSuperClassSet(classSet)
8: end if
9: end while

10: return eligibleF ieldBindingInfoList
11: end function

4.2.2 Resolution of Appropriate Method Binding Information

After acquiring all invocation context information, we will perform the resolution of appro-

priate binding information. We have introduced a six-stage approach to identify the appropriate

34

method-binding information similar to the field binding resolution. Algorithm 5 shows the com-

plete approach. We will explain each stage separately with the corresponding algorithm of each

stage.

In lines 1-4, we initialize our list, extract the classes and packages from import statements, and

process the method name. From line 6, we check the existence of the method invoker. If the method

invocation has an invoker expression and we can identify the type of the invoker (4.2.1), we will try

to look for an eligible method binding from the invoker expression scope.

Stage 1: Invoker expression scope Algorithm 6 shows the first stage where we try to resolve the

method binding information from the type of invoker expression. At this stage, after initialization,

we start from the invoker class and then we iterate through the superclass hierarchy of the invocation

context class. We traverse all parent classes or interfaces of the invocation context class, followed

by traversing their parents. We continue this process until we complete the superclass hierarchy. We

search for method binding information based on the method name and the number of arguments on

line 5.

If the type class name of the invoker expression is invocation context class, we need to set true to

the attribute invocationContextAttribute for all eligible method binding information [line 6]. We

utilize this attribute in the filtration process (4.2.2). On lines 9 and 10, we perform post-modification

to the eligible method binding information and apply the filtration process in order to identify the

appropriate method binding. We have explained the post-modification (4.2.2) and filtration (4.2.2)

processes in detail in later sections.

In this iterative process of traversal of the superclass hierarchy, we may find eligible method

candidates that partially match all the selection criteria. However, there can be other eligible method

binding information candidates in the hierarchy that are more accurate. We can define such eligible

method bindings as deferred method bindings. For deferred method bindings, we have certain

conditions. We have explained the deferred conditions in a later section. We try to hold deferred

method bindings until we complete the traversal. If we still can’t find any non-deferred eligible

method binding candidates, we will find the appropriate method binding from the deferred set. On

line 11, we performed the check for the criteria for being deferred and stored the candidates in a

35

Algorithm 5 Identify method binding mBinding from method name expression mNameExp

Input: D is a set of dependent artifact information, J is Java Version, I is a list of import statements,
mNameExp is the method name expression, numberOfArgs is the number of the method arguments,
invokerType is the type of method invoker, argTypeList is the list of argument types of the method,
invocationConCI is an object containing all invocation context class information

Output: eligibleMethodList is the list of eligible methods that can be inferred from method name
methodName

1: Initialize mBindingList
2: importedClassList← getAllImportedClass(I)
3: importedPackageList← getAllImportedPackage(I)
4: mName← extractMethodName(mNameExp)
5: ▷ Stage 1: Method invoker expression scope
6: if invokerType exists then
7: eligibleMethodList← getMBindingListforInvokerExpressionScope(mName,

numberOfArgs, invokerType, argTypeList, invocationConCI.getClassNameHierarchy())
8: if isNotEmpty(eligibleMethodList) then
9: return eligibleMethodList

10: end if
11: end if
12: ▷ Stage 2: Method invocation context scope
13: if invocationContextClassHierarchy is not empty then
14: eligibleMethodList← getMethodListForInvocationContextScope(mName,

numberOfArgs, invokerType, argTypeList, invocationConCI.getClassNameHierarchy())
15: if isNotEmpty(eligibleMethodList) then
16: return eligibleMethodList
17: end if
18: end if
19: Initialize deferredMethodSet
20: ▷ Stage 3: Directly imported class scope
21: eligibleMethodList← getMethodListFromImportedClasses(mName,

numberOfArgs, invokerType, argTypeList, deferredMethodSet, importedClassList)

22: if isNotEmpty(eligibleMethodList) then
23: return eligibleMethodList
24: end if
25: ▷ Stage 4: Inner classes of directly imported class scope
26: eligibleMethodList← getMethodListFromInnerClass(mName,

numberOfArgs, invokerType, argTypeList, deferredMethodSet, importedClassList)

27: if isNotEmpty(eligibleMethodList) then
28: return eligibleMethodList
29: end if

36

30: ▷ Stage 5: Imported package scope
31: eligibleMethodList← getMethodListForPackageScope(mName,

numberOfArgs, invokerType, argTypeList, deferredMethodSet, importedPackageList)

32: if isNotEmpty(eligibleMethodList) then
33: return eligibleMethodList
34: end if
35: ▷ Stage 6: Super classes of all imported classes scope
36: eligibleMethodList← getMethodListForSuperClassScope(mName,

numberOfArgs, invokerType, argTypeList, deferredMethodSet, importedPackageList,
importedClassList)

37: return eligibleMethodList

separate list for further processing.

After the filtration and deferral processes, if we still have any eligible candidates, we break the

iteration process to return the result. Otherwise, we try to look into parent classes and interfaces.

After traversal of the superclass hierarchy, if only the set of deferred method binding information

is available, we perform a prioritization over the deferred method binding set and return the result.

Stage 2: Invocation Context Scope The second stage is the invocation context scope. Our main

focus in this stage is on the method invocation context class hierarchy. On line 13 of the algorithm 5

we check the availability of invocation context information and proceed to identify eligible method

bindings in that scope.

Algorithm 7 shows the process of identifying eligible method bindings from the invocation

context class hierarchy. We iterate over the invocation context class hierarchy that was created in

the previous section 4.2.1. We start with the invocation context class and all of its inner classes. On

line 4, we try to fetch all eligible method bindings from those classes based on the method name

and the number of method arguments.

We also true to the attribute invocationContextAttribute for all eligible method bindings

if they are declared on the invocation context class. On lines 7 and 8, we perform the same post-

modification and filtration process as in the previous stage. We also perform a deferred criteria

check for eligible method bindings (line 9). However, we allow deferring eligible method bindings

for any parent class or interface in this stage, as any eligible method binding, even though it satisfies

deferred criteria, will have priority. For deferred method bindings, we store them in a separate list

37

Algorithm 6 Algorithm for finding method binding list from invoker expresssion
Input: mName is the name of the method, numberOfArgs is the size of the method arguments,

invokerType is the type of method invoker, argTypeList is the list of argument types of the method,
invocationContextClassHierarchy is an ordered set of invocation context class hierarchies,

Output: eligibleMethodList is the list of eligible method binding list

1: initialize classSet, deferredMethodSet, classNameDeclarationOrderList, eligibleMethodList
2: classSet.add(invokerType.getClassName())
3: classNameDeclarationOrderList.add(classSet)

4: while isNotEmpty(classSet) AND isEmpty(eligibleMethodList) do
5: eligibleMethodList← getQualifiedMethodList(D,J, classSet,mName, numberOfArgs)

6: if check invokerTypeInfo exists in invocationContextClassHierarchy.get(0) then
7: setInvocationContextClassAttribute(eligibleMethodList)
8: end if

9: postModification(eligibleMethodList)
10: eligibleMethodList← filter(eligibleMethodList, invokerType, argTypeList)

11: if hasAllDeferredCriteria(eligibleMethodList) then
12: deferredMethodSet < −eligibleMethodList
13: eligibleMethodList.clear()
14: end if

15: if isEmpty(eligibleMethodList) then
16: superClassSet← getSuperClassSet(classSet)
17: processSuperClassClassOrder(superClassSet, classSet)
18: classSet← superClassSet
19: end if
20: end while

21: if isEmpty(eligibleMethodList) AND isNotEmpty(deferredMethodSet) then
22: prioritizeDeferredMethods(deferredMethodSet, classNameDeclarationOrderList)
23: eligibleMethodList← deferredMethodSet
24: end if

25: return eligibleMethodList

38

for processing after the complete traversal of the invocation context class hierarchy.

After the complete traversal, if only the set of deferred method binding information is available,

we perform a prioritization over the deferred method binding set and return the result.

Algorithm 7 Algorithm for finding method binding list from invocation context
Input: mName is the name of the method, numberOfArgs is the size of the method arguments,

invokerType is the type of method invoker, argTypeList is the list of argument types of the method,
invocationContextClassHierarchy is an ordered set of invocation context class hierarchy,

Output: eligibleMethodList is the list of eligible method binding list

1: initialize eligibleMethodList, deferredMethodSet
2: classNameDeclarationOrderList← getClassNameDeclarationOrder()

3: while Iterate over invocationContextClassHierarchy do
4: classSet← invocationContextClassHierarchy.get(index)
5: eligibleMethodList← getQualifiedMethodList(D,J, classSet,mName, numberOfArgs)

6: setInvocationContextClassAttribute(eligibleMethodList)
7: postModification(eligibleMethodList)
8: eligibleMethodList← filter(eligibleMethodList, invokerType, argTypeList)

9: if index! = 0 AND hasAllDeferredCriteria(eligibleMethodList) then
10: deferredMethodSet < −eligibleMethodList
11: eligibleMethodList.clear()
12: end if

13: if isNotEmpty(eligibleMethodList) then
14: return eligibleMethodList
15: end if
16: end while

17: if isEmpty(eligibleMethodList) AND isNotEmpty(deferredMethodSet) then
18: prioritizeDeferredMethods(deferredMethodSet, classNameDeclarationOrderList)
19: eligibleMethodList← deferredMethodSet
20: end if

21: return eligibleMethodList

Stage 3: Directly imported class scope In the third stage, we only examine directly imported

classes to find the eligible method bindings. Algorithm 8 represents the approach. On line 2, we

take a similar approach as in previous stages to find the method bindings based on the method name

and number of arguments in the narrowed-down scope of directly imported classes. We also perform

post-modification, filtration, and the process of deferring eligible method bindings. However, the

process of evaluating deferred method bindings will be conducted after the end of the rest of the

39

stages. After all the post-processing, if we can find any eligible method binding, we will return it as

a result.

Algorithm 8 Algorithm for finding method binding list from directly imported class
Input: mName is the name of the method, numberOfArgs is the size of the method arguments,

invokerType is the type of method invoker, argTypeList is the list of argument types of the method,
deferredMethodSet is the list of deferred methods, importedClassList is the list of classes that is
declared directly on import statements

Output: eligibleMethodList is the list of eligible method binding list

1: initialize eligibleMethodList
2: eligibleMethodList← getQualifiedMethodList(D,J, importedClassList,mName, numberOfArgs)

3: postModification(eligibleMethodList)
4: eligibleMethodList← filter(eligibleMethodList, invokerType, argTypeList)

5: if hasAllDeferredCriteria(eligibleMethodList) then
6: deferredMethodSet < −eligibleMethodList
7: eligibleMethodList.clear()
8: end if

9: return eligibleMethodList

Stage 4: Inner classes of directly imported class scope In this stage, we will consider all the

inner classes of directly imported classes. Algorithm 9 represents this process of this stage. First,

we will collect all the inner classes from directly imported classes, represented on line 2. After

that, we will find eligible method bindings for those inner classes and perform most modification,

filtration and defer criteria check. If we can still find any eligible candidates, we will return.

Stage 5: Imported package scope In this stage, we will move our focus to the imported packages.

We will consider all the classes that belong to those packages as candidates for looking at the

appropriate method binding. Algorithm 10 presents the process that we perform in this stage. On

line 2, we fetch all the eligible method bindings which match the name and number of arguments.

On lines 2, 3, and 4, We perform post-modification, filtration, and the process of deferring method

bindings.

Stage 6: Super classes of all import classes At this stage, we will explore all the superclasses

and interfaces of the directly imported classes to find the eligible method bindings.

40

Algorithm 9 Algorithm for finding method binding list from inner class
Input: mName is the name of the method, numberOfArgs is the size of the method arguments,

invokerType is the type of method invoker, argTypeList is the list of argument types of the method,
deferredMethodSet is the list of deferred methods, importedClassList is the list of classes that is
declared directly on import statements

Output: eligibleMethodList is the list of eligible method bindings

1: initialize eligibleMethodList
2: innerClassList← getInnerClassList(importedClassList)
3: eligibleMethodList← getQualifiedMethodList(D,J, innerClassList,mName, numberOfArgs)

4: postModification(eligibleMethodList)
5: eligibleMethodList← filter(eligibleMethodList, invokerType, argTypeList)

6: if hasAllDeferredCriteria(eligibleMethodList) then
7: deferredMethodSet < −eligibleMethodList
8: eligibleMethodList.clear()
9: end if

10: return eligibleMethodList

Algorithm 10 Algorithm for finding method binding from imported packages
Input: mName is the name of the method, numberOfArgs is the size of the method arguments,

invokerType is the type of method invoker, argTypeList is the list of argument types of the method,
deferredMethodSet is the list of deferred methods, importedPackageList is the list of packages
declared on import statements

Output: eligibleMethodList is the list of eligible method bindings

1: initialize eligibleMethodList
2: eligibleMethodList← getQualifiedMethodList(D,J, importedPackageList,mName, numberOfArgs)

3: postModification(eligibleMethodList)
4: eligibleMethodList← filter(eligibleMethodList, invokerType, argTypeList)

5: if hasAllDeferredCriteria(eligibleMethodList) then
6: deferredMethodSet < −eligibleMethodList
7: eligibleMethodList.clear()
8: end if

9: return eligibleMethodList

41

We start with immediate parent classes and interfaces. Then, in an iterative process, we traverse

their parents until we complete the traversal of the superclass hierarchy. Algorithm 11 presents

the approach that we take in this stage. On line 2, we assign directly imported class names to a

set. Line 3 shows the iterative process inside which we try to find a set of all immediate parent

classes and interfaces and look for eligible method bindings for that set. We again perform the

post-modification, filtration, and deferral processes. If we can find any eligible candidates, we will

return; otherwise, we will progress through the iterative process. Finally, on line 12, in the case

of no eligible method bindings, we check for any deferred method bindings that exist. If there are

deferred method bindings, we perform the prioritization and return from the algorithm with deferred

method bindings as the result.

Algorithm 11 Algorithm for finding method binding from super classes
Input: mName is the name of the method, numberOfArgs is the size of the method arguments,

invokerType is the type of method invoker, argTypeList is the list of argument types of the method,
deferredMethodSet is the list of deferred methods

Output: eligibleMethodList is the list of eligible method bindings

1: initialize eligibleMethodList
2: classSet← importedClassList

3: while classSet has superclass or interface do
4: classSet← getImmediateSuperClassOrInterface(classSet)
5: eligibleMethodList← getQualifiedMethodList(D,J, classSet,

mName, numberOfArgs)

6: postModification(eligibleMethodList)
7: eligibleMethodList← filter(eligibleMethodList, invokerType, argTypeList)

8: if hasAllDeferredCriteria(eligibleMethodList) then
9: deferredMethodSet < −eligibleMethodList

10: eligibleMethodList.clear()
11: end if
12: end while

13: if isEmpty(eligibleMethodList) AND isNotEmpty(deferredMethodSet) then
14: prioritizeDeferredMethods(deferredMethodSet,

owningClassNameDeclarationOrderList)
15: eligibleMethodList← deferredMethodSet
16: end if

17: return eligibleMethodList

42

Post Modification Process: In each of the 6 stages, we performed post-modification to the eligible

method bindings. We provide post-modifications for three different scenarios.

• Method Invocation of an Array or Varargs: In the Java programming language, an array

is an object and the array type has members such as length: a field instance, clone: a public

method. The return type of the clone method should be also the same type as the invoker of

the method. However, the byte-code representation provides java.lang.Object as the return

type for method clone. We perform a modification to return the type of array as return type.

Java also considers varargs similar to an array. Hence, we also perform similar modifications

for varargs.

• Inclusion of Internal Dependency Property: In our method binding object model we pro-

vide an additional property named internalDependency. The value is boolean. This property

indicates whether this method binding is declared inside the project or declared on external

third-party dependencies. The java core packages also fall under external dependency. Based

on the list of artifacts that we collect in the earlier stage 4.1, we can resolve this property.

• Removal of Arguments added in Byte-Code Representation for Inner Class Construc-

tor: We extract the method binding information from the byte-code representation. The

Java compiler, during byte-code generation, performs manipulations on source code, such as

adding an outer class as a reference to the non-static inner class constructor if that wasn’t

explicitly defined. This kind of addition of arguments will create an issue during argument

comparisons. To identify and remove the argument that is added by compilers, we depend on

the arguments from the invocation context. We take into consideration the first argument of

the invocation context. If the first argument is a reference to the outer class, we will consider

the first argument of the method as explicitly defined. Otherwise, we will consider the first

argument as a post-addition by the java compiler and remove the argument from the argument

list of method binding. We will also perform the number of arguments check for all eligible

method bindings after the removal of arguments added in byte-code representation.

43

Filtration Process: In this section, we explain the filtration process that we perform during the

resolution of appropriate method binding. We have listed down all the different criteria for filtration

as well as explained each criteria-based filtration process.

Filtration based on Invoker Type: This filtration will be applicable for method invocations

that have an invoker type. The appropriate method binding may belong to the invoker type class or

any superclass or interface. So, in this filtration process, we compare the class name collected from

the invoker type with the class name collected from method binding. The method binding contains

the class name where the method is declared. We will consider all the bindings eligible if the class

name of the invoker type or the name of any parent class or interface matches the class name of the

method binding. Algorithm 12 shows the filtration process.

In line 1, we collect the qualified class name from the invoker type. In line 2, we create a map

from eligibleMethodBindingList where the key is the class name of the method binding and the

value is the list of method bindings that have the same class name. On line 3, we also collect all the

class names from all the method bindings.

In line 5, we try to compare the class name of the invoker type with all the class names of the

method bindings. If we can find a match, we will consider that method binding eligible. Otherwise,

we will check whether invokerType is an array, and if that is true, we will consider all method bind-

ings that have the class name java.lang.Object. Because all array instances have java.lang.Object

as their parent class. For eligible method bindings, we also assign a matching distance, which will

be used later to prioritize in the case of multiple candidates.

In the case of the unavailability of eligible method bindings that match the invoker type, we will

move on to the next stage, where we will iterate over the parent classes and interfaces of the invoker

type and try to find a match for eligible method bindings. We will also maintain a variable distance

which will preserve a score that will increase in the case of moving from the most immediate parent

classes to further parent classes in the class hierarchy. On line 13, we start the iteration process,

and on line 14, we collect all the immediate parent classes and interfaces of the invoker class and

also increment the distance on the next line. On line 16, we iterate over all the classes that we have

found from method bindings and check if we can find any matching between the parent classes

and the class from the method binding. If we can find any matches, we can assign the matching

44

distance score and add the method binding to the eligible list. On line 22, we perform the process

of deferring eligible method bindings based on the deferred criteria. We hold the list of deferred

eligible method bindings in a separate list until the traversal is complete. After the deferral process,

on line 26, we check the availability of eligible method bindings. If any eligible method binding is

available, we can exit the iteration process. Otherwise, we fetch the parent classes and iterate the

process until the superclass hierarchy traversal is complete.

After the iteration process, if we have any eligible bindings, we will return the result. Otherwise,

we will return the deferred method binding list.

Filtration based on Method Argument Types: Filtration based on method argument types

constitutes identifying eligible method binding candidates based on the comparison between argu-

ments collected in the invocation context and arguments from the eligible method bindings. We will

narrow down the eligible method binding list based on the successful matching of all the method

parameters with their corresponding arguments from the invocation context.

Usually, we consider the comparison a successful match if the type class name of the argument

passed in the invocation context matches the type class name of the argument in the method binding.

However, the Java programming language offers features such as primitive type narrowing, prim-

itive type widening, conversion of primitive to wrapper classes, and passing variadic arguments.

Therefore, these language features need to be considered during the comparison of arguments. For

overloaded method declarations, we will find multiple method binding candidates where we have to

choose the appropriate one based on invocation context arguments. When the argument type class

names do not match directly and we need to perform some form of conversion or inference in order

to be considered as matching, we assign a distance value in those scenarios. The distance represents

the closeness of matching between the argument of the invocation context and the argument of that

particular method binding. Later, we will explain the assignment of the distance in detail.

Algorithm 13 shows the approach that we take in order to identify eligible method binding

candidates. The algorithm takes the list of arguments of the method binding, the list of arguments

collected from the invocation context, and the method binding as input and produces a boolean value

indicating the candidacy of eligibility for that particular method binding.

For any method references and lambda expressions, we create a type representation named

45

Algorithm 12 Algorithm for filtration process based on invoker type
Input: eligibleMethodBindingList is the list of eligible method bindings, invokerType is the type of

method invoker, isSuperInvoker represents whether invoker is super keyword
Output: filteredMethodBindingList is the list of eligible method bindings

1: invokerClassName← invokerType.getQualifiedClassName()
2: Map < String, List < MethodBinding >> methodBindingListByClassNameMap ←

getMethodBindingListByClassNameMap(eligibleMethodBindingList)
3: methodBindingClassNameList← methodBindingListByClassNameMap.keys()
4: initialize filteredMethodBindingList

5: if methodBindingClassNameList.contains(invokerClassName) AND !isSuperInvoker then
6: filteredMethodBindingList.addAll(

methodBindingListByClassNameMap.get(invokerClassName))

7: else if isArray(invokerType) AND methodBindingClassNameList.contains(′java.lang.Object′)
then

8: filteredMethodBindingList.addAll(
methodBindingListByClassNameMap.get(invokerClassName))

9: setInvokerMatchingDistance(filteredMethodBindingList,maxSuperClassDistance)
10: else
11: initialize classSet, deferredMethodBindingSet,distance = 0
12: classSet.add(invokerClassName)

13: while classSet is not empty do
14: classSet← getSuperClass(classSet, isSuperInvoker)
15: distance← distance+ 1

16: for class in methodBindingClassNameList do
17: if classSet.contain(class) then
18: invocationTypeDistance←

(class = “java.lang.Object”)?superClassMaxDistance : distance
19: setInvokerMatchingDistance(filteredMethodBindingList,

invocationTypeDistance)
20: end if
21: end for

22: if hasDeferredCriteria(filteredMethodBindingList) then
23: deferredMethodBindingSet.addAll(filteredMethodBindingList)
24: filteredMethodBindingList.clear()
25: end if

26: if filteredMethodBindingList is not empty then
27: break
28: end if
29: end while

30: if filteredMethodBindingList is empty AND deferredMethodBindingSet not empty then
31: filteredMethodBindingList.addAll(deferredMethodBindingSet)
32: end if
33: end if

34: return filteredMethodBindingList

46

FunctionTypeInfo that contains the types of the arguments and the return type collected from the

invocation context. In Java, each lambda expression or method reference represents a functional

interface. A functional interface is an interface with only one abstract method, and the argument

types and return type of the abstract method must match the argument types and return type of the

corresponding lambda expression or method reference. Therefore, we start our filtration process by

converting FunctionTypeInfo into the functional interface class type representation in line 1. We

perform the conversion based on the match of argument types and return type of FunctionTypeInfo

with its corresponding functional interface argument’s abstract method. If we can perform the

conversion successfully, we will continue with matching the rest of the arguments. Otherwise,

we will consider the method binding ineligible due to the mismatch of arguments and return false.

Conversion of FunctionTypeInfo Arguments Algorithm 14 shows the process of conversion of

FunctionTypeInfo arguments passed during method invocation. We start the process by iterating

the argument list and processing each FunctionTypeInfo for possible conversion in line 2. For the

FunctionTypeInfo argument, we assume the corresponding method-binding argument is a functional

interface. Therefore, we search for the only abstract method binding information declared on that

functional interface in line 7. If we are unable to locate the abstract method, we will consider that

the particular method-binding argument is not a functional interface and return false confirming the

ineligibility of the method binding in terms of argument matching.

We start by iterating over the list of arguments provided in the invocation context. On line 2,

we check whether the type of the argument is FunctionTypeInfo and start the process of argument

matching from there. On line 7, we try to fetch the method binding information of the abstract

method from the current method binding argument type. If we cannot find any abstract method, we

can consider that particular argument of method binding to be not a functional interface and there-

fore return false so that we can ignore that particular method binding from eligibility consideration.

The FunctionTypeInfo argument can be constructed from a constructor reference of a inner class

where we may find outer class references as arguments that are added later by the compiler in the

byte-code representation to resolve the accessibility of the outer class from the inner class. As a

result, we may encounter FunctionTypeInfo with an additional number of arguments. The addition

47

Algorithm 13 Algorithm for filtration process based on method arguments
Input: argTypeList is the list of method parameters passed as arguments, mBindingArgTypeList is the

list of argument types of method binding, mBinding is the eligible method binding
Output: boolean represents whether particular mBinding satisfies all constraints

1: isSuccess← conversionOfFunctionTypeInfoArguments(argTypeList,mBindingArgTypeList)
2: if not(isSuccess) then
3: return false
4: end if

5: removeAllCommonArguments(argTypeList,mBindingArgTypeList)

6: if isEmpty(argTypeList) AND isEmpty(mBindingArgTypeList) then
7: return true
8: end if

9: initialize matchedArgList
10: for Iterate over each index of argumentTypeList do
11: arg ← argTypeList.get(index)
12: mBindingArg ← mBindingArgTypeList.get(index)

▷ Primitive Type Conversion
13: if isPrimitive(arg) AND isPrimitive(methodBindingArg) then

14: if processPrimitiveTypeConversion(arg,mBindingArg,mBinding,matchedArgList)
then

15: continue
16: else
17: return false
18: end if
19: end if

▷ Primitive To Primitive Wrapper Conversion
20: if processPrimitiveToWrapperMatching(arg,mBindingArg,mBinding,matchedArgList)

then
21: continue
22: end if

▷ Primitive Wrapper To Primitive Conversion
23: if processWrapperToPrimitiveMatching(arg,mBindingArg,mBinding,matchedArgList)

then
24: continue
25: end if

▷ NULL To Primitive Conversion
26: if processNullToPrimitiveComparison(arg,mBindingArg,matchedArgList) then
27: continue
28: end if

▷ Varargs Argument
29: if processV arargsArgument(argTypeList.subList(index),mBindingArg,mBinding,

matchedArgList) then
30: break
31: end if

48

▷ Object Array To Object Wrapper Conversion
32: if processArrayOfObject(arg,mBindingArg,matchedArgList) then
33: continue
34: end if

▷ Array Dimension
35: if checkMismatchOfArrayDimension(arg,mBindingArg,matchedArgList) then
36: return false
37: end if

▷ Special Type
38: if processArgMatchingWithSpecialType(arg,mBindingArg,mBinding,matchedArgList)

then
39: continue
40: end if

▷ Super classes and interfaces
41: processTraversalOfSuperClasses(arg,mBindingArg,mBinding,matchedArgList)
42: end for

43: processReducedArgsForV arargs(argList,mBindingArgList,matchedArgList,mBinding)

44: removeAllCommonArguments(mBindingArgList,matchedArgList)

45: return isEmpty(mBindingArgList)

of outer class references only happens when references were not explicitly declared. So on line 11,

we perform the reduction of arguments from FunctionTypeInfo for inner class constructors if we find

any mismatch in size between the abstract method’s arguments and arguments of FunctionTypeInfo.

In line 13, we perform the comparison between the arguments of the abstract method and Func-

tionTypeInfo. Upon a successful match, we replace the FunctionTypeInfo with its corresponding

functional interface type collected from method binding on line 14. Otherwise, we will return false.

After the conversion of FunctionTypeInfo arguments, we try to directly match the qualified class

names of arguments provided from invocation context and method binding. We remove the matched

class names from both lists as we consider those argument type as same. On line 5 of algorithm 13,

we perform the removal operation based on the class name match of arguments. After the removal

operation, if both argument lists are empty we can consider the method binding as eligible and

return true. Otherwise, we will move on to our next steps.

As part of our next step, we iterate over each argument of invocation context and its correspond-

ing argument of method binding and perform various conversion operations to check whether both

arguments successfully match. We also assign a distance value for each argument of the method

binding if the matching is considered to be inferred. By default, the distance value will always be

49

Algorithm 14 Conversion of FunctionTypeInfo
1: function CONVERSIONOFFUNCTIONTYPEINFOARGUMENTS(argTypeList,mBindingArgTypeList)
2: for i = 0; i < argTypeList.size(); i++ do
3: arg ← argTypeList.get(i)
4: if arg.isFunctionTypeInfo() then
5: functionTypeInfo← (FunctionTypeInfo)arg
6: mBindingArg ← mBindingArgTypeList.get(i)
7: mBindingList← getAbstractMBindingOfFuncInterface(mBindingArg.getClassName())

8: if isEmpty(mBindingList) then
9: return false

10: end if

11: reduceArgumentsForInnerClassConstructor(arg,mBindingList)

12: matched← false
13: if isArgumentsMatched(functionTypeInfo,mBindingList.first() then
14: argTypeList.set(i,mBindingList.first())
15: matched← true
16: break
17: end if

18: if not(matched) then
19: return false
20: end if
21: end if
22: end for

23: return true
24: end function

50

zero. The zero distance value means both arguments are identical. The aggregated distance of all the

arguments of the method binding represents how closely the method binding’s arguments matched

with provided arguments from the invocation context. We initialize a list matchedArgList on line 9

to keep track of all the matched arguments.

Primitive Type Conversion: As a part of specific scenarios, we begin by determining if the ar-

gument from invocation context and the argument from method binding are primitive types. If the

check holds true, we perform the argument matching based on primitive type conversion. If after the

conversion we can find a match, we move on to the next argument matching. Otherwise, we con-

sider that method binding ineligible due to argument mismatch and return false. In Java, there are

two different approaches in which a different primitive type can be passed against another primitive

type argument defined in the method declaration.

Widening Primitive Conversion: This conversion allows smaller size primitive types (i.e., int)

to be passed to bigger primitive types (i.e., double, long, double). Table 4.2 shows the type and

their corresponding allowed conversion types. Also, during this conversion, a precedence order

is maintained. The precedence order is based on the size of the type. For example, for int, the

precedence order will be long, float, double where long will have priority over float,

double. Listing 2 shows an example of the precedence order of widening primitive conversion.

The code snippet is extracted from JFreechart3. We have enlisted both method invocation context

and method declaration context in this snippet. We want to focus on method invocation moveTo

(line 20) with two int arguments. But in the method declaration context, one method declaration

has two double arguments and the other method declaration has two float arguments. Java compiler

will link the invocation to the method declaration with two float arguments (line 34).

Narrowing Primitive Conversion: This conversion allows primitive types with larger values to

be passed to smaller primitive method arguments. As a result, this type of conversion may lose

information about the magnitude of numeric value, precision, and range. Table 4.3 shows the types

and allowed conversion types.

Algorithm 15 shows the approach where we perform the primitive conversion check and based

on the matching we also assign the distance value. We have assigned two different distance values
3https://github.com/jfree/jfreechart

51

Table 4.2: Eligible Widening Primitive Type Conversions

Type Allowed Conversion Types
byte short, int, long, float, double
short int, long, float, double
char int, long, float, double
int long, float, double
long float, double
float double

Table 4.3: Eligible Narrowing Primitive Type Conversions

Type Allowed Conversion Types
short byte, char
char byte, short
int byte, short, char
long byte, short, char, int
float byte, short, char, int, long
double byte, short, char, int, long, float

for these two conversions. The distance value of widening primitive type conversion is less than the

distance value of narrowing primitive type conversion. Due to the possible loss of information, we

will always prefer widening type conversion over narrowing type conversion. On lines 5 and line

9, we add the matched argument to the list which helps us to keep track of the matched arguments.

The distance value for widening primitive conversion will also consider the precedence order. We

add the precedence order as a fraction to the primitiveWideningDistance on line 3.

Primitive to Primitive Wrapper Conversion: Generics language feature of Java does not allow

to pass primitive types as type arguments. Hence, object wrapper classes were introduced to en-

capsulate primitive types and these primitive wrapper classes are used in those scenarios. Table 4.4

shows the primitive types and their corresponding wrapper classes. Java has also introduced au-

toboxing and unboxing features. In the autoboxing feature, java allows automatic conversion from

primitive types to their corresponding object wrapper class. On the other hand, the unboxing feature

allows the automatic conversion from the primitive wrapper class to the primitive types.

During argument comparison, we also consider the conversion of primitive types to their corre-

sponding object wrapper class. Algorithm 16 shows the approach of checking the conversion. On

52

Listing 2 Example of Precedence Order of Widening Primitive Conversion

1

2 //Method Invocation Context
3 public class PinNeedle extends MeterNeedle implements
4 Cloneable, Serializable {
5 ...
6 @Override
7 protected void drawNeedle(Graphics2D g2, Rectangle2D plotArea,
8 Point2D rotate, double angle) {
9 ...

10 int maxY = (int) (plotArea.getMaxY());
11 int midX = (int) (plotArea.getMinX() +
12 (plotArea.getWidth() / 2));
13 //int midY = (int) (plotArea.getMinY() +
14 (plotArea.getHeight() / 2));
15 int lenX = (int) (plotArea.getWidth() / 10);
16 if (lenX < 2) {
17 lenX = 2;
18 }
19 pointer.moveTo(midX - lenX, maxY - lenX);
20 ...
21 }
22 }
23

24 // Method Declaration Context
25 public abstract class Path2D implements Shape, Cloneable {
26 ...
27 public final synchronized void moveTo(double x, double y) {
28 if (numTypes > 0
29 && pointTypes[numTypes - 1] == SEG_MOVETO) {
30
31 }
32

33 public final synchronized void moveTo(float x, float y) {
34 if (numTypes > 0
35 && pointTypes[numTypes - 1] == SEG_MOVETO) {
36 ...
37 }
38 ...
39 }

line 2, we check whether the provided argument is primitive and fetch the wrapper class from the

primitive type and try to compare it with the argument of method binding. If we can find a match,

53

Algorithm 15 Matching Based on Primitive Type Conversion
1: function PROCESSPRIMITIVETYPECONVERSION(arg,mBindingArg,mBinding,argList)
2: if isPrimitiveWidening(arg,mBindingArg) then
3: distance← primitiveWideningDistance

+(0.1 ∗ (getPriorityOrderedPrimitiveList(arg).indexOf(mBindingArg) + 1))

4: setArgumentMatchingDistance(mBinding, distance)
5: argList.add(mBindingArg)

6: return true
7: else if isPrimitiveNarrowing(arg,mBindingArg) then
8: setArgumentMatchingDistance(mBinding, primitiveNarrowingDistance)
9: argList.add(mBindingArg)

10: return true
11: else
12: return false
13: end if
14: end function

Table 4.4: Primitive Types and their corresponding Wrapper Class

Primitive Type Primitive Wrapper Class
byte java.lang.Byte
short java.lang.Short
char java.lang.Character
int java.lang.Integer
long java.lang.Long
float java.lang.Float
double java.lang.Double
boolean java.lang.Boolean

54

we will consider it a valid conversion and add the argument to the list of already matched argument

list on line 5. On line 3, we also assign matching distance defined as primitiveToWrapperDistance.

Algorithm 16 Matching based on Conversion of Primitive to Primitive Wrapper

1: function PROCESSPRIMITIVETOWRAPPERCONVERSION(arg,mBindingArg,mBinding, argList)
2: if isPrimitive(arg)

AND getPrimitiveWrapperClass(arg).equals(mBindingArg.getClassName()) then
3: setArgumentMatchingDistance(mBinding, primitiveToWrapperDistance)
4: argList.add(mBindingArg)

5: return true
6: end if

7: return false
8: end function

Primitive Wrapper to Primitive Conversion: To support the primitive unboxing feature we also

perform the comparison of arguments based on a conversion from primitive object wrapper class

to primitive. Algorithm 17 shows the function where we perform a conversion check. On line 2,

we check whether the argument from method binding is a wrapper class and compare the primitive

type that we get from the wrapper class using information from table 4.4 and argument collected

from invocation context. If we find the match we will consider a valid conversion, assign a match

distance wrapperToPrimitiveDistance and add it to the list of matched arguments. We return true if

we find any valid conversion match and move to the next argument. Otherwise, we will proceed to

the next matching criteria.

Algorithm 17 Matching based on Primitive Wrapper to Primitive Conversion

1: function PROCESSWRAPPERTOPRIMITIVEMATCHING(arg,mBindingArg,mBinding,
argList)

2: if isPrimitiveWrapper(mBindingArg)
AND getPrimitive(mBindingArg).equals(arg.getClassName()) then

3: setArgumentMatchingDistance(mBinding, wrapperToPrimitiveDistance)
4: matchedArgumentList.add(mBindingArg)

5: return true
6: end if

7: return false
8: end function

55

Matching based on Primitive to Special Type Class Conversion: Primitive types are also allowed

a few specific type conversions. For a java.lang.Object or a java.lang.Comparable argument of a

declared method, we can pass primitive as value. For numeric primitive types such as int, long,

and double, it is also allowed to be passed as value if the argument of the declared method is

java.lang.Number. Algorithm 18 shows these arguments checking and assignment of distance based

on matching.

Algorithm 18 Matching based on Primitive to Special Type Class Conversion

1: function PROCESSPRIMITIVETOSPECIALTYPEMATCHING(arg,mBindingArg,
mBinding,argList)

2: if isPrimitive(arg) then
3: if “java.lang.Object”.equal(mBindingArg.getClassName()) then
4: setArgumentMatchingDistance(mBinding, primitiveToObjectDistance)
5: matchedArgumentList.add(mBindingArg)

6: return true
7: else if “java.lang.Comparable”.equals(mBindingArg.getClassName()) then
8: setArgumentMatchingDistance(mBinding, primitiveTocomparableDistance)
9: argList.add(mBindingArg)

10: return true
11: end if
12: else if isPrimitiveNumericType(arg)

AND “java.lang.Number”.equal(mBindingArg.getClassName()) then
13: setArgumentMatchingDistance(mBinding, primitiveNumericToNumberDistance)
14: argList.add(mBindingArg)

15: return true
16: end if

17: return false
18: end function

Null To Primitive Conversion: In Java, null is a special type that does not have a name and hence

cannot be declared as a variable. The expression of Null type is null. Null type can be assigned to

any reference type. Java allows a few special behaviors for Null type such as we can pass Null type

as a value for any primitive method argument. To accommodate this behavior, we have implemented

this function 19. On line 2, we check the argument that is provided from the invocation context is

of Null type and the argument of method binding is of primitive type. If the check holds true, we

56

consider this as a valid conversion and add it to our list of already matched arguments.

Algorithm 19 Matching based on Null and Primitive Type Comparison

1: function PROCESSNULLTOPRIMITIVECOMPARISON(arg,mBindingArg,argList)
2: if isNull(arg) AND not isPrimitive(mBindingArg) then
3: argList.add(mBindingArg)
4: return true
5: end if

6: return false
7: end function

Matching of Varargs Argument: Java introduced varargs feature to pass an arbitrary number of

arguments as method parameters. Varargs can only be used as the final argument of the method.

Java compiler considers varargs argument as an array of elements. We try to approach the matching

operation of varargs argument of method binding with the list of arguments collected from the

invocation context in a different manner. Algorithm 20 shows the approach.

Each method binding has a property named varargs which indicates whether that method dec-

laration has varargs argument. On line 2, we check the varargs property and whether the current

argument of method binding is an array. If both of these checks hold true, we perform the final

argument matching check. The arguments matching check consists of the following constraints.

This function considers all remaining arguments argSubList collected from the invocation context

as candidates for varargs.

(1) No argument of invocation context can have a mismatch of dimension with varargs element

type. By default, the non-array type will be considered as zero dimensions.

(2) If qualified names of the argument types of invocation context directly match with the quali-

fied name of the type of varargs argument, we will consider it a successful match. Otherwise,

any superclass or interface has to match the qualified class name of varargs type argument.

For primitive types, we convert them to their corresponding wrapper classes 4.4, before super

class traversal.

Matching based on Array to Object Array Conversion If the argument of the method binding is

an array of java.lang.Object, we have to process the matching in a different manner. Because an

57

Algorithm 20 Matching of Varargs Argument

1: function PROCESSVARARGSARGUMENT(argSubList,mBindingArg,mBinding,argList)
2: if mBinding.isV arargs() AND isArray(mBindingArg)

AND isArgumentsMatched(mBindingArg, argSubList) then
3: setArgumentMatchingDistance(mBinding, varargsDistance)
4: argList.add(mBindingArg)

5: return true
6: end if

7: return false
8: end function

array of any type can also be considered as java.lang.Object. So during dimension matching of both

arguments, we have to consider the behavior. Algorithm 21 shows the approach where we check

whether the argument mBindingArg of method binding is an array of java.lang.Object and argument

arg from invocation context also of type array. Based on the result of these two checks, we perform

the dimension-matching check on line 2. As any type or array of types can be considered a valid

argument, we consider the dimension of the argument would be 1 less than an array of objects. For

the non-array type, the dimension will be 0.

Algorithm 21 Matching based on Array to Object Array Conversion

1: function PROCESSARRAYOFOBJECT(arg,mBindingArg,argList)
2: if isObjectArray(mBindingArg) AND isArray(arg) AND

matchesDimension(arg,mBindingArg) then
3: matchedArgumentList.add(mBindingArg)

4: return true
5: end if

6: return false
7: end function

Matching Based on Object Array to Object Conversion: Java allows an object array as value to

be passed an Object argument of a method. So we can consider this a valid conversion. But we

want to add a distance value so that, if there are alternative method binding with the Object Array

argument, we can give priority to the alternative solution. Algorithm 22 shows the process of this

conversion.

58

Algorithm 22 Matching Based on Object Array to Object Conversion

1: function PROCESSOBJECTARRAYTOOBJECT(arg,mBindingArg, mBinding,argList)
2: if “java.lang.Object”.equal(arg.getClassName())

AND “java.lang.Object”.equal(mBindingArg.getClassName()) AND isArray(arg)
then

3: setArgumentMatchingDistance(mBinding, objectArrayToObjectDistance)
4: argList.add(mBindingArg)

5: return true
6: end if

7: return false
8: end function

Matching with Super Classes and Interfaces: Java also allows any sub-class type to be passed

as a value for method arguments. So during arguments matching between invocation context and

method binding, we check all the superclasses and interfaces of the argument of invocation context

and try to match with the corresponding argument’s class name from method binding. Algorithm

23 shows the iterative process where we start from the class name of the argument of invocation

context. We also initialize a distance value with 0. On line 5, we try to find all the parent class and

interfaces from that class and check whether any of these class or interface matches the argument

class name from method binding. With each iteration, we increment the distance value by 1. If we

find any match, we first assign the distance value to the particular method binding. If the matched

class name is java.lang.Object, we assign maxSuperClassDistance which will assign a large value

as distance, since we will try to prioritize any other matched argument. Otherwise, the assigned

distance value would be our computed distance in each iteration.

Process Reduced Arguments for Varargs: Varags method arguments also allows to send zero ar-

guments. The compiler will internally create an empty array as an argument. To facilitate the

feature, we perform the processing of reduced arguments outside of the arguments iteration. Algo-

rithm 24 shows the process where we compare the size of both lists of arguments. If the size of the

argument list from the invocation context is one less than the argument list from method binding

and also if the method binding property varargs is true, we can consider this as a scenario of re-

duced arguments. We assign a distance value to the method binding and add the last argument of

the method binding to the list of matched arguments.

59

Algorithm 23 Matching Based on Super Class Conversion

1: function PROCESSTRAVERSALOFSUPERCLASSES(arg,mBindingArg,mBinding,argList)
2: initialize classNameSet, distance = 0
3: classNameSet.add(arg.getClassName())
4: while isNotEmpty(classNameSet) do
5: classNameSet← getSuperClassNameSet(classNameSet)
6: distance← distance+ 1
7: if classNameSet.contains(mBindingArg.getClassName()) then
8: if “java.lang.Object”.equals(mBindingArg.getClassName()) then
9: setArgumentMatchingDistance(mBinding,maxSuperClassDistance)

10: else
11: setArgumentMatchingDistance(mBinding, distance)
12: end if
13: argList.add(mBindingArg)
14: break
15: end if
16: end while
17: end function

Algorithm 24 Process Reduced Arguments for Varargs

function PROCESSREDUCEDARGSFORVARARGS(argList, mBindingArgList, mBinding)
if mBinding.isV arargs() AND argList.size() == mBindingArgList.size()− 1 then

setArgumentMatchingDistance(mBinding, varargsDistance)
matchedArgumentList.add(mBindingArgList.last())

return true
end if

return false
end function

60

After performing all the remaining argument conversion matching, we compare the remaining

list of arguments from method binding with the list of matched arguments. We remove all the

arguments which are common between these two lists. Finally, if the argument list from method

binding still has any element, we will return false as we could not match all the arguments otherwise

we will return true.

Heuristics of assignment of Distance Value For Method Arguments: The goal of the assignment

of distance value for each argument conversion matching is to prioritize the right candidate. For

overloaded methods, we may find multiple method binding candidates where arguments of those

method binding can be matched with arguments from invocation context using any above-mentioned

conversion. Listing 3 shows an example of the selection of method binding based on argument

matching distance. In the invocation context, hashCode method invocation (line 12) is the focus

of our attention. The first argument is int and the second argument is of type java.awt.Color. On

the other hand, on the method declaration side, we are showing two of the most eligible method

declaration candidates among others. For both method declarations, the first argument is int. But

we can also infer both second arguments for java.awt.Color. java.awt.Pain is an interface that

is implemented by java.awt.Color class and java.lang.Object is the superclass of all java classes.

Here, the compiler will always prioritize method binding with java.awt.Pain over java.lang.Object.

So, in order to prioritize the eligible method binding and find the appropriate one, we have in-

troduced argument closeness distance heuristics. We assign all the parent classes and interfaces

with distance value 1 as they are the closest in the class hierarchy and increment the distance value

with the traversal of superclasses and interfaces in the class hierarchy. For java.lang.Object we

assign a maximum distance (1000) value as any other eligible parent class will always have priority

over java.lang.Object. The reason for choosing 1000 as the value is that it is very highly likely

that we will find a superclass hierarchy with a depth of 1000. For other special types, table 4.5

shows the distance value. For varargs argument matching we also assign a value that is higher

than java.lang.Object as we want to prioritize method binding with java.lang.Object over varargs

of java.lang.Object.

Filtration based on Type Instantiation: In this section, we can filter only class constructor

61

Listing 3 Example of Choosing Appropriate Method Binding based on Argument Matching Dis-
tance

1

2 //Method Invocation Context
3 public class DefaultShadowGenerator implements ShadowGenerator,
4 Serializable {
5 ...
6 private Color shadowColor;
7 ...
8 @Override
9 public int hashCode() {

10 int hash = HashUtilities.hashCode(17, this.shadowSize);
11 ...
12 hash = HashUtilities.hashCode(hash, this.shadowColor);
13 }
14 }
15

16 // Method Declaration Context
17 public class HashUtilities {
18 ...
19

20 public static int hashCode(int pre, Paint p) {
21 return 37 * pre + hashCodeForPaint(p);
22 }
23

24 public static int hashCode(int pre, Object obj) {
25 int h = (obj != null ? obj.hashCode() : 0);
26 return 37 * pre + h;
27 }
28 ...
29 }

methods if we are trying to resolve ClassInstanceCreation AST node. We store an additional prop-

erty named isClassInstantiation when we are processing ClassInstanceCreation AST node. We

check this property before filtering out class constructor methods.

Filtration of Private Methods: In the previous stages, we added an additional attribute named

invocationContextClasAttribture. This attribute represents whether the particular method binding

belongs to the invocation context class. If the value of the attribute is false, we can remove all the

bindings with the private modifier from considerations.

Filtration based on Abstract Modifiers: In this stage of filtration, if we have more than one

62

Table 4.5: Conversion Type and their corresponding Distance

Type Distance
Widening Primitive Type Conversion 1
Narrowing Primitive Type Conversion 2
Primitive to Primitive Wrapper Conversion 1
Primitive Wrapper to Primitive Conversion 1.5
Primitive to Comparable Conversion 1
Primitive Numeric to Number Conversion 1
Primitive to Object Conversion 1
Object Array to Object Conversion 1
Max Super Class 1000
Varargs 1001

eligible method binding and we have at least one method binding with the non-abstract modifier,

we will collect all the eligible method bindings which do not have the abstract modifier.

Prioritization based on Argument Matching Distance: In this stage, we will process filtration

based on argument matching distance. In the previous method argument matching stage 13, we

assign a distance value based on the matching of provided method argument and method binding

arguments. We have already explained the heuristics of the assignment of the closeness distance

value. In this phase, if we have more than one eligible candidate, we will consider method binding

with the minimum argument matching score as the eligible candidate.

Deferring Process of Method Binding Information: During the resolution of appropriate method

binding, we may find method binding information which may partially satisfy all the constraints,

however, there is a possibility to find a more accurate match. We consider such method bindings

as deferred method bindings. During traversal, we store the deferred method bindings in a separate

list and continue the traversal process. After complete traversal, if we don’t have any better fit, we

will consider deferred method binding as the appropriate method binding. We have identified one

of three such criteria which makes a method binding eligible for the deferred process.

(1) If the method is an abstract method we can consider it as deferred method binding. Because

non-abstract method declaration will have priority over abstract method.

(2) If the method binding is declared in class java.lang.Object, we also consider that method

63

binding eligible for deferring.

(3) The method binding has argumentMatchingDistance ¿ 0 that represents we have performed

any form of inference to perform the argument matching. In this scenario, we will also con-

sider the method binding as a deferred method binding.

In algorithm 6 we perform the deferring criteria check on line 11 and move the deferred method

binding to a separate list. After complete traversal, if we still don’t have any eligible method binding

we try to prioritize deferred method bindings on line 22 and return the deferred method binding list

as eligible method bindings.

Prioritization of deferred Method Bindings: During the prioritization process of deferred method

bindings, we first narrow down the method bindings with a minimum argument matching distance.

As the second step, we perform the filtration process where we only take method bindings with

minimum invocation matching distance.

4.2.3 Post-Processing of Method Binding Information:

After identifying the appropriate method binding candidate, we perform post-transformation

that will resolve the missing properties collected from byte-code de-compiled representation.

Resolution of Formal Type Parameter:

The generics were introduced on Java 5 in order to ensure type safety during compile time.

Generics force the user to define the type during the object instantiation. We can create generic

classes or generic methods. Therefore, during the resolution of method binding information of

a method invocation, we consider the generics functionality of the method and populate all the

arguments and return type with the appropriate type parameter. In this section, we will explain the

process of resolving type parameters for the eligible method binding.

In order to get method binding information, we extract all classes, fields, and, methods from the

archive jar using a byte-code decompiler. In order to keep backward compatibility with the previous

version of java prior 5, the byte-code decompiler stores the generics metadata in a separate field

named signature. Table 4.6 shows an example of generic types and their corresponding signatures.

64

Table 4.6: Type With Generic Signature

Type Signature
List<E> Ljava/util/List<TE;>;

List<? extends Number> Ljava/util/List<+Ljava/lang/Number;>;

Each class declaration with a formal type parameter or a method declaration with a formal type

parameter will have its corresponding generic type representation. For example, the class signature

of a class declared as:

C<E> extends List<E>

will be:

<E:Ljava/lang/Object;>Ljava/util/List<TE;>;

In this class signature, <E:Ljava/lang/Object;> represents the formal type parameter E

where base type is java.lang.Object. The signature does not contain the name of the class.

The signature only contains the parent class or interface with a type parameter.

Also, for the following method with formal type parameter T:

<T> Class<? extends T> m (int n)

the method signature would be:

<T:Ljava/lang/Object;>(I)Ljava/lang/Class<+TT;>;

The return type of the method is a generic class java.lang.Class with formal type param-

eter T. In the signature <T:Ljava/lang/Object;> represents the formal type with base type

java.lang.Object. (I) represnts the only method argument int.

The formal type parameters are replaced with type arguments during the instantiation of the class

or method invocation. In this section, we will explain the process of extracting the type arguments

from invocation and replacing the formal type parameters in method binding.

The resolution of formal type parameters can depend on 1) the type arguments of the method

invoker, 2) the type arguments passed during the method invocation, 3) the type of the arguments,

65

and 4) the type of the return type. We take a precedence-based approach to resolve all the formal

type parameters of method binding.

(1) First, we try to check whether method invoker is a parameterized type and type arguments are

provided. We store all the type arguments against their corresponding formal type parameter

name.

(2) In the next step, if type arguments are provided during method invocation, we collect the list

of formal type parameters from the method binding and store the type arguments against their

corresponding formal type parameter name. Otherwise, we try to resolve the type argument

from method arguments. For example, if the argument from method binding is an instance

of a formal type parameter and the argument that we collect from the invocation context is

a non-formal type parameter, we can assume the argument from the invocation context is a

replacement given that the formal type parameter is not defined in the declared class. We

store the invocation context argument against the formal type parameter name defined as the

argument from method binding.

(3) We compare the return types between invocation context and method binding, similar to ar-

gument comparison, in order to resolve the type replacement of the formal type parameter.

We will store the replacement type against the formal type parameter name collected from

method binding.

(4) If the method invoker is the invocation context class itself, we traverse through all the method

binding arguments and return type and check whether the argument itself is a formal type

parameter. If any are found, we will store the argument as a replacement type against the

argument’s type parameter name.

After extraction of all type parameter names and their corresponding replacement types, we

traverse the generic signature of the method binding and replace all the type parameters with the

replacement types.

66

4.2.4 Conversion of variadic Argument:

We consider variadic argument (also known as varargs) as an array of elements with one di-

mension during our identification. If the particular method binding candidate has varargs property.

We convert the last argument of that method binding to variadic type representation. Conversion to

variadic type will give users appropriate and accurate information about the type of the arguments

of the method binding.

67

Chapter 5

Implementation

In this chapter, we will provide an explanation of the API based on our approach. We will also

explain the storage system. We will also introduce the chrome extension that we have developed

for GitHub where we display the method signature from the method invocation expression. We will

also compare our result with GitHub’s own code navigation result.

5.1 “API Finder” API

We have implemented our approach as an Application Programming Interface (API) [17]. Ac-

cording to our methodology, We have also designed our API in two stages. In the first stage, we

identify the project java version as well as all the dependent artifacts. We load all the class files in

our system based on java and dependent artifact archives. Table 5.1 shows the method summaries

of TypeInferenceAPI class for loading the Java version and external dependencies. We support both

local and remote GitHub public project repositories for artifact retrieval.

For the second stage, Table 5.2 shows the method summaries from TypeInferenceV2API class

for resolving method binding information. We take all method invocation AST nodes 3.1 as input

for identifying their corresponding method binding information.

Listing 4 shows the API usage example of resolving method binding information. The invoca-

tion of loadJavaAndExternalJars should be performed once per commit of the project. The line 14

shows loadJavaExternalJars method takes the commit-id, project name, and project’s Github clone

68

Table 5.1: API for Loading Project Java and Dependent Artifacts [TypeInferenceAPI Class]

Modifier & Type Method & Description

static Tuple2<String, Set<Artifact>>

loadJavaAndExternalJars(String
commitId, String projectName,
String cloneUrl)

Returns the java version and external
dependency artifacts of the project hosted on
remote repository

static Tuple2<String, Set<Artifact>>

loadJavaAndExternalJars(String
commitId, String projectName,
Git git)

Returns the java version and external
dependency artifacts of the project hosted on
local repository

Table 5.2: “API Finder” API [TypeInferenceV2API Class]

Modifier & Type Method & Description

static MethodInfo

getMethodInfo(Set<Artifact> dependentArtifactSet,
String javaVersion, MethodInvocation
methodInvocation)

Returns method binding from method invocation

static MethodInfo

getMethodInfo(Set<Artifact> dependentArtifactSet,
String javaVersion, SuperMethodInvocation
superMethodInvocation)

Returns method binding from super method invocation

static MethodInfo

getMethodInfo(Set<Artifact> dependentArtifactSet,
String javaVersion, ClassInstanceCreation
classInstanceCreation)

Returns method binding from class instance creation

static MethodInfo

getMethodInfo(Set<Artifact> dependentArtifactSet,
String javaVersion, ConstructorInvocation
constructorInvocation)

Returns method binding from constructor invocation

static MethodInfo

getMethodInfo(Set<Artifact> dependentArtifactSet,
String javaVersion, SuperConstructorInvocation
superConstructorInvocation)

Returns method binding from super constructor invocation

69

Listing 4 Example of API Finder Usage

1 public class APIFinderUsage {
2 public static void getMethodBindingFromMethodInvocation() {
3 /*
4 * Stage 1: loading project's Java and External
5 * Dependency Artifacts
6 */
7 String projectName = "kubernetes-client";
8 projectUrl =
9 "https://github.com/fabric8io/kubernetes-client.git";

10 commitId = "43af167c663031dac37f08dda36e35e512462071";
11

12 Tuple2<String, Set<Artifact>> dependency =
13 TypeInferenceAPI.loadJavaAndExternalJars(commitId,
14 projectName, projectUrl);
15 String filePath =
16 "crd-generator/apt/src/main/java/io/fabric8/crd"
17 + "/generator/apt/CustomResourceAnnotationProcessor.java";
18 // collect source content from remote project repository
19 String sourceContent = GitUtil.getFileContentFromRemote(
20 filePath, projectUrl, commitId);
21

22 // parse the source code to create CompilationUnit
23 CompilationUnit compilationUnit =
24 ASTUtils.getCompilationUnit(sourceContent);
25 compilationUnit.accept(new ASTVisitor() {
26 @Override
27 public boolean visit(
28 MethodInvocation methodInvocation) {
29 /*
30 * Stage 2: Identify method binding from any
31 * method invocation
32 */
33 MethodInfo methodInfo = TypeInferenceV2API
34 .getMethodInfo(dependency._2(),
35 dependency._1(), methodInvocation);
36

37 return true;
38 }
39 });
40 }
41 }

70

URL as arguments to identify the java version of the project and fetch all the external dependency

artifacts and load them into the system. For this example, we want to find method binding informa-

tion for all the method invocations of class CustomResourceAnnotationParser. Therefore, we fetch

the source content from GitHub Project Repository using GitHub API on line 20. On line 24 we

create CompilationUnit from source code content using AST parser. Using the AST parser library,

we can traverse all the method invocation inside that CompilationUnit. For each method invocation,

we are invoking our API to get method binding information on line 35. As arguments, the set of

dependent artifacts, the project’s Java version, and the method invocation instance is propagated.

The API produces the MethodInfo object which contains method binding information.

5.2 “API Finder” API Using Fluent Builder Pattern

We have also exposed another version of API where practitioners can send invocation-context

information as arguments instead of propagating method invocation AST node. As this API does

not require propagating AST Node, practitioners can use any AST parser to parse the source code

and send the specific invocation-context information to generate the method binding information.

This API is implemented using Fluent Builder Pattern to improve readability and simplify API

usage. Table 5.3 shows the method summaries which are available under TypeInferenceFluentAPI

class. This API requires four required arguments. The arguments can be concatenated to help the

identification of appropriate method declaration and resolve the method binding information.

Listing 5 shows the API usage where the only change is in the identification of method bind-

ing information. On line 34 we construct the Criteria instance based on our invocation context

information and perform the method binding resolution. API will send us the appropriate method

binding as a list where the first element will be the most probable match based on invocation context

information.

Due to the fact that inference of invocation context information is not performed in this API, the

latency of generating method binding information is less. However, there are a few limitations of

this API.

(1) For Generic methods, type parameters will not be resolved for arguments and return type.

71

Table 5.3: “API Finder” API Using Fluent Builder Pattern [TypeInferenceFluentAPI Class]

Modifier & Type Method & Description
Criteria(Set<Artifact> dependentArtifactSet, String
javaVersion, List<String> importList, String
methodName)

Constructs a Criteria Class Instance with all the required arguments

Criteria
setInvokerTypeInfo(TypeInfo invokerTypeInfo)

Set method invoker type. Type should be constructed as TypeInfo
.

Criteria
setInvokerClassName(String invokerClassName)

Set invoker class name. TypeInfo will be constructed from class name

Criteria
setSuperInvoker(boolean isSuperInvoker)

Set argument true for super invoker type expression

Criteria

setClassInstantiation(boolean
isClassInstanceCreation)

Set argument true if the invocation is a class instance creation

Criteria

setArgumentTypeInfo(int argumentIndex, TypeInfo
argumentTypeInfo)

Set argument order index and argument type. The argument should be
constructed as TypeInfo

Criteria

setArgumentType(int argumentIndex, String
argumentType)

Set argument order index and argument type. The argument class name can be
passed

List<MethodInfo>

getMethodList()

This method invocation will use the criteria as the argument to generate the
appropriate method binding list

72

Listing 5 Example of “API Finder” Fluent API Usage

1 public class MethodDeclarationFinderFluentAPIUsage {
2 public static void getMethodBindingUsingFluentAPI() {
3 /*
4 * Stage 1: loading project's Java and External
5 * Dependency Artifacts
6 */
7 String projectName = "jfreechart-fx";
8 String projectUrl =
9 "https://github.com/jfree/jfreechart-fx.git";

10 String commitId =
11 "35d53459e854a2bb39d6f012ce9b78ec8ab7f0f9";
12

13 Tuple2<String, Set<Artifact>> dependency =
14 TypeInferenceAPI.loadJavaAndExternalJars(commitId,
15 projectName, projectUrl);
16

17 List<String> imports =
18 Arrays.asList("import java.lang.*",
19 "import org.jfree.data.xy.*");
20 String methodName = "getStartX";
21 int numberOfArgs = 2;
22

23 /*
24 * Stage 2: Identify method binding information
25 * using Fluent API
26 */
27 List<MethodInfo> methodInfoList =
28 TypeInferenceFluentAPI.getInstance()
29 .new Criteria(dependencyTuple._2(), dependencyTuple._1(),
30 imports, methodName, numberOfArgs)
31 .setInvokerClassName("AbstractIntervalXYDataset")
32 .setArgumentType(0, "int")
33 .setArgumentType(1, "int")
34 .getMethodList();
35 }
36 }

73

(2) Currently, due to the lack of information regarding inner classes and invocation context class

hierarchy, a method declared in the invocation context class hierarchy may not be resolved.

5.3 Storage

We have designed our storage as a relational database. Figure 5.1 shows the entity relationship

diagram. We have created 8 core entities to represent all the class data.

(1) Jar: This entity stores the artifact’s maven coordinates such as group-id, artifact-id, and ver-

sion. For java core packages, we store java as artifact-id and version of java as version field.

(2) Class: This entity store all the class metadata (e.g., name, package name, access modifiers).

(3) Super-Class-Relation: This entity keeps the relationship between the class and its parent

classes and interfaces. We also store type which represents whether class or interface and

precedence keeps the order of declaration of all parent classes and interface during class dec-

laration.

(4) Inner-Class-Name: This entity stores the relationship between class and all inner classes. We

store the qualified names of all inner classes.

(5) Field: Field entity stores all field metadata (i.e., name, access modifiers).

(6) Method: Method entity stores all the method data except arguments, and exception class

names that are thrown by the method.

(7) Argument-Type-Descriptor: This entity stores the type representation of all arguments of all

methods.

(8) Thrown-Class-Name: This entity keeps track of qualified class names of all the exceptions

the method throws during its declaration.

In addition, we also introduced an in-memory cache named caffeine 1 for efficient retrieval of

information. We have used caching to reduce database query executions. We also cache the method

binding information against the method invocation node.
1https://github.com/ben-manes/caffeine

74

Jar

PK id

group_id

artifact_id

version

Class

PK id

name

q_name

package_name

is_abstract

is_interface

is_enum

is_public

is_private

is_protected

is_inner_class

is_anonymous_inner_class

signature

FK jar_id

Method
PK id

name

is_abstract

is_constructor

is_static

is_public

is_private

is_protected

is_synchronized

is_final

is_varargs

is_bridge_method

signature

internal_class_constructor_prefix

return_type_descriptor

FK class_id

Super-Class-Relation

FK child_class_id

parent_class_q_name

type

precedence

Inner-Class-Name
FK parent_class_id

inner_class_q_name

Argument-Type-Descriptor

precedence_order

argument_type_descriptor

FK method_id

Thrown-Class-Name
precedence_order

thrown_class_name

FK method_id

Field

PK id

name

is_public

is_private

is_protected

is_static

type_descriptor

signature

FK class_id

Figure 5.1: Entity Relationship Diagram

75

Figure 5.2: “API Finder” Chrome Extension (Collected from JFreeChart 2)

5.4 Chrome Extension for GitHub

As an application of our API, we have developed a google chrome extension named “API

Finder” which provides accurate identification of declared method signatures from method refer-

ences on GitHub. Figure 5.2 shows the suggested method signature from a method reference on

GitHub.When a user clicks on any method invocation expression on a GitHub page, we identify the

accurate method signature and show the signature in a tooltip. Our Chrome extension consists of

two major components.

• Chrome Extension: The chrome extension detects the activities of a user (i.e., click) on

a Java source file hosted on GitHub and sends information such as page URL, method in-

vocation expression the user clicked on, and line number to the web server. The Chrome

extension is also responsible for showing the identified method signature sent by the web

server in a tooltip.

• Web Server: The web server collects inputs from the chrome extension and constructs the

appropriate AST Node and utilizes our API to identify the appropriate method binding in-

formation. Finally, construct the method signature from the method binding information and

send it to the chrome extension.

2https://github.com/jfree/jfreechart/blob/v1.5.3/src/main/java/org/jfree/chart/panel/CrosshairOverlay.java#L145

76

5.4.1 Comparison between “API Finder” extension and GitHub Code Navigation

GitHub also provides code navigation assistance, When a user clicks on any method invocation

expression, GitHub displays a tooltip with a list of possible method declaration instances. How-

ever, the identification of the method declaration performed by GitHub code navigation has a few

shortcomings.

• Inability to resolve method references for Java Core Packages and External Libraries:

GitHub code navigation does not provide support for displaying the declared method signa-

ture for methods that are declared on Java core packages or declared on classes outside of

the project. Figure 5.2 shows such a scenario where for ArrayList class instance creation

expression, GitHub cannot display the appropriate declared method signature. However, our

chrome extension is able to show the declared method signature in such scenarios.

• No consideration of Invocation Context Information: GitHub code navigation does not

consider invocation context information such as the type of the invoker expression to de-

termine the method declaration as a result, depending on only method name matching will

generate inaccurate method declarations. Figure 5.3 displays such an instance where GitHub

code navigation provides 16 method definitions and all of them are wrong as they do not con-

sider the type of invocation expression this.xCrosshairs which is an instance of java.util.List.

Our chrome extension considers invocation context data to determine the appropriate method

declaration.

• No consideration of Number of Method Argument: GitHub code navigation also does

not consider the number of arguments for determining method declarations. Figure 5.4 shows

such a scenario where there are two overloaded method declaration candidates for setCircular

method. GitHub code navigation shows both instances of declaration. On the other hand, our

chrome extension considers the number of arguments and shows the appropriate declared

method signature.
3https://github.com/jfree/jfreechart/blob/v1.5.3/src/main/java/org/jfree/chart/panel/CrosshairOverlay.java#L117
4https://github.com/jfree/jfreechart/blob/v1.5.3/src/main/java/org/jfree/chart/plot/PiePlot.java#L642

77

Figure 5.3: No Consideration of Invocation Context (Collected from JFreeChart 3)

Figure 5.4: No Consideration of Number of Method Arguments (Collected from JFreeChart4)

78

• No recognition of constructor reference: GitHub code navigation also does not display

method declaration for constructor reference or super constructor reference. In contrast, our

Chrome extension can display the declared method signature for the constructor or the super

method reference.

79

Chapter 6

Evaluation

In this section, we will explain the evaluation process of our approach. In our evaluation, we

investigate the following research questions:

• RQ 1: What is the accuracy of our proposed approach?

• RQ 2: What is the execution time for resolving method binding information?

6.1 Evaluation Setup

6.1.1 Project Selection

The evaluation of our proposed approach is challenging. Only the compiler can generate com-

plete method-binding information from the invocation context. However, the compiler implemen-

tation will require the complete project to be compiled and built. Therefore, we have to perform

our evaluation on complete projects in order to compare the outcome of our approach against the

method binding result generated by the compiler under our evaluation environment. Therefore, we

have selected evaluation projects based on a few criteria.

• Build Process: The build process for the project has to be simple and straightforward. We

have used Eclipse JDT as our compiler implementation. So, we have to select projects that

Eclipse can build properly without any external intervention.

80

• Project Artifact: Our approach depends on the project’s artifact in order to collect all the

meta-data from class files. As we want to resolve all the method invocations of the project,

we need to provide the project artifact as a dependency so that we can resolve all the internal

method invocations. Therefore, for the evaluation, we have to select projects with artifacts

published in the public artifact repositories.

• Determination of Release Version: For Gradle projects, contributors can propagate the release

version as a command line argument. As a result, the release version defined in the build

script may not match the release version of the project in public artifact repositories. It is

not possible to collect the artifact of the project from public artifact repositories without an

appropriate version. Therefore, we have selected projects where the release version number

is specified in the build script.

• Popularity: In the selection of evaluation projects, we also took into account the number of

contributors, number of stars, number of releases, activity in projects, and age of the project

so that we could select projects that are currently active and well-known.

• Diversity: Diversity also played a key role in the choice of evaluation projects, as we will find

diverse language constructs based on the category of the project. For example, a core Java

library such as Guava makes extensive use of generics. On the other hand, a chart library

such as JFreeChart has more orthodox language usage. Also, projects with different language

constructs (e.g., lambda expression, stream API) introduced with different Java versions are

ideal candidates for our evaluation.

Based on the aforementioned criteria, 11 open-source projects from various categories have

been chosen. The projects that we have chosen for evaluation are listed in Table 6.1. Kubernetes

Client/Java has the most lines of code among the selected projects, while ScribeJava has the fewest.

Two projects (i.e., Mockito and JGroups) have Java version 11, and the rest of the projects have Java

version 8. Among all the projects, JavaParser has the highest percentage of method invocations

with generics and lambda expressions. In terms of build systems, nine projects are Maven-based,

and two projects are Gradle based. Our evaluation was conducted on a single version of the project.

81

Table 6.1: Java Projects for Evaluation

Project
Name

Version Category Build
System

Java
Version

LOC Nested
Method
Call Per-
centage

Generics
Percentage

Lambda
or Method
Reference
Percentage

JFreeChart 1.5.3 A chart library Maven 8 264,445 12.66% 1.32% 0%
Guava 30.1.1 A core Java li-

brary
Maven 8 339,923 22.27% 26.17% 1.11%

Mockito 4.6.1 A mocking
framework for
unit test

Gradle 11 78,126 27.26% 12.19% 2.13%

Spring Data
JPA

2.7.3 An extension
of Spring Data

Maven 8 40,988 26.60% 11.82% 6.45%

JavaParser 3.24.2 An AST Pars-
ing library for
Java

Maven 8 154,535 34.79% 25.23% 9.10%

RxJava 3.1.5 Reactive ex-
tension for
Java

Gradle 8 393,676 12.18% 23.87% 0.03%

Jackson
Core

2.14.0-rc2 A data binding
library

Maven 8 101,137 8.39% 1.21% 0.03%

Kubernetes
Client/Java

15.0.1 Java Client for
Kubernetes

Maven 8 1,787,671 25.07% 16.72% 0.34%

Apache
Commons
IO

2.11.0 A utility li-
brary

Maven 8 68,859 15.35% 7.78% 1.31%

ScribeJava 8.3.3 An OAuth
Client for Java

Maven 8 17,428 20.53% 2.15% 0.24%

JGroups 5.2.12 A clustering
library

Maven 11 135,033 18.12% 2.18% 3.87%

We have attempted to select the most recent versions of the project, as these will contain the most

recent version of Java language constructs that are available in the project.

6.1.2 Evaluation Process

We have used the Eclipse JDT Compiler [18] as the compiler implementation for our evaluation.

We have designed our evaluation as an Eclipse plugin where we traverse the project using an AST

parser and find each method invocation, fetch the method binding generated by the compiler, and

compare it with the result of our approach.

To compare the method binding generated from the compiler and the output of our approach,

we constructed a generic string representation that contains all the necessary components to identify

82

the appropriate method declaration. The representation is constructed as:

Qualified-Class-Name::Access-Modifiers Qualified-Class-Name-Return-Type

Method-Name(Qualified-Class-Name-Arg1, Qualified-Class-Name-Arg2)

During the evaluation, we excluded test packages as projects don’t include test packages in the

project archive. Also, for any anonymous inner class constructor, the compiler considers the anony-

mous inner class as part of the class where the invocation occurred and generates a method name

relative to the position of the inner class. Here is an example of an anonymous inner class construc-

tor 6. For new SimpleFileVisitor<Path>() constructor on line 7, the method binding

object produced by the compiler will generate the method name as SourceRoot$1 and don’t pro-

vide any meaningful information regarding the constructor information from our perspective. So,

we also excluded the anonymous inner-class constructors from the evaluation.

Listing 6 Example of Anonymous Inner Class Constructor

1

2 public class SourceRoot {
3 ...
4 public List<ParseResult<CompilationUnit>> tryToParse(
5 String startPackage) throws IOException {
6 ...
7 Files.walkFileTree(path, new SimpleFileVisitor<Path>() {
8 @Override
9 ...

10 }
11 ...
12 }

Table 6.2 the distributions of method invocation types for all the method invocations that we

have traversed across all the evaluation projects. In all projects, the percentage of MethodInvocation

is the highest, and SuperConstructorInvocation and ConstructorInvocation are among the lowest.

6.2 RQ 1: What is the accuracy of our proposed approach?

Motivation This research question assesses the accuracy of our approach. We wish to rely on

our strategy to successfully resolve method-binding information for partial programs in all possible

83

Table 6.2: Distribution of Method Invocation Type

Project Name Method-
Invocation

Class-Instance-
Creation

Constructor-
Invocation

SuperMethod-
Invocation

Super-
Constructor-
Invocation

JFreeChart 85.3% 11.5% 1.0% 1.5% 0.8%
Guava 87.5% 10.0% 0.2% 1.2% 1.2%
Mockito 81.5% 16.5% 0.5% 0.4% 1.2%
Spring Data
JPA

87.9% 9.6% 0.5% 0.9% 1.1%

JavaParser 89.2% 8.6% 0.9% 0.5% 0.9%
RxJava 85.7% 12.5% 0.1% 0.2% 1.5%
Jackson Core 93.4% 4.8% 0.5% 0.4% 0.9%
Kubernetes
Client/Java

83.8% 12.4% 2.1% 1.5% 0.2%

Apache Com-
mons IO

79.4% 13.8% 3.6% 1.7% 1.5%

ScribeJava 78.2% 16.4% 2.4% 1.2% 1.7%
JGroups 86.5% 11.6% 0.3% 1.2% 0.4%

scenarios. In our evaluation, successful replication of method binding information generated by

the compiler for a complete project will ensure that we will be able to resolve method binding

information for method invocation from a partial program, given that we have successfully resolved

all the dependent artifacts and Java versions.

Result: Table 6.3 demonstrates the accuracy of our methodology for all evaluation projects. To

determine the accuracy, we first determine the number of method invocation instances in which

we successfully replicated the compiler-generated method binding information and the number of

method invocation instances in which we failed to generate method binding information accurately.

The accuracy is the ratio of successful replication instances to the total number of replication in-

stances, including both successes and failures.

accuracy =
NumberOfInstancesWithSuccessfulReplication

TotalNumberOfInstances

JFreechart has the highest success rate with 99.78% accuracy. The JavaParser project, on the

other hand, has the lowest success rate with an accuracy of 93.11%. Nine of the eleven projects

84

Table 6.3: Evaluation of Accuracy

Project Name Success Failure AccuracyNo Match Mismatch
JFreeChart 32,521 50 21 99.78%

Guava 26,579 368 423 97.11%
Mockito 5,892 42 38 98.66%

Spring Data JPA 3,718 141 32 95.55%
JavaParser 35,920 689 1,888 93.31%

RxJava 24,349 26 380 98.36%
Jackson Core 6,917 65 36 98.56%

Kubernetes Client/Java 168,459 675 2,579 98.10%
Apache Commons IO 4,118 57 13 98.33%

ScribeJava 2,072 12 10 98.95%
JGroups 29,202 562 292 97.16%

All Projects 339,747 2,687 5,712 97.59%

have an accuracy rate greater than 97%. In situations where we were unable to accurately match

the method binding information, we have divided the occurrences into two categories. No Match

indicates the number of occurrences in which our approach was unable to extract method-binding

information from the method invocation node. In contrast, Mismatch represents the number of

instances in which generated method-binding information does not match the compiler-generated

method-binding information.

For the Mismatch failure, we have conducted additional investigations. We divided the number

of occurrences of Mismatch into five categories. Table 6.4 displays the five different categories and

the number of instances that we have identified under each category across all evaluation projects.

• Class Mismatch: In this category, we count the number of instances where we have failed to

correctly identify the class name of the method-binding information.

• Return Type Mismatch: This category indicates the number of occurrences in which we

failed to correctly identify the method’s return type.

• Argument Type Mismatch: This category indicates the number of times we failed to cor-

rectly identify the type of each argument.

• Mismatched Method Modifiers: This category reflects the number of times we generated

85

Table 6.4: Mismatch Distribution

Project Name Class Mis-
match

Return
Type Mis-
match

Argument
Type Mis-
match

Modifier
Mismatch

Throws
Exception
Mismatch

JFreeChart 0 4 18 0 0
Guava 177 61 190 43 21
Mockito 9 14 17 0 0
Spring Data JPA 0 20 16 2 5
JavaParser 12 1407 740 0 49
RxJava 2 132 316 0 4
Jackson Core 0 6 31 30 0
Kubernetes Client/-
Java

788 386 1,777 11 3

Apache Commons IO 0 8 13 0 1
ScribeJava 2 4 7 3 0
JGroups 36 197 180 1 4
All Projects 1,024 2,239 3,305 90 87

incorrect method modifiers.

• Throws Exception Mismatch: This category reflects the number of cases in which we were

unable to produce all of the exceptions that were declared in the method declaration.

Across all projects, Argument Type Mismatch is the highest contributor among all mismatch

categories. Return Type Mismatch is the second most common mismatch type. We have found a rel-

atively low number of Modifier Mismatch and Throws Exception Mismatch. The Kubernetes Clien-

t/Java project has the highest number of instances in all five mismatch categories. The relatively

higher number of resolved method invocations compared to other projects justifies the outcome.

In order to identify the root cause of these Mismatch failures, we also performed a manual

investigation for most instances of Mismatch failures.

(1) Mismatch Type: Inaccurate resolution of Formal Type Parameter Argument

Number of Instances: 291

Project: JavaParser

Root Cause: For generic method declarations, we can have arguments that are formal type

parameters. The type of argument will be determined based on the type of argument that is

passed during invocation. However, there are scenarios where the type of inferred argument

86

can be influenced by the outer method invocation. Listing 7 shows such a scenario. The

method invocation that happened in line 14 is our topic of discussion. On line 23, from the

method declaration context, we can see that the argument is a formal type parameter. The

type of the passed argument on line 11 is CommentMetaModel. However, the outer method

invocation on line 11 takes Optional<BaseNodeMetaModel> as the argument, and BaseN-

odeMetaModel is a superclass of CommentMetaModel. Hence, the compiler identifies the

type of argument as BaseNodeMetaModel. Currently, our methodology does not take into

account the context of an outer method invocation during the resolution of a formal type pa-

rameter.

Possible Solution: The consideration of any outer method invocation during the resolution

of formal type parameter method argument will help us identify the accurate type of argument.

(2) Mismatch Type: Inaccurate resolution of Formal Type Parameter Method Return

Number of Instances: 222

Project: JavaParser

Root Cause: When we extend a generic class, we can provide type arguments during parent

class declaration. The passed type arguments will be used to resolve the formal type param-

eters defined in the method declaration. Listing 8 demonstrates such a scenario. The method

call accept happened on line 11 is our topic of discussion. Our approach failed to resolve the

return type of the method invocation. The return type of the method is determined from the

type arguments of the first method argument. The first argument of that method is an instance

of ThisExpression which indicates HashCodeVisitor class as an argument. On the other hand,

from the method declaration context, we can see accept method declaration takes GenericVis-

itor as the argument. Additionally, GenericVisitor is implemented by HashCodeVisitor, and

type arguments are passed during class declaration. Hence, the compiler considers the type

argument passed during class declaration for resolving formal type parameters. Currently,

our approach does not support the consideration of passing type argument for non-generic

argument type even though type can have generic class as parent class with type arguments in

87

Listing 7 Inaccurate resolution of Formal Type Parameter Argument (Excerpted from JavaParser)

1

2 // method invocation context
3 public final class JavaParserMetaModel {
4 ...
5 public static final CommentMetaModel commentMetaModel
6 = new CommentMetaModel(Optional.of(nodeMetaModel));
7 ...
8

9 private static void initializePropertyMetaModels() {
10 nodeMetaModel.commentPropertyMetaModel =
11 new PropertyMetaModel(nodeMetaModel,
12 "comment",
13 com.github.javaparser.ast.comments.Comment.class,
14 Optional.of(commentMetaModel),
15 true, false, false, false);
16 }
17 ...
18 }
19

20 // method declaration context
21 public final class Optional<T> {
22 ...
23 public static <T> Optional<T> of(T value) {
24 return new Optional<>(Objects.requireNonNull(value));
25 }
26 ...
27 }

the class definition.

Possible Solution: The consideration of a generic superclass for a non-generic class type

and consideration of the type argument during the resolution of formal type parameters will

resolve the issue.

(3) Mismatch Type: Inaccurate resolution of the class name of the method

Number of Instances: 64

Project: Kubernetes Client/Java

Root Cause: Listing 9 shows the method invocation equals on line 14 where our approach

88

Listing 8 Inaccurate resolution of Formal Type Parameter Method Return (Excerpted from Java-
Parser)

1

2 // method invocation context
3 public class HashCodeVisitor
4 implements GenericVisitor<Integer, Void> {
5 ...
6

7 public Integer visit(final BooleanLiteralExpr n,
8 final Void arg) {
9 return (n.isValue() ? 1 : 0) * 31

10 + (n.getComment().isPresent()
11 ? n.getComment().get().accept(this, arg)
12 : 0);
13 }
14 ...
15 }
16

17 // method declaration context
18 public interface Visitable {
19 ...
20 <R, A> R accept(GenericVisitor<R, A> v, A arg);
21 ...
22 }

failed to identify the correct class name where the method is declared. Method declaration

context shows the accurate class name of the method that is V1ListMetaFluentImpl. The

class name of the method invoker is V1ListMetaBuilder [line 9] which is a sub-class of

V1ListMetaFluentImpl. However, the byte-code representation also contains equals method

for the sub-class V1ListMetaBuilder, and hence, our approach returns V1ListMetaBuilder as

the class name of the method.

Possible Solution: There is no way to differentiate the methods added by the compiler in

byte-code representation. Therefore, it will not be possible to resolve this issue using our

current approach.

For No Match failures, we also performed a manual investigation of the root causes for most

instances of No Match failures.

(1) Mismatch Type: Inaccurate resolution of the method invoker type

89

Listing 9 Inaccurate resolution of the class name of the method (Excerpted from Kubernetes Clien-
t/Java)

1

2 // method invocation context
3 public class V1PersistentVolumeListFluentImpl
4 <A extends V1PersistentVolumeListFluent<A>>
5 extends BaseFluent<A>
6 implements V1PersistentVolumeListFluent<A> {
7 ...
8

9 private V1ListMetaBuilder metadata;
10

11 public boolean equals(Object o) {
12 ...
13 if (metadata != null
14 ? !metadata.equals(that.metadata)
15 : that.metadata != null) return false;
16 }
17 ...
18 }
19

20 // method declaration context
21 public class V1ListMetaFluentImpl
22 <A extends V1ListMetaFluent<A>>
23 extends BaseFluent<A>
24 implements V1ListMetaFluent<A> {
25 ...
26 public boolean equals(Object o) {
27 }
28 ...
29 }

Number of Instances: 352

Project: Kubernetes Client/Java

Root Cause: Listing 10 shows the ensureFieldAccessorsInitialized method invocation on

line 17, where our approach has failed to generate any method binding information. The root

cause of this failure is the failure to identify the type of method invoker. In this example, the

method invoker expression is a fully qualified name of the field instance declared on the class.

However, our approach currently cannot resolve type from fully-qualified field expression.

Possible Solution: The appropriate resolution of fully-qualified field expression will resolve

90

this issue.

Listing 10 Inaccurate resolution of the method invoker type (Excerpted from Kubernetes Client/-
Java)

1

2 // method invocation context
3 public final class V1alpha1Admission {
4 ...
5 private static final
6 com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
7 internal_static_k8s_io_api_admission_v1alpha1
8 _AdmissionReview_fieldAccessorTable;
9

10 protected com.google.protobuf.GeneratedMessageV3
11 .FieldAccessorTable
12 internalGetFieldAccessorTable() {
13

14 return io.kubernetes.client.proto.V1alpha1Admission
15 .internal_static_k8s_io_api_admission_v1alpha1
16 _AdmissionReview_fieldAccessorTable
17 .ensureFieldAccessorsInitialized(
18 io.kubernetes.client.proto.V1alpha1Admission
19 .AdmissionReview.class,
20 io.kubernetes.client.proto.V1alpha1Admission
21 .AdmissionReview.Builder.class);
22 }
23

24 ...
25 }
26

27 // method declaration context
28 public abstract class GeneratedMessageV3 extends AbstractMessage
29 implements Serializable {
30 public static final class FieldAccessorTable {
31 ...
32 public FieldAccessorTable ensureFieldAccessorsInitialized(
33 Class<? extends GeneratedMessageV3> messageClass,
34 Class<? extends Builder> builderClass) {
35 }
36 ...
37 }
38 }

91

(2) Mismatch Type: Inaccurate filtration based on method arguments comparison

Number of Instances: 41

Project: Jackson Core

Root Cause: Listing shows 11

shows the method invocation System.arraycopy on line 11, where our approach failed to gen-

erate any method binding information. Our approach failed to compare the arguments accu-

rately in order to generate the method binding result. From the invocation context, we can

see the first argument is a char[], a primitive array, and from the declaration context, we

can see the first argument is a java.lang.Object. Our approach currently does not support the

inference of primitive array type to java.lang.Object.

Possible Solution: The possible solution to this issue is to consider the inference-based con-

version from primitive array type to java.lang.Object during argument comparison.

(3) Mismatch Type: Inaccurate resolution of the method invoker type inside lambda expression

Number of Instances: 37

Project: JavaParser

Root Cause: Listing 12 shows a method invocation report on line 10 where our approach has

failed to identify the appropriate type of invoker expression reporter. reporter is an argument

of the lambda expression. The type of that argument will be determined from the enclosing

ClassInstanceCreation type method invocation. Currently, our approach does not support the

extraction of arguments when the enclosing node is an instance of ClassInstanceCreation.

Possible Solution: The possible solution to this issue is to resolve argument types for lambda

expression arguments when they are enclosed inside ClassInstanceCreation node.

6.3 What is the execution time for resolving method binding informa-

tion?

Motivation The evaluation of the performance of our strategy is an additional study subject that

we wish to investigate. Our strategy can be viewed as two API calls. The initial API call loads all

class meta-data from downloaded artifacts from Maven remote repositories. With the second API

92

Listing 11 Inaccurate filtration based on method arguments comparison (Excerpted from Jackson
Core)

1

2 // method invocation context
3 public class SerializedString
4 implements SerializableString, java.io.Serializable
5 {
6 ...
7 public int appendQuoted(char[] buffer, int offset) {
8 char[] result = _quotedChars;
9 final int length = result.length;

10 ...
11 System.arraycopy(result, 0, buffer, offset, length);
12 }
13

14 ...
15 }
16

17 // method declaration context
18 public final class System {
19 ...
20

21 public static native void arraycopy(Object src, int srcPos,
22 Object dest, int destPos,
23 int length);
24 }

request, the method-binding information for any method-invocation node is resolved.

During the first API call, we store all the class meta-data from dependent artifacts if they aren’t

already recorded in our system. So, the response time of this API invocation is proportional to the

amount of time needed to store the meta-data of all dependent artifacts. However, we will only need

to perform this API call once per the whole project.

Thus, evaluating the execution time of our second API call is critical for the viability of our

approach. Lower execution times for each method invocation will enhance the usefulness of our

approach.

Result: Table 6.5 shows the execution time distribution among all evaluation projects. Among all

evaluation projects, Apache Commons IO project has the least average execution time (99.37 ms)

93

Listing 12 Inaccurate resolution of the method invoker type inside lambda expression (Excerpted
from JavaParser)

1

2 // method invocation context
3 public class Java8Validator extends Java7Validator {
4 ...
5 final Validator defaultMethodsInInterface =
6 new SingleNodeTypeValidator<>
7 (ClassOrInterfaceDeclaration.class,
8 (n, reporter) -> {
9

10 reporter.report(m,
11 "'default' methods must have a body.");
12 }
13);
14 ...
15 }
16

17 // method declaration context
18 public class ProblemReporter {
19 ...
20

21 public void report(NodeWithTokenRange<?> node,
22 String message, Object... args) {
23 }
24 }

and Kubernetes Client/Java project has the largest average execution time (614.64 ms). In terms of

median execution time, Spring Data JPA has the highest value with 221 ms, and Apache Commons

IO project has the lowest value with 86 ms. Figure 6.1 displays the box plot diagram of the execution

time for all evaluation projects.

Correlation between Number of Resolved Method and Execution Time: In table 6.5 we can

see few projects (e.g., Kubernetes Client/Java) has relatively long execution time and also maxi-

mum execution time for few projects (i.e., JGroups) can take up to 17 seconds. To investigate the

increased execution time, we performed another analysis to identify any correlation between the

number of resolved methods and execution time. In order to resolve the method binding informa-

tion of any method invocation, we may need to resolve other method invocations as well. One such

scenario is that any argument of the method invocation itself is a method invocation expression.

94

JFre
eChart

Guava
Mockito

Sprin
g Data JPA

JavaParse
r

RxJava

Jackson Core

Kubernetes C
lient/Ja

va

Apache Commons IO

Scrib
eJava

 JG
roups

Projects

100

101

102

103

104

Ex
ec

ut
io

n
Ti

m
e

in
 M

illi
se

co
nd

s

Figure 6.1: Box-plot of Execution Time for Projects

95

Table 6.5: Execution Time

Project Name Execution Time in Milliseconds
Mean Median Min Max

JFreeChart 134.06 106 1 1,032
Guava 221.79 143 1 10,518

Mockito 262.07 168 1 7,227
Spring Data JPA 348.27 221 1 9,900

JavaParser 148.46 106 1 3,295
RxJava 147.86 136 1 6,024

Jackson Core 190.02 196 48 1,717
Kubernetes Client/Java 614.64 209 1 9,783
Apache Commons IO 99.37 86 1 555

ScribeJava 166.34 136 1 860
JGroups 192.14 119 1 17,811

All Projects 380.93 150 1 17,811

Table 6.6: Distribution of execution time for Number of Resolved Methods

Number of Resolved Methods Number of Data Median Execution Time (Milliseconds)
1 206,088 136
2 51,728 184
3 7,815 172
4 5,817 190

5-44 1,904 301

Hence, we need to resolve the method binding information of that method invocation in order to

determine the type of the argument. For our analysis, we have grouped execution time across all

evaluation projects against the total resolution of method-binding results for each invocation. Table

6.6 displays the number of resolved methods and their corresponding average execution time. Due

to the rarity of a large number of method resolutions per invocation, we have grouped all the re-

solved method numbers from 5 to 44 into one group and considered it as one single group. Figure

6.2 shows the correlation between execution time and the total number of resolved methods per

invocation, where we will see an increasing number of execution times with the increase of internal

method resolutions.

Execution Time Comparison Between External And Internal Method Invocation: We per-

formed execution time analysis between external and internal method invocation. We consider

96

1 2 3 4 5-44
Total Method Resolution Count

150

175

200

225

250

275

300

Ex
ec
ut
io
n
Ti
m
e
in
 M
illi
se
co
nd

s (
M
ed
ia
n)

All Projects

Figure 6.2: Median of execution Time over Resolved Method Count

97

JFre
eChart

Guava
Mockito

Sprin
g Data JPA

JavaParse
r

RxJava

Jackson Core

Kubernetes C
lient/Ja

va

Apache Commons IO

Scrib
eJava

 JG
roups

Projects

100

101

102

103

104

Ex
ec

ut
io

n
Ti

m
e

in
 M

illi
se

co
nd

s

(a) Internal Method Invocation

JFre
eChart

Guava
Mockito

Sprin
g Data JPA

JavaParse
r

RxJava

Jackson Core

Kubernetes C
lient/Ja

va

Apache Commons IO

Scrib
eJava

 JG
roups

Projects

100

101

102

103

104

Ex
ec

ut
io

n
Ti

m
e

in
 M

illi
se

co
nd

s

(b) External Method Invocation

Figure 6.3: Execution Time for Internal and External Method Invocation

internal method invocation if that particular method is declared in any class of the project. On the

other hand, we consider any method invocation as external if that particular method invocation is

declared in any dependent external libraries or declared in Java core package classes. Figure 6.3

shows the box-plot diagram of both internal and external method invocations. From the plot, we

can see nearly identical execution times for both categories of method invocations. From the fig-

ure, we can come to the conclusion that both external and internal invocation will have a similar

execution time.

Execution Time Comparison Among Different Method Invocation Expressions: We have

performed another analysis where we investigated execution time based on method invocation ex-

pression types. Figure 6.4 shows the execution time box plot for all types of method invocation

expressions. Since method invocation expression is most prevalent among all invocation expression

types, the execution time box plot of method invocation expression reflects the overall execution

time distribution across all projects.

6.4 Comparison between “API-Finder” and “JavaSymbolSolver”

Among all existing tools, JavaSymbolSolver can identify method binding information with more

precision. We have conducted a limited evaluation to identify the accuracy of both JavaSymbol-

Solver and API-Finder with Eclipse JDT Compiler. There are several limitations that restricted us

98

JFre
eChart

Guava
Mockito

Sprin
g Data JPA

JavaParse
r

RxJava

Jackson Core

Kubernetes C
lient/Ja

va

Apache Commons IO

Scrib
eJava

 JG
roups

Projects

100

101

102

103

104

Ex
ec

ut
io

n
Ti

m
e

in
 M

illi
se

co
nd

s

(a) Method Invocation

JFre
eCh
art
Gu
ava
Mo
cki
to

Spr
ing
 Da
ta
JPA

Jav
aPa
rse
r
RxJ
ava

Jac
kso
n C
ore

Kub
ern
ete
s C
lien
t/Ja
va

Ap
ach
e C
om
mo
ns
IO

Scr
ibe
Jav
a

 JG
rou
ps

Projects

102

103

Ex
ec
ut
io
n
Ti
m
e
in
 M
illi
se
co
nd
s

(b) Class Instance Creation

JFre
eCh
art
Gu
ava
Mo
cki
to

Spr
ing
 Da
ta
JPA

Jav
aPa
rse
r
RxJ
ava

Jac
kso
n C
ore

Kub
ern
ete
s C
lien
t/Ja
va

Ap
ach
e C
om
mo
ns
IO

Scr
ibe
Jav
a

 JG
rou
ps

Projects

102

103

Ex
ec
ut
io
n
Ti
m
e
in
 M
illi
se
co
nd
s

(c) Constructor Invocation

JFre
eCh
art
Gu
ava
Mo
cki
to

Spr
ing
 Da
ta
JPA

Jav
aPa
rse
r
RxJ
ava

Jac
kso
n C
ore

Kub
ern
ete
s C
lien
t/Ja
va

Ap
ach
e C
om
mo
ns
IO

Scr
ibe
Jav
a

 JG
rou
ps

Projects

100

101

102

103

Ex
ec
ut
io
n
Ti
m
e
in
 M
illi
se
co
nd
s

(d) Super Method Invocation

JFre
eCh
art
Gu
ava
Mo
cki
to

Spr
ing
 Da
ta
JPA

Jav
aPa
rse
r
RxJ
ava

Jac
kso
n C
ore

Kub
ern
ete
s C
lien
t/Ja
va

Ap
ach
e C
om
mo
ns
IO

Scr
ibe
Jav
a

 JG
rou
ps

Projects

102

103

Ex
ec
ut
io
n
Ti
m
e
in
 M
illi
se
co
nd
s

(e) Super Constructor Invocation

Figure 6.4: Execution Time for Method Invocation Expressions

99

Table 6.7: Accuracy comparison between API-Finder and JavaSymbolSolver

Project Name JavaSymbolSolver API Finder
Success Failure Accuracy Success Failure Accuracy

JFreeChart 29,939 1,577 95% 31,445 71 99.77%
Guava 20,224 6,000 77.12% 25,530 694 97.33%

Apache Commons IO 2,572 1,331 65.89% 3,839 64 98.36%

to perform the complete comparison of API-Finder with JavaSymbolSolver. The limitations are:

• JavaSymbolSolver cannot extract all dependent artifact archives from the project. JavaSym-

bolSolver assumes that we have all the required archives and requires the archives to be passed

as arguments for the resolution of method binding information. For this evaluation, we needed

to provide all the dependent artifacts archives with manual intervention. For this comparison,

we have selected three projects (i.e., JFreeChart, Guava, Apache Commons IO) with minimal

dependent artifacts.

• JavaSymbolSolver depends on JavaParser, an AST parsing library. JavaParser does not have

a separate representation for ConstructorInvocation, SuperMethodInvocation, or SuperCon-

structorInvocation. Therefore, we have limited our evaluations for MethodInvocation and

ClassInstanceCreation type method invocation instances.

Table 6.7 shows the accuracy comparisons for 3 evaluation projects. In all three projects, API-

Finder has outperformed JavaSymbolSolver in terms of accuracy. For projects with a higher per-

centage of generics and lambda expression or method references (i.e., Guava, Apache Commons

IO), API-Finder has outperformed significantly.

6.5 Limitations and Threats to Validity

Our proposed approach has a few limitations which can impact the resolution of accurate

method-binding information.

• Dependency on the Build System: Our approach collects dependent artifacts information

and java version from build files. Currently, we only support two build systems (i.e., Gradle,

100

and Maven). Therefore, we would be unable to retrieve dependent artifact information or the

Java version for projects with an unrecognized build system or no build system.

• Availability of dependent Artifacts in Public Maven Repository: The extracted artifacts

from the project has to be available in Maven public artifact repository to download the JAR

and extract the class meta-data. We would be unable to process artifacts if they are hosted in a

private artifact repository. In addition, if the artifact version is not available in the public arti-

fact repository, we would be unable to process the artifact and extract appropriate information

which will have an impact during the resolution of method binding information.

• Inability to identify method-binding From Test Packages: We collect all class information

from the project’s archivable artifacts. Test packages are not usually available in the released

artifacts. Therefore, our approach cannot identify any method-binding information if the

method is declared on a test package.

• Remote Fetching of Gradle Build related files Gradle build scripts can be written with

Groovy or Kotlin language. For the extraction of build-related files, we perform a regex-based

approach to search all the build-related files in the remote fetch mechanism. Since the build

system can be complex and identification of all build-related files from the build script can

be challenging. Therefore, due to the limitation of the regex-based approach, we would not

be able to successfully fetch all related files and perform the extraction of artifacts and Java

version for the complex build process.

Internal Validity In our experiment we have compared the produced result of our approach with

a compiler implementation. The compiler will be able to generate accurate method-binding in-

formation when the complete codebase is available. Therefore, we can ensure the credibility of

our accuracy rate. Additionally, the compiler can also produce more detailed information for each

method binding information. For example, for a parameterized type argument compiler store the

complete type information of the type parameters. For the comparison of the return type or ar-

gument types in the evaluation we have only considered the qualified class name. Therefore, the

type parameters of any parameterized argument or return type generated by our approach can have

101

differences. However, there are other scenarios where the identification of the appropriate type rep-

resentation of the type parameter will lead to the identification of the qualified class name of the

argument or return types. Therefore, we have confidence in the identification of a complete type

representation of return and argument types.

External Validity We have performed our experiment on a relatively small number of open-

source projects. However, we have tried to select from diverse backgrounds and we have witnessed

a consistent rate of accuracy among all our evaluation projects. Therefore, we have confidence that

our accuracy and execution time can be replicated in other projects as well.

102

Chapter 7

Conclusion and Future Work

In this thesis, we have proposed a streamlined approach where we start by providing support

for extracting artifacts and the project’s Java version, and finally provide an independent systematic

strategy that is independent of any existing AST implementation to identify accurate method binding

information from invocation context. We evaluated our approach against a compiler implementation

(i.e., Eclipse JDT) for eleven popular open-source projects in order to measure the accuracy of our

approach.

Our result shows that we have identified accurate method-binding information with an accuracy

rate above 93%, where JFreeChart has the highest success rate with an accuracy of 99.78% and the

JavaParser has the lowest success rate with an accuracy of 93.31%. We also evaluated the execution

time for resolving method-binding information. Our result shows that, on average, each resolution

of method-binding information takes 380.93 ms.

During the evaluation of execution time, we also discovered additional insights.

• There is no significant variation in the distribution of execution time for the project’s internal

and external dependencies. Our approach will have a similar execution time for both types of

method-binding resolutions.

• There is a positive correlation between the number of internal method-binding resolutions

during a resolution of method-binding information and execution time. Extracting method-

binding information for a method invocation expression may lead to other method-binding

103

resolutions. The total execution time will increase with the number of internal method-

binding resolutions.

7.1 Applications of “API Finder”

API Finder can be utilized in diverse scenarios. We can utilize “API Finder” to identify method

binding information from the diverse origins where we can only access partial programs such as:

• We can show method binding information for source code available on the GitHub Platform.

• We can show method meta-data for the partial fragments of codes that are available in Stack-

overflow1 platform, or for API usage code snippets available in websites, such as Android2.

• We can integrate “API Finder” with other web-based services such as ChatGPT3 generated

codes.

7.2 Future Work

In the future, we plan to accommodate the language support for the newer Java versions. We

also plan to provide a more robust and efficient approach to extracting dependent artifact infor-

mation extraction from build system files. Additionally, we want to explore the research direction

of identifying method-binding information from code fragments that are available in forums and

websites using our approach.

1https://stackoverflow.com/
2https://developer.android.com/docs
3https://openai.com/blog/chatgpt

104

Bibliography

[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Using findbugs

on production software,” in Companion to the 22nd ACM SIGPLAN Conference on

Object-Oriented Programming Systems and Applications Companion, ser. OOPSLA ’07.

New York, NY, USA: Association for Computing Machinery, 2007, p. 805–806. [Online].

Available: https://doi.org/10.1145/1297846.1297897

[2] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “Sniafl: Towards a static noninteractive

approach to feature location,” ACM Trans. Softw. Eng. Methodol., vol. 15, no. 2, p. 195–226,

apr 2006. [Online]. Available: https://doi.org/10.1145/1131421.1131424

[3] S. Mani, R. Padhye, and V. S. Sinha, “Mining api expertise profiles with partial program

analysis,” in Proceedings of the 9th India Software Engineering Conference, ser. ISEC ’16.

New York, NY, USA: Association for Computing Machinery, 2016, p. 109–118. [Online].

Available: https://doi.org/10.1145/2856636.2856646

[4] B. Dagenais and L. Hendren, “Enabling static analysis for partial java programs,” in

Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming

Systems Languages and Applications, ser. OOPSLA ’08. New York, NY, USA:

Association for Computing Machinery, 2008, p. 313–328. [Online]. Available: https:

//doi.org/10.1145/1449764.1449790

[5] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from human-

written patches,” in 2013 35th International Conference on Software Engineering (ICSE),

2013, pp. 802–811.

105

https://doi.org/10.1145/1297846.1297897
https://doi.org/10.1145/1131421.1131424
https://doi.org/10.1145/2856636.2856646
https://doi.org/10.1145/1449764.1449790
https://doi.org/10.1145/1449764.1449790

[6] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault incidence using software change

history,” IEEE Transactions on Software Engineering, vol. 26, no. 7, pp. 653–661, 2000.

[7] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifications from natural lan-

guage api documentation,” in 2009 IEEE/ACM International Conference on Automated Soft-

ware Engineering, 2009, pp. 307–318.

[8] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. Lopes, “Sourcerer:

A search engine for open source code supporting structure-based search,” in Companion to

the 21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Languages,

and Applications, ser. OOPSLA ’06. New York, NY, USA: Association for Computing

Machinery, 2006, p. 681–682. [Online]. Available: https://doi.org/10.1145/1176617.1176671

[9] T. Clem and P. Thomson, “Static analysis at github: An experience report,” Queue, vol. 19,

no. 4, p. 42–67, sep 2021. [Online]. Available: https://doi.org/10.1145/3487019.3487022

[10] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen,

“Graph-based mining of multiple object usage patterns,” in Proceedings of the 7th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on The Foundations of Software Engineering, ser. ESEC/FSE ’09. New York,

NY, USA: Association for Computing Machinery, 2009, p. 383–392. [Online]. Available:

https://doi.org/10.1145/1595696.1595767

[11] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk,

“There and back again: Can you compile that snapshot?” Journal of Software: Evolution

and Process, vol. 29, no. 4, p. e1838, 2017, e1838 smr.1838. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1838

[12] H. Zhong and X. Wang, “Boosting complete-code tool for partial program,” in Proceedings of

the 32nd IEEE/ACM International Conference on Automated Software Engineering, ser. ASE

’17. IEEE Press, 2017, p. 671–681.

[13] S. Thummalapenta and T. Xie, “Parseweb: A programmer assistant for reusing open

source code on the web,” in Proceedings of the Twenty-Second IEEE/ACM International

106

https://doi.org/10.1145/1176617.1176671
https://doi.org/10.1145/3487019.3487022
https://doi.org/10.1145/1595696.1595767
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1838

Conference on Automated Software Engineering, ser. ASE ’07. New York, NY,

USA: Association for Computing Machinery, 2007, p. 204–213. [Online]. Available:

https://doi.org/10.1145/1321631.1321663

[14] E. M. Gagnon, L. J. Hendren, and G. Marceau, “Efficient inference of static types for java

bytecode,” in Static Analysis, J. Palsberg, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,

2000, pp. 199–219.

[15] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot - a java

bytecode optimization framework,” in Proceedings of the 1999 Conference of the Centre for

Advanced Studies on Collaborative Research, ser. CASCON ’99. IBM Press, 1999, p. 13.

[16] L. Gasparini, E. Fregnan, L. Braz, T. Baum, and A. Bacchelli, “Changeviz: Enhancing the

github pull request interface with method call information,” in 2021 Working Conference on

Software Visualization (VISSOFT), 2021, pp. 115–119.

[17] D. Dam. diptopol/apifinder. [Online]. Available: https://github.com/diptopol/apifinder

[18] T. E. Foundation. Eclipse java development tools (jdt). [Online]. Available: https:

//www.eclipse.org/jdt/

107

https://doi.org/10.1145/1321631.1321663
https://github.com/diptopol/apifinder
https://www.eclipse.org/jdt/
https://www.eclipse.org/jdt/

	List of Figures
	List of Tables
	Introduction
	Motivation
	Practitioner Perspective
	Researcher Perspective
	Limitations of Existing Tools

	Contribution

	Literature Review
	Partial Program Analysis
	Limitation of the existing approaches

	Background
	Approach
	Artifact & Java Version Extraction
	Input
	Determination of Build System
	Extraction of Java Version & Artifacts
	Extraction Of Java Core Packages
	Extraction of Artifact Archives
	Storing process
	Output

	Method Binding Information Resolution
	Invocation context information extraction
	Resolution of Appropriate Method Binding Information
	Post-Processing of Method Binding Information:
	Conversion of variadic Argument:

	Implementation
	``API Finder" API
	``API Finder" API Using Fluent Builder Pattern
	Storage
	Chrome Extension for GitHub
	Comparison between ``API Finder" extension and GitHub Code Navigation

	Evaluation
	Evaluation Setup
	Project Selection
	Evaluation Process

	RQ 1: What is the accuracy of our proposed approach?
	What is the execution time for resolving method binding information?
	Comparison between ``API-Finder" and ``JavaSymbolSolver"
	Limitations and Threats to Validity

	Conclusion and Future Work
	Applications of ``API Finder"
	Future Work

	Bibliography

