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Abstract

JsDiffer: Refactoring Detection in JavaScript

Mosabbir Khan Shiblu

Refactoring refers to any code changes that improve the maintainability of the software

system. Identifying such activities helps to understand the evolution and the relationship

between two versions of a system. Therefore, automatic detection of refactorings applied in

a system by comparing the source code between two snapshots has been an active research

topic. Current state-of-the-art refactoring detection tools RefactoringMiner 2.0, however

only supports programs written in Java language. On the other hand, JavaScript, despite

being the most popular language, is supported by only one refactoring detection tool -

RefDiff 2.0 which cannot detect variable level refactorings such as rename variable, rename

parameter, etc.

In this study, we present JsDiffer, which supports 18 different refactoring operations

including several variable related refactorings in JavaScript projects. Although the tool is

inspired by RefactoringMiner, it differs quite a lot from refactoring miner in terms of struc-

tural mapping. We evaluated JsDiffer by constructing an oracle of 341 refactoring instances

mined from 18 open-source JavaScript projects and compared it with RefDiff 2.0. Our re-

sults indicate that JsDiffer can achieve a precision and recall of 96% and 44% respectively.

Although RefDiff 2.0 turned out to be the better of the two tools for JavaScript projects,

our approach shows promising results in detection on Rename Variable refactorings where

it achieves a precision of 88%.
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Chapter 1

Introduction

1.1 Motivation

Refactoring means restructuring source code to improve its maintainability without altering

its functionality. It plays an important role in the modern software development life cycle.

In addition to improving software maintainability, refactoring is frequently used to denote

changes that improve software performance, software security, and even the energy con-

sumption of a system [1], [2], [3]. In an agile environment, it enables the limited upfront

design of the software to advance [4]. On the other hand, in test-driven development, it is

regarded as a necessary activity in keeping the code-base compliant for further development

[5].

A recent survey paper [6] found over 3,000 papers on refactoring topics which attests

its popularity in modern research. Many researchers empirically investigated the benefits of

refactorings by studying how the renaming of identifiers affects code readability [7], how

and why developers rename identifiers [8], the impact of refactoring on code naturalness

[9], the impact of refactoring on code smells [10], the co-occurrence of refactoring and

self-admitted technical debt removal [11], and how the introduction of Lambda expressions

affects program comprehension [12].
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Therefore, by detecting refactorings in software projects, researchers can better under-

stand software evolution. Earlier studies used such information to investigate the usage of

refactoring tools [13], [14], the motivations behind refactoring [15], [16], [17], the risks

associated with refactoring [15], [16], [18], [19], [20], and the effect of refactoring on

code quality metrics [15], [16]. Additionally, the accuracy of source code evolution anal-

ysis can be improved by keeping track of refactorings, because files, classes, or functions

may have their histories split by Move or Rename [21] refactorings. Lastly, according to a

survey spanning 86 articles [22], the most desirable application for detecting changes that

occurred between two program versions is extracting patterns of change and re-performing

changes in different contexts. Knowing the applied refactoring operations in the version

history of a system not only can help advance software evaluation research, but also can

help developers in their practice. First, such information can be used to help resolve merge

conflicts and improve code review time as many developers face difficulties when review-

ing or integrating code changes with large refactoring operations [15]. It has been reported

that refactoring activities can cause merge conflicts when merging development branches

[23]. Therefore, if a tool can identify applied refactorings at commit level, it can possibly be

used to resolve merge conflicts automatically. Additionally, various source code diff tools

can use this information to match textually different code elements between two versions.

Second, identified refactoring instances can be automatically appended in the commit mes-

sage to let code reviewers know about the refactored components upfront. Third, if an

API is refactored, corresponding refactorings could be applied to the client code automat-

ically [24] [25]. Fourth, detected refactorings can be used to distinguish new lines of code

representing a feature in a software development sprint from behavior-preserving changes,

which can potentially help a project manager to monitor the progress of the current mile-

stone. Last but not the least, refactoring detection tools can potentially be used to increase

the accuracy of source code plagiarism detection tools.
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Detecting refactorings is a challenging task due to the fact that developers rarely doc-

ument such activities [26] and refactorings are often intertwined with other code changes

making them even harder to distinguish. However, given the practical importance of refac-

toring in software development as well as its research potential, it is unsurprising that we

have seen many automatic refactoring detection tools over the past few decades. Refactor-

ingMiner 2.0 by Tsantalis et. al [27] currently represents the state of the art and is capable

of detecting 40 refactoring types with a precision and recall of 99.6% and 94% respec-

tively. Unfortunately, like the majority of the detection tools, it supports only the Java

programming language. On the other hand, RefDiff 2.0 by Silva et. al [28] is the only

tool capable of detecting refactorings in JavaScript projects. RefactoringMiner structurally

matches statements of code thus capable of detecting lower level refactorings (such as re-

name /merge variable). On the other hand, the body of a function is represented as a bag

of tokens by RefDiff and thus such lower-level structural information is never present after

the tokenization.

Given the fact that JavaScript is currently the most popular programming language 1,

a refactoring detection tool that can detect lower-level refactorings in JavaScript may pro-

vide more insight into its ecosystem, as developers tend to apply such refactorings more

frequently than high-level refactorings [13]. Besides, there are significant differences be-

tween Java and JavaScript besides language grammar. For example, in JavaScript, functions

are first-class citizen and can be stored and used as a variable. JavaScript code can reside

outside of the body of a function. Moreover, unlike Java which is object-oriented and class-

based, JavaScript projects can follow styles of OOP, functional programming, or a mix of

both. Lastly, there are many super sets and extensions of JavaScript language (e.g., Type-

script JSX) which are often intermixed with vanilla JavaScript code further complicating

the task of parsing and modeling the source code.

1https://survey.stackoverflow.co/2022/

3



In this thesis, we present JsDiffer - the first tool that allows the detection of variable-

related refactorings in JavaScript projects. Our tool is heavily inspired by RefactoringMiner

2.0; however, it has its own unique approach to detecting refactorings. JsDiffer takes two

source code versions and outputs the refactorings performed between them. Currently, JsD-

iffer supports 18 types of refactorings including 1 JavaScript specific refactoring (Change

Variable Kind refactoring). To evaluate the performance of JsDiffer, we ran it on 608

commits from 19 open-source JavaScript projects, and manually validated a portion of the

detected refactoring instances. Overall, JsDiffer achieved a precision of 96% and a recall

of 44%. Although the precision is higher than the current state-of-the-art, JsDiffer has per-

formed poorly on recall. This result showed the potential of JsDiffer for detecting some

specific refactoring types in JavaScript projects. Additionally, we compared JsDiffer with

the only publicly available refactoring detection tool for JavaScript, namely RefDiff 2.0,

and found that JsDiffer was able to find a few unique refactoring instances, which were not

detected by the state-of-the-art.

1.2 Objectives and Contributions

The goal of our study is to develop a refactoring detection tool that does not rely on textual

similarity, but rather on the structural similarity of two code elements. This can potentially

help us with plagiarism detection when two source codes significantly changed between

two versions. Besides, structural-based detection is the only approach that can detect low-

level refactorings, such as Rename Variable.

Therefore, we employed a similar approach by RefactoringMiner 2.0 [27] which uses

structural-based matching between two source codes and it is the current state-of-the-art

for Java projects with precision and recall of 99.6% and 94%, respectively. In contrast to

RefDiff 2.0, our approach does not rely on any similarity threshold, which makes it suitable

for detecting refactorings between any two source codes that could have significant textual
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differences. Moreover, our tool is the only tool that can detect variable-related refactorings

such as Rename Variable and Rename Parameter.

This thesis makes the following contributions:

(1) We present the first tool, which is able to detect variable level refactorings between

two JavaScript source codes.

(2) We support a total of 18 refactoring types including Change Variable Kind refactor-

ing, which is the first JavaScript-specific refactoring in contrast to object-oriented refactor-

ings, which are supported by most tools.

(3) We compared JsDiffer with the current state-of-the-art refactoring detection tool:

RefDiff 2.0, where an empirical study on 608 commits from 19 open source JavaScript

repositories were performed to create an oracle of 341 refactorings. This oracle is also

publicly available to enable the replication of our experiments as well as future research on

refactoring mining2.

1.3 Outline

The rest of the thesis is structured as follows. Chapter 2 provides an overview and discus-

sion of related works. Our approach to automatic detection of the refactorings that occurred

between two program versions is presented in Chapter 3. The correctness and complete-

ness of our approach are evaluated in Chapter 4, including the limitations of the proposed

approach and threats to the validity of our study. Finally, in Chapter 5, we provide our

conclusions and discuss possible related future research.

2https://docs.google.com/spreadsheets/d/1CQg7FO30GresGrHSGh0lxn5cWdrd_
Y3EXEO98MPrQqE
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Chapter 2

Related Work

In this section, we start by briefly talking about the spectrum of research exploring the

practice of refactoring and later go into details about modern refactoring detection tools.

Leo Brodie [29] first mentioned the word “Refactoring” in his book “Thinking Forth”,

originally published in 1984. As per the author, “Factoring” and “Refactoring” were inter-

changeably used in the Forth community back then and he defined refactoring activities as

identifying useful fragments that could be pulled out to make code more generally useful

and more maintainable, or to eliminate duplication. In addition, the author also discussed

many software development principles and practices that are still applicable to date.

However, it was Opdyke [30] who generalized refactorings as any source code trans-

formations that improve the understandability and reusability of source code.

In an early work, by Mens and Tourwe [31], an overview of the existing research was

provided in terms of refactoring practices and techniques, refactoring tools, and the effect

of refactorings on the software process. Further studies studied the impact of refactoring

on code quality [32] [33] [34] [35] [36] [37], detecting refactoring opportunities [38] [39],

refactoring recommendations, [40] [41] [42], and automated refactoring tools [43] [44] [45]

[46] [28] [47].
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2.1 Refactoring Detection Approach

2.1.1 Detection Using Meta Data

Several studies have used repository metadata, such as commit messages, from version

control systems to detect refactorings. Ratzinger et al. [48] searched for a predefined set of

terms (e.g. “refactor”) in commit messages to classify them as refactoring changes. Kim

et al. [16] reported that in some cases, a branch may be created exclusively to refactor the

code. Soares et al. [49] proposed an approach that can detect behavior-preserving changes

by automatically generating and running test cases and can also be employed to classify

behavior-preserving commits. Recently, Krasniqi and Cleland-Huang [50] implemented

CMMiner which is capable of detecting 12 refactoring types based on analyzing commit

logs provided by developers.

2.1.2 Detection By Tracking IDE Activity

Murphy-Hill et al. [13] tracked the usage history of refactoring commands available in

Eclipse IDE using a plugin and found that developers had performed about 90% of their

refactorings manually instead of opting for the refactoring tool. Additionally, develop-

ers often interleave refactorings with other behavior-modifying programming activities.

Furthermore, developers rarely explicitly report their refactoring activities in commit mes-

sages.

Negara et al. [14] developed CodingTracker, which infers refactorings from continuous

code changes with the help of a refactoring inference plugin. Using their tool, they con-

structed a large corpus of 5,371 refactoring instances performed by 23 developers working

in their IDEs. Their approach reported precision and recall of 93% and 100%, respectively,

for a sample of both manually and automatically performed refactorings.

Similar to CodingTracker [14], GhostFactor [51] and ReviewFactor [52] infer fully
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completed refactorings by monitoring the fine-grained code changes in real-time inside the

IDE. On the other hand, BeneFactor [53] and WitchDoctor [54] offer code completion by

detecting ongoing manual refactorings.

2.1.3 Detection by Static Source Code Analysis

Static analysis is a widely popular and modern approach for finding differences between

two versions of a software system. It has the advantage of being able to detect applied

refactoring from software version histories. As our tool falls into this category, in this

section, we will go in-depth about existing static refactoring detection tools.

Demeyer et al. [55] introduced the first strategy for identifying the refactored elements

between two system snapshots. They defined four heuristics based on the changes of object-

oriented source code metrics such as method size, class size, and the number of inherited or

overwritten methods to identify refactorings of three general categories (Split/Merge Class,

Move Method, and Split Method). For example, to detect Extract Superclass refactoring,

they start by inspecting the increase in the inheritance hierarchy of a class to detect newly

added classes. Then, they observed whether the number of methods and fields in the hierar-

chy has been decreased, but increased in the newly added class. To validate their technique,

they applied it to different versions of three software systems. However, the precision of

their approach was seemingly on the lower side, for example, for Move Method refactor-

ings (limited to super, sub, and sibling classes) the reported average precision was 23%.

One of the reasons for low precision is due to the partial overlapping of heuristics causing

some false negative refactorings to be reported as false positives for other refactorings. On

the other hand, the paper concluded that from the perspective of reverse engineering, the

proposed heuristics were extremely useful to uncover where, how, and maybe why imple-

mentation had drifted from its original design.

8



Antoniol et al. [56] used an automatic technique based on Vector Space cosine similar-

ity to compare identifiers in different classes in order to detect the renaming and splitting of

classes. Since it’s based on a similarity threshold, it does not perform very well for classes

with many changes and may require threshold adjustment on a case basis.

Weißgerber and Diehl [57] developed the first technique for identifying class-level and

locally-scoped refactorings i.e., refactorings that occur within one class, and thus, within

the same file (e.g. Rename Method). Their approach first extracts and identifies added

and deleted refactoring candidates (fields, methods, and classes) by parsing deltas and then

comparing each pair’s name similarity from a version control system. For ambiguous can-

didate pairs, it uses a clone detection tool CCFinder [58] to compare their bodies and then

rank them. CCFinder is also configured to ignore whitespaces and comments and to match

consistently renamed variables, method names, and references to members. Finally, they

used random sampling to estimate the precision, whereas commit messages were inspected

manually to find documented refactorings in order to compute the recall. Although they

have achieved a good recall of 89%, it has been proven that commit messages are not

reliable indicators of refactoring activity [50], [13]. Lastly, the authors stated that their

technique is susceptible to multiple refactorings performed on the same entity.

Dig et al. [59] developed an Eclipse plug-in named RefactoringCrawler which initially

uses a computationally inexpensive text-based similarity metric, Shingles encoding [60], to

find possible refactoring candidates. Shingles act as "fingerprints" for texts (e.g., method

bodies) and reduce the ramification of small textual changes like renaming and minor edits.

This enables RefactoringCrawler to detect similar pairs of high-level code elements (meth-

ods, classes, and packages) between two versions of a project much more robustly than

existing string matching techniques that are vulnerable to minor changes. To detect ac-

tual refactorings, it then refines the candidates by employing a more expensive and precise

9



semantic analysis based on reference graphs. To evaluate the performance of Refactor-

ingCrawler, it was applied to three open-source Java projects and archived high values for

both precision(95%) and recall(90%). However, similar to the work of Weißgerber and

Diehl [57] the authors manually discovered the applied refactorings by inspecting their

commit messages and release notes for computing recall, while they inspected the source

code to compute precision. Later, Biegel et al. [61] replicated Weißgerber’s approach using

three different similarity metrics: CCFinder (text-based), JCCD [62] (ast-based), and Shin-

gles (token-based). It was concluded that the three metrics performed with a comparable

quality even though they can affect the ranking of refactoring candidates.

Xing and Stroulia [63] used both textual and structural similarity to detect refactor-

ings between two versions of a system in their Eclipse plug-in named JDEVAN [64] [25].

JDEVAN initially constructs two UML logical design models from the source code corre-

sponding to two versions of a Java system. Next, using UMLDiff [65], the two models are

compared and the differences between them are reported as removal, addition, moving, and

renaming of UML entities (e.g., class, package). Finally, JDEVAN’s refactoring-detection

module defines a suite of queries [63] assisted by a set of similarity metrics that attempt

to categorize detected differences as refactoring instances through a hierarchical pairwise

comparison between the two models’ packages, classes, methods, and fields. As an ex-

ample of an implemented query, an Extract Operation refactoring is inferred when the set

of usage relations (read, write, call, instantiate) inside a newly added method proved to

be a subset of the removed usage relations from the original method or their intersection

set is greater than a user-specific threshold. JDEVAN found all the documented refactor-

ings when applied to two systems and proved to be useful in detecting different types of

refactorings in several studies. However, the authors confirmed that its rename and move

refactorings detection is vulnerable to cases where there are not enough relations between

the refactored entities and other parts of the program.

10



Ref-Finder [45] by Prete et al. [66] is capable of detecting 63 of Fowlers’ catalog [67]

72 refactoring types, which contains the most comprehensive list of refactoring types to that

time. It first describes classes, methods, and fields as a set of logic predicates along with

their content (e.g., method body) and structural dependencies (i.e., field access, method

calls, subtyping, and overriding) to represent the versions of a program as a database of

logic facts. Additionally, supported refactorings are encoded as logic rules where the an-

tecedent defines the constraints (i.e., change facts) and the consequent holds the refactoring

type to be inferred. Next, it converts the antecedent of these logic rules as logic queries

and then invokes them against the database of logic facts to identify program differences

that match the constraints of each refactoring type under focus. Besides, by tracking the

dependencies among refactoring types, lower-level refactorings were queried to identify

higher-level, composite refactorings making Ref-Finder the first tool capable of detecting

composite refactorings, where each refactoring consists of a set of atomic refactorings.

For example, Extract Superclass refactoring is inferred by checking if a new superclass

was created and a number of Pull Up Method/Field refactorings were identified that had

moved fields and methods to the newly created class. For the detection of some types

of refactoring, their rules require a special logic predicate that indicates if the word-level

similarity between two candidate methods is above a threshold. This was implemented as a

block-level clone detection technique that trims parenthesis and removes escape characters,

returns keywords, and computes the world-level similarity between the two code fragments

using the longest common sub-sequence algorithm. The tool was tested on three open-

source Java programs and precision of 74% and recall of 96% were reported. However,

later studies reported lower precision and recall for Ref-Finder [68] [69] [70]. Consider-

ing refactorings applied in isolation (root canal refactorings [13]) and ignoring refactorings

with overlapping changes (i.e., floss refactorings [13]) was the reason behind higher preci-

sion and recall in the evaluation conducted by the authors.
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Now we are going to discuss the current state-of-the-art commit-based refactoring de-

tection tools RefDiff [28], RefactoringMiner 2.0 [27] and RefDetect [47], which are closely

related to our work.

RefactoringMiner

Tsantalis et al. [71] proposed a tool based on an extended, lightweight variation of the

UMLDiff [65] which is an algorithm for differencing object-oriented models. It is capa-

ble of identifying 14 high-level refactoring types: Rename Package/Class/Method, Move

Class/Method/Field, Pull Up Method/Field, Push Down Method/-Field, Extract Method,

Inline Method, and Extract Superclass/Interface. The process identifies refactorings be-

tween two models in several rounds. First, it compares the names or signatures of classes,

methods, and fields in a top-down fashion and determines whether they have been matched,

removed from the first model, or added to the second model. Next, removed elements are

compared against the added elements by the equality of their names and parameter count to

identify the changes in signatures of fields and methods. Third, the leftover removed/added

classes are matched based on the similarity of signatures of members from the previous step

thus this step can endure type changes. Finally, a set of refactoring detection rules defined

by Biegel et al. [72] was extended and employed to infer actual refactoring instances. To

evaluate their approach, the authors applied their technique in the version histories of three

projects and reported 96.4% precision for Extract Method refactoring with 8 false posi-

tives and 97.6% precision for Rename Class refactoring with 4 false-positive instances. No

false positives were found for the remaining refactorings. Later, Silva et al. [17] extended

and re-introduced the tool as RefactoringMiner and used it to mine refactorings on large

scale in git repositories. In their evaluation of the tool, a precision of 63% with 1,030 false

positives out of 2,441 refactorings was reported. On the other hand, RefactoringMiner

achieved precision and recall of 93% and 98% respectively when the authors evaluated it
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as a benchmark on the dataset created by Chaparro et al. [73].

RefDiff 1.0

In their tool RefDiff, Silva and Valente [69] introduced the concept of analyzing only the

changed, added, or deleted files between two versions of a program to detect refactorings. It

is capable of detecting 13 high-level refactoring types through static analysis and code sim-

ilarity comparison. As a first step, RefDiff represents the body of classes and methods as a

multiset (or bag) of tokens, whereas for each field it considers tokens of all the statements

that use that field. Next, to find similarities between code entities, a variation of the TF-

IDF weighting scheme [74] is used to assign more weight to tokens that are less frequent,

and thus have finer distinctive importance than other tokens. Additionally, the similarity

threshold for different kinds of code elements is calibrated by using a set of ten commits

from ten different open-source projects for which the project developers themselves have

confirmed the applied refactorings [17]. Finally, similar to the evaluation performed by

Prete et al. [66], they evaluated RefDiff based on an oracle of refactorings applied by grad-

uate students in 20 open-source projects. The evaluation suggested that RefDiff surpassed

RMiner [17], RefactoringCrawler [59] and Ref-Finder [66] in terms of performance and

accuracy.

RefactoringMiner 1.0 /RMiner

Later, Tsantalis et al. [46] proposed a major evolution of their existing RefactoringMiner

[17] [71] tool and renamed it to RMiner (RefactoringMiner version 1.0) which is the first

refactoring detection tool that does not rely on code similarity thresholds. Similar to RefD-

iff, RMiner also processes only the changed, added, or deleted files of a commit; however,

unlike its competitors such as, Ref-Finder, UMLDIFF, and RefactoringCrawler; RMiner
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does not depend on building the two compared project versions. Consequently, this tech-

nique can support well commit-based refactoring detection, as the majority of the change

history of software systems cannot be successfully compiled [75]. RMiner employs an

AST-based statement matching algorithm and a set of detection rules to detect 15 repre-

sentative refactoring types. It matches statements in a round-based fashion where textually

identical statements are matched first. Then, the algorithm employs two novel techniques:

abstraction, to facilitate the matching of statements having a different AST node type, and

argumentation, which deals with changes in sub-expressions within statements due to the

replacement of expression with method parameters, and vice-versa. To deal with over-

lapping refactorings (e.g., variable renames), while matching two statements, RMiner per-

forms a syntax-aware replacement of the compatible AST nodes to make them identical.

For evaluation, the authors created a dataset with 3,188 real refactorings instances from 185

open-source Java projects. Using this oracle, the authors reported a precision of 98% and

recall of 87%, which was the best result at the time, surpassing RefDiff [69], the previous

state-of-the-art, which achieved a precision of 75.7% and a recall of 85.8% on the same

dataset. The superiority of RMiner is also confirmed by Tan and Bockisch [70] where it

emerged as the winner among its competitors: RefactoringCrawler [59], Ref-Finder [66]

and RefDiff [69].

RefDiff 2.0

In continuation to their previous work, Silva et al. [28] evolved RefDiff [69] to RefDiff

2.0 1, which is the first multi-language refactoring detection tool. The tool is capable of

detecting refactorings in Java, C, and JavaScript programs and remains the only known

tool capable of detecting performed refactorings in JavaScript. It employs a two-phase ap-

proach where in the first phase source codes are represented as a Code Structure Tree (CST)

1https://github.com/aserg-ufmg/RefDiff
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that abstracts away the detail of a particular language. Each node in CST is represented by

higher-level entities, such as classes and functions. Since code can be written outside of

a class in JavaScript and C, files are also considered as CST nodes. In the second phase,

RefDiff 2.0, uses the same approach as its predecessor and determines the similarity be-

tween the CST nodes by tokenizing the body of CST nodes and then computing their weight

using a variation of the TF-IDF weighting scheme. However, in contrast to its predecessor,

RefDiff 2.0 uses a single default similarity threshold of 0.5 for all kinds of code element

relationships. For Java projects, RefDiff 2.0, was evaluated on the same oracle [46] 2 that

was used to evaluate RMiner [46] and precision of 96% and a recall of 80% were reported.

On the other hand, for C projects, RefDiff 2.0 achieved a precision of 88% and a recall of

91% based on a small-scale experiment. For JavaScript, the computed precision was 91%

using 87 refactorings, and recall was 88% using 65 refactoring instances. Later Brito and

Valente [76] created a GO language plugin of RefDiff 2.0 named RefDiff4Go and reported

similar precision (92%) and recall (80%) based on six GO projects.

RefactoringMiner 2.0

Recently, Tsantalis et al. extended RMiner [46] and introduced RefactoringMiner 2.03 [27].

The tool is capable of detecting over 80 different types of refactoring operations including

low-level ones that occur within the method body (e.g., Inline/Extract/Split/Rename Vari-

able) in Java projects. The main improvement is in the matching function, where new

replacement types and heuristics are added. In the evaluation, the authors compare their

tool with existing tools including its predecessor RefactoringMiner 1.0/ RMiner [46], and

RefDiff 2.0 [28] by using a dataset containing 7,226 true instances for 40 different refac-

toring types, which are validated by experts. The results proved the superiority of the new

version of RefactoringMiner 2.0 by achieving the best precision (99.6%) and recall (94%)

2http://refactoring.encs.concordia.ca/oracle
3https://github.com/tsantalis/RefactoringMiner
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from the tools evaluated. Zarina Kurbatova from JetBrains-Research4 leads and main-

tains kotlinRMiner, which is essentially an extension for RefactoringMiner 2.0 supporting

Kotlin. Additionally, Python extensions are also created by Atwi et al. [77] (PyRef5) and

Dilhara et al. (Py-RefactoringMiner6).

RefDetect

In contrast to RefDiff 2.0 [28] which uses token similarity and RefactoringMiner 2.0 [27]

which structurally matches the code fragments, RefDetect by Moghadam et al. [47] em-

ploys a completely different approach where the whole program is represented as a se-

quence of characters that abstracts away the specifics of that particular language. Their

approach detects refactorings in three steps. First, each entity is represented by 7 different

types of characters in a specific order: class (C), interface (I), generalization/inheritance

relationship (G), attribute (A), method (M), method parameter (P), and a property access/-

coupling relationship between two classes as (R). As an example, if a class B has two meth-

ods, inherits class A, and accesses a field of another class C, B is represented as CGMMR.

These entities representing sub-strings are sorted by the original name of the corresponding

entity and form a single string that represents one version of the input program. Second,

a sequence alignment algorithm (FOGSAA [78]) is used to identify the changes existing

between the two input program versions. For each pair of characters in the input strings,

the alignment algorithm considers three possibilities: match, mismatch, or gap and returns

the initial list of unmatched entities. In the third and the final step, a threshold-based refac-

toring detection algorithm is used to identify the set of applied refactorings that resulted

in the evolution from the older version to the newer one. RefDetect was evaluated and

compared with the current state-of-the-art refactoring detection tool RefactoringMiner 2.0

4https://github.com/JetBrains-Research/kotlinRMiner
5https://github.com/PyRef/PyRef
6https://github.com/maldil/RefactoringMiner
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on the same aforementioned publicly available refactoring oracle. The authors found that

while RefactoringMiner 2.0 clearly outperforms RefDetect in terms of precision (98.5% vs

91.2%), RefDetect achieved a better recall (84.5% vs 78.9%).

2.2 Limitations of Existing Approaches

We will now discuss some of the key limitations of existing approaches that we tried to

overcome in our proposed approach.

Dependence on similarity thresholds: Most of the refactoring detection tools use

similarity metrics to compute the resemblance between a pair of code elements originating

from two different snapshots of a software system. These metrics typically require user-

calibrated thresholds to determine whether the elements should be considered matched.

Since developers often perform other maintenance activities (e.g. bug fixes, performance)

during refactoring [13], similarity thresholds often help endure such overlapping changes.

Modern refactoring detection tools come pre-configured with default thresholds that are

empirically derived through experimentation on a relatively small number of project (one

for UMLDiff, three for Ref-Finder, and RefactoringCrawler, and ten for RefDiff 2.0).

Therefore such thresholds risk being over-fitted to the test projects, and thus cannot be

general enough to handle all the possible ways refactorings are applied in projects from

different domains. Consequently, it may require a manual inspection of the reported refac-

torings against the source code to find false positives in order to re-calculate the thresholds.

Several studies in the field of software measurement and metric-based code smell detec-

tion, extensively investigated the problem of deriving the holy grail value for a particular

threshold by applying various statistical methods and machine learning techniques on a

large number of software projects [79], [80], [81], [82], [83]. Dig et al. [84] reported that

precision and recall can vary significantly for the same software system based on different

values of thresholds. Moreover, Aniche et al. [85] have shown that different threshold
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values are required for source code metrics for software systems using different architec-

tural styles and frameworks. This is especially true for JavaScript programs, where unlike

the object-oriented style of Java, developers can opt for either functional or object-oriented

fashion or a mix of both, and thus the threshold yielding better results in object-oriented

programming may need adjustment for projects written in a functional approach. There-

fore, based on experience, it can be concluded that it is very difficult to derive universal

threshold values that can work well for all projects, regardless of their architecture, do-

main, and development practices [27].

Dependence on built project versions: Tools like RefactoringCrawler, Ref-Finder,

and UMLDiff require building the project versions in order to retrieve structural informa-

tion, such as field access, method call, subtyping and overriding. To accurately obtain such

information in Java projects, a compiler such as the Eclipse JDT plugin is used to resolve

type, variable, and method binding information. However, this approach is severely limited

by the fact that most commits are not compilable [75]. As a result, these tools may not be

suitable for performing large-scale refactoring detection in the entire commit history of a

project.

Incomplete oracle (ground truth): Calculating the true recall for refactoring detection

studies has always been very challenging and debatable, since it is hard to identify all

the refactorings that have been performed in a commit. Inspecting commit messages has

been proved to be an unreliable indicator of presence refactorings as developers do not

always mention them in the commit message [13]. Moreover, Moreno et al. [86] found

out that only 21% of the release notes include information about refactoring operations

by manually inspecting 990 release notes from 55 open-source projects. Last but not the

least, analyzing each file manually for identifying performed refactorings is time-intensive,

requires expertise, and does not guarantee finding all refactoring instances.

Programming language specificity: The majority of the existing approaches support
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only Java systems. In fact, to the best of our knowledge, no other tool can detect refac-

torings in the JavaScript ecosystem except for RefDiff 2.0. Even so, because of the token

based nature of its detection methodology, RefDiff 2.0 cannot detect low-level refactorings,

such as renaming variables, renaming parameters. Lastly, the token-based approach cannot

be successfully used by source code diff tools to cross-match code elements inside contain-

ers (e.g. Functions, Classes) as this approach cannot match the corresponding token in the

next version.
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Chapter 3

Approach

In this chapter, we present our approach for detecting refactorings between any two JavaScript

source code versions. Before going into the details of our implementation, we illustrate

some of the key differences in programs written in Java vs. JavaScript.

3.1 Java vs. JavaScript Program Structure

3.1.1 Function Expression

Function expressions are similar to Java lambda and can be assigned to a variable, invoked,

passed as arguments, and can be declared almost anywhere in the program. Unlike Java

Figure 1: A self-invoking function expression is assigned to the variable add.
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Figure 2: Function processQueue and scheduleProcessQueue are directly de-
clared inside of the function qFactory.

lambdas, which are typically short in size, in JavaScript, we have found instances of func-

tion expression which cover the whole program and often tend to be very large.

Figure 1 shows an example of a self-invoking function expression that is invoked im-

mediately after it’s declared. This basically creates a private scope for the variable count.

The returned function in line 3 by the function expression is assigned to the variable add

which is invoked in line 6.

Being a functional language, JavaScript programs typically make heavy usage of func-

tion declaration and function expression. This contributes to the creation of syntactically

very large statements. Structurally matching large statements without breaking down large

expressions/statements can be a challenging task.

3.1.2 Nested Function Declaration

In JavaScript, functions or classes can be declared almost anywhere and we have found it is

a common practice to declare functions inside of a function directly. This is different than

Java where we cannot declare a named method directly inside of another method. In Java,

methods can only be declared directly under a class.

In figure 2, the topmost function qFactory in line 1 contains only two functions

but no other statements. Therefore, if qFactory is renamed in the next version, its

21



Figure 3: A pattern of Universal Module Definition in JavaScript where the return statement
on line 8 can contain a program that can be run on the client or server-side.

child functions processQueue and scheduleProcessQueue can be used to identify

their parent qFactory. By using functional expressions or nested function declarations,

JavaScript programs often becomes highly nested structurally. Whereas in java, the nested

depth is usually a class and its methods and sometimes methods with anonymous classes.

3.1.3 Script

In JavaScript, code can be directly written inside of a file. These files are typically executed

as scripts. Figure 3 shows a frequent JavaScript pattern which is typically written inside of

a file. In Java, however, no code can be written outside of a class or method.

Such structure is significant for a diff tool because, in Java, the classes must be declared

inside of a package that is explicitly written (except for the default package) therefore

combining the file path, class name, and method information can be used to estimate the

location of a particular statement. However, since statements can be written directly inside

of a file in JavaScript, if they are moved between files, we cannot presume such information.

Moreover, without the containing classes/functions, the combination of statements pair to

be matched among different files can be very high.
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Figure 4: A function expression with 3 parameters is assigned to a variable handle. The
variable handle is invoked like a regular function in line 5.

3.1.4 Functions as Variables

Function can be used as variable in JavaScript and can be passed as the argument of a return

expression. Figure 4 shows how the variable handle is invoked after it was initialized.

At first glance, this may seem like a Java lambda expression. However, in Java the

lambda expressions need a named method to invoke which is typically declared inside of

an interface. On the other hand, during invocation, the first parenthesis is directly written

after the variable handle at line 5.

This increases challenges for a structural matching tool to match an invocation with its

declaration during Extract Function refactoring where a code is extracted to a new function

and the original function invokes the newly added function in lieu of the removed code.

3.1.5 No Static Types

In JavaScript, there are no strong types such as long, int etc. like in Java. Therefore

variables are declared without any static types. This makes it potentially difficult to iden-

tify renamed variables between versions because there is no hint of the type of the variable.

Furthermore, the absence of types negatively affects the matching of parameters of func-

tions and therefore their signatures.
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Figure 5: Some of the supported features of JavaScript which are not available to Java.

3.1.6 Other Differences

Figure 5 illustrates some of the other differences in syntax between Java and JavaScript

code. We have found that in many projects developers do not put semicolons at the end of a

JavaScript statement. Moreover, since functions can be assigned to a variable, in JavaScript

they are often returned from a function and then invoked immediately after the call. The

optional default value of a parameter often contains a function or empty object literals to

be used inside of the function body in case the caller does not provide an argument to

that parameter during invocation. Object expressions are similar to class declarations in

java however, the values of properties are assigned using a colon (:) instead of an equal

sign (=). The destructirng pattern basically selects specified elements or properties from

an array or object and can assign them to variables in a single expression. Lastly, the

array elements can be of any type thus sometimes a function element can be obtained to

immediately invoke from an array.
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3.2 Detection Methodology

Similar to RefactoringMiner, JsDiffer can take a commit as input. A commit contains the

changed, added, or removed files between the parent and child revisions of the source code

of a project. Additionally, JsDiffer can take any two JavaScript source directories or code

snippets as input and returns the detected refactorings between the two sources. The whole

process can be divided into 4 general steps: 1) Source Code Extraction 2) Modeling Code

Elements, 3) Matching Code Elements, and 4) Applying Refactoring Heuristics.

3.2.1 Source Code Extraction

Extracting the source code efficiently and then representing it by a useful source model is

itself often a challenging task. Supersets of JavaScript such as TypeScript, JSXElements

can be transpiled1 into JavaScript code and are often found intermixed in vanilla JavaScript

source files, which further complicates the task of parsing.

We have chosen Babel2 as our source code parser. Babel is the most popular JavaScript

compiler/transpiler that can handle any modern JavaScript syntaxes (e.g., class declaration).

Babel library is written in JavaScript therefore we needed a way to execute Babel in a

JavaScript environment (i.e., NodeJs3).

Since RefactoringMiner is written in Java, for potential reusability, we chose to develop

JsDiffer in Java as well. Therefore we have used J2V84 - a JavaScript engine /executor for

Java. We had chosen J2V8 because it is one of the most efficient ones and has been suc-

cessfully used by RefDiff 2.0[28]. Moreover, we have also tried Google Closure Compiler5

which is written in Java and thus much faster than executing Babel in a virtual environment

1Transpilation: Conversion of source code written in one language to another language
2https://babeljs.io/
3nodejs.org
4https://github.com/eclipsesource/J2V8
5https://github.com/google/closure-compiler

25



from a Java project. Unfortunately, it cannot correctly parse JavaScript files that have inter-

mixed supersets of JavaScript or modern JavaScript syntaxes such as arrow functions and

class declarations. Therefore, we opted for Babel as our chosen JavaScript parser.

For detecting refactoring between two directories, we consider all the JavaScript files

of each revision. On the other hand, for git repository-based comparison, we only process

the added, modified, or removed files in the specific input commit. Analyzing only the

changed files instead of the whole project improves accuracy and performance, since it

reduces the number of program statement comparisons to be performed. In both cases,

we only consider files with .js extension to keep only vanilla JavaScript files. In practice

though, these files may contain TypeScript or even HTML-based source code, and using

Babel, JsDiffer processes only the portion of the code that contains pure JavaScript code.

This phase finishes by returning a list of JavaScript source files along with their contents

that will be processed in the subsequent steps.

3.2.2 Source Model Creation

In this phase, JsDiffer parses source code files and returns two corresponding Java source

code models which represent the first and second versions of the input.

Each program model contains a list of SourceFile models representing the input JavaScript

files from the first step. For each source file, we extract the following information by

traversing its Abstract Syntex Tree (AST) using Babel.

• Function: In JavaScript, a function can be either a declaration or an expression

(when used in a statement). The function expressions are treated in a similar way as

RefactoringMiner models anonymous class declarations in Java code. In addition to

the name, we extract the name of the parameters and the statements inside the body

of a function.
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• Class: Class declarations are a syntactic sugar of the legacy JavaScript functional

constructor. It contains field declarations and methods. In addition, it can have an

inheritance relationship to another class. Class declarations can be also used in a

statement, in which case it is considered as a class expression similar to the Anony-

mous Class declaration of Java-based Refactoring Miner.

• Object: In JavaScript, object expression or declarations are structurally very similar

to class expressions or declarations and therefore treated as such.

var product = {

id: "xxx",

price: 10

};

Listing 3.1: Object expression assigned to a variable

• Single Statement: Single Statements or Leaf Statements contain no nested state-

ments (e.g. let x = 1;). We extract and categorize all the elements such as variable

names, literals, array accesses, function invocations, and anonymous classes/func-

tion expressions that appear in a single statement. Moreover, we record additional

metadata, such as its parent method (if any), its original AST in a text representation,

as well as its depth and its index in the AST.

• Block Statement: A Block statement is a composite statement that contains the same

attributes as a single statement. However, a Block Statement may contain a body that

consists of other statements. For example, try, for, if are all Block Statements. In

addition, in JavaScript, a BlockStatement may contain function or class declarations.

In JsDiffer, we introduced an additional layer of abstraction for functions, classes, and

objects named Container which keeps a reference to its parent container (if any) and its

statements, and declarations. Because, unlike Java, in JavaScript, a function declaration
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can contain other function declarations, class declarations, object declarations, and vice

versa. Besides, in JavaScript, these Containers can be assigned and used as variables.

Note that RefactoringMiner does not consider these two frequent patterns of JavaScript

programs, and thus JsDiffer has limited support for refactorings performed inside nested

function declarations.

1 var math;

2 math.sum = function (a, b) {

3 return a + b;

4 };

5 function main() {

6 const result = math.sum(10, 20);

7 print(result);

8 function print(text) {

9 console.log(text);

10 }

11 }

12

13 class AtomBackend {

14 const buffer = editor.getBuffer()

15 stop() {

16 this.subs && this.subs.dispose()

17 }

18 }

Listing 3.2: Example JavaScript Code Snippet

The example code snippet shown in Listing 3.2 is modeled as a File Container with

the following properties:

1. List of Function Declarations FDs = {main}

2. List of Single Statements LSs = {var math, math.sum = function...}
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3. List of Block Statements BSs = {}

4. List of Function Expressions FEs = {}

5. List of Class Declarations CDs = {AtomBackend}

Here, in line 2, even though the "sum" is a function variable of "math", by Refactor-

ingMiner’s concept, it is an anonymous class/function declaration as it is part of a leaf

statement. However, for JsDiffer, if a function is assigned to a variable and the variable has

a simple one-word identifier (e.g. sum), it is treated as a function declaration.

In line 13, "AtomBackend" is modeled as a class declaration with a function declaration

named "stop". Line 14 is modeled as an attribute of this class where the name of the

attribute is "buffer". Note that since RefactoringMiner does not take into account that

statements can be written directly inside a class. Therefore, JsDiffer supports variable

declaration statements inside a class that can be converted to an attribute inside a class.

Contents inside a function declaration are modeled identically to RefactoringMiner ex-

cept we also support direct declaration of a function. Therefore, the function "main" de-

clared in line 5 has the following properties:

1. List of Single Statements LSs = {const result =..., print(result);}

2. List of Function Declarations FDs = {print(text)}

By introducing this new property to the function declaration model, we supported

JavaScripts’ potential infinite nesting depth of Function or class declarations. Note that

this is in contrast to Java where a function cannot be declared outside of a class.

Since both functions and file containers are identical in source code structure for JavaScript,

we were able to abstract them into a general container. However, to re-use Refactoring-

Miner’s code and improve the accuracy of the detection process, we had to keep class

declaration as a different container to file and function declarations.
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For each leaf statement, we keep track of all the tokens such as the identifiers, function

calls, object creations, literals, operators, etc. They are used to compare the differences

between two leaf statements in the matching phase.

3.2.3 Matching Code Elements

This phase takes the two program models from the previous step and identifies the matched

and unmatched elements between the two versions. Each program model consists of a list

of source file models, which contain various code elements.

Source File Models Matching: Between the versions, source files can either be moved

to another folder, renamed, moved and renamed at the same time, or remain with the same

name and file path.

Algorithm 1: Source File Models Matching
Input : Two Lists of Source File Models S1 and S2.
Output: Set Sm of matched source file models, Sets of unmatched source file

models Su1, Su2 from S1 and S2, respectively and detected refactorings R
1 Sm ← identicalF ilepath(S1, S2)
2 Su1 ← S1\Sm

3 Su2 ← S2\Sm

4 checkForMovedF iles(Su1, Su2, EXACT_MATCH)
5 checkForRenamedFiles(Su1, Su2, EXACT_MATCH)
6 findRefactoringsInCommonNamedFiles(Sm)
7 checkForMovedF iles(Su1, Su2, RELAXED_MATCH)
8 checkForRenamedFiles(Su1, Su2, RELAXED_MATCH)
9 findRefactoringsInUnmachedF iles(Sm)

Algorithm 1 shows the high-level overview of our approach. In line 1, it first tries

to match each source file model of version one with source file models from version two

by their qualified name (i.e., directory path and filename without extension). If the corre-

sponding file is found in the second version, they are added to a list of common files. If

they are not found, it is added to a list of removed files. Inversely, if a file from the second

version cannot be matched, it is added to a list of added files. Thus, this step returns lists
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of common and unmatched files.

Next, it tries to match the moved files with equal filenames but in different directories.

It also utilizes any rename file hint available by the input commit. The algorithm tries to

exactly match the name of classes and functions inside the pair of candidate files up to a

nesting depth of 3. Then, a similar approach is used for Rename File refactoring detection

where the file name is different in the same directory.

Lastly, for each pair of common source files, the declared container elements and di-

rectly written statements (i.e., scripts) are matched. Note that this is also something that

has to be improvised as Refactoring Miner does not support statements written outside

of a method body and its matching heuristics significantly rely on the information of the

containing method.

Container Matching: Initially, the container elements are matched in a round-based

fashion. In the first round, the class and function declarations are considered for matching

by their qualified name (i.e., parent container name and class/function declaration name).

Similar to the previous step, they are added to the initial lists of matched, removed, or

added containers based on the comparison of their names. Note that functions are matched

with functions only and classes are matched with classes only. Since Class Expressions and

Function Expressions are part of a single statement or expression they are matched during

the statement matching process.

For each matched container element (i.e., function or class declaration), we match their

code elements, such as statements or other container declarations and container expres-

sions.

The body of each container element can contain Leaf Statements, Block Statements,

class or function declarations, or even function or class expressions. Thus, we consider all

of these to determine if two functions are equivalent or not.

Leaf Matching: Leaf Statement and expressions consist the backbone of our algorithm
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Figure 6: An example of leaf statement (line 7) with multiple functional expression.

as they help match other elements such as block statements or the body of a container.

We followed the same technique described in RefactoringMiner 2.0 [27]. We encourage

curious readers to find in-depth information in that paper.

A notable difference from RefactoringMiner is that due to the Levenshtein Distance

computation cost, classes and functions are matched differently when they are part of a

statement. For example, RefactoringMiner applies various string replacements on the text

of a single statement containing anonymous classes. In Java, text representing the anony-

mous classes tends not to be huge and the Levenshtein Distance calculation can be per-

formed without any significant performance cost for the majority of the cases. However,

we have found that function/class expressions tend to be very long in JavaScript and some-

times contain the whole program therefore we employ a round-based technique to pair

container expressions in a pair of leaves. This significantly reduces the accuracy of Js-

Differ, as RefactormingMiner could potentially find exact matches when comparing two

anonymous classes by using the statements inside their declared methods for matching the

original pair of leaf statements.

In addition to exact matching, a set of heuristics is finally used to determine if two leaf

statements can be matched if identical matching fails.

Figure 6 shows an example of two versions of a code snippet. The "proto.handle..."

is considered a leaf statement in RefactoringMiner’s concept as it is not a straightforward

function declaration which is a method of a class. Moreover, this statement contains two
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functional expressions. As we cannot identically match them by simple textual comparison

because of the added statement in line 11 of version 2 and the renamed parameter "done2",

RefactoringMiner would perform a Levenshtein Distance calculation by replacing "done"

with "done2". This is not suitable for JavaScript as we have found frequent cases where the

size of code related to the leaf statement is very large. Thus in some cases, it took 3 hours

to match just one pair of statements.

Therefore, in JsDiffer, to match the statement pairs, we employed a round-based tech-

nique. First, if any of the statements contain functional expressions, we do not perform any

string replacement and thus do not calculate the expensive edit distance between the text of

the two leaf statements. For this example, we first check if there is a name for the functional

expressions provided. In this case, both statements have a functional expression with the

identical name "http". Therefore we go inside the body of "http" functional expression to

match the statements inside.

However, a name for a function expression is not always available therefore in the

second round, we try to match functional expressions which have common child function

declarations inside of them. This increases the confidence in matching two functional ex-

pressions as JavaScript is a popular functional programming language, thus if a pair of

functions contain common child function declarations, they are likely to be the same func-

tion.

In the third round, we check for functional expressions with the same-named parame-

ters. Thus, having step-by-step matching helps JsDiffer relax the matching rule gradually

to allow the detection of complex leaf statements that are textually different.

Expression Matching: The condition of an if statement or switch statement, for

loop, catch block, etc. is considered as an expression in JsDiffer. An expression is

handled in a very similar fashion to a leaf statement and holds the same information, such

as variables, and literal and container expressions that appear inside of an expression.
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The expressions from two pairs of composite statements help JsDiffer to determine

whether they are considered matched or unmatched.

Composite Matching: Since a composite statement contains an expression, state-

ments, and declarations, we use all of them to determine whether a pair of candidate com-

posite statements can be considered as matched. At first, like RefactoringMiner, JsDiffer

tries to match them by expression and statements. In case the two pairs of composites can-

not be matched, we try to match them by matching their child function declarations. This

is an additional step over RefactoringMiner, which does not support the concept of having

declarations inside of a composite statement.

This step essentially generates the diff between pairs of containers from which the ap-

plied refactorings can be determined.

3.2.4 Applying Refactoring Heuristics

This step is applied in every container diff elements to determine applied refactorings.

Renamed Containers Detection: This is determined by observing the changes in

the signatures of the container diff. For example, if two function expressions have been

matched but there is a difference in the names of the functions, JsDiffer adds a Rename

Function refactoring to the global list of detected refactorings.

Variable Related Refactorings Detection: Rename Variable, Rename Parameter, etc.

refactorings are supported by JsDiffer. These are determined during container matching by

observing the difference between their matched leaf statements and expression pairs. For

example, if two leaf statements are matched identically by replacing one of the variables

of version 1 with an added variable in version 2, chances are those two are the same but

renamed variables.

We were able to re-use a significant portion of variable replacement techniques used by

RefactoringMiner for this portion. This process applies several consistency checks to make
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sure that the detected rename instance is a valid refactoring. For example, if a variable is

renamed, all the references of that variable are also renamed in the same commit. We check

for this consistency to make sure that the detected refactoring is correct. On the other hand,

multiple variables declared in the same container are harder for JsDiffer to match. Since,

in JavaScript, there are no named strong types (e.g. string, int, etc.), we used variable

kinds (e.g let, var and const) for identifying the correct variable pairs. However, we have

found that this is significantly under performing because of not having strong types as the

3 variable kinds of JavaScript are often interchangeable.

Extract/Inline Function Detection: JsDiffer first tries to employ the same techniques

described in the RefactoringMiner paper to determine whether a method has been extracted

or inlined. It tries to check if some removed statements from a function can be matched with

the statements inside of an unmatched newly added function and a call from the original

function is made to the newly added function. Conversely, for inlined function refactorings,

we check for removed functions where the call to the function is also removed and replaced

with the statements that were inside of the removed function.

Moved Containers Detection: Moved Source Files are detected in two rounds. In the

first-round, the contents of two files with the same name but in a different directory are

identically matched to determine if they are indeed the same file but in a different direc-

tory. This is referred to as exact or strict matching by JsDiffer. After matching the common

named files, one additional round of relaxed move detection rules is used to determine if

an unmatched file is actually moved. This detection phase is more relaxed than the previ-

ous stricter exact matching rule, because in this phase if the number of matched function

declarations is more than half of the total number of function declarations, we consider the

source files as matched i.e., moved. Because of this multi-phase matching, containers with

more similar contents get matched first. This reduces the chance of incorrectly matching

containers in further steps.
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Chapter 4

Evaluation

Evaluating the accuracy of a refactoring detection tool is often challenging due to the lack

of a proper dataset. Developers often do not mention the applied refactorings, and thus it

is not possible to find and confirm all the refactorings performed in a commit. Moreover,

the validity of some refactoring instances is subjective in nature, and depending on the

validator, one particular instance can be marked as valid or invalid.

To evaluate the accuracy of our approach, we ran our tool on 608 commits which po-

tentially include refactoring instances. To the best of our knowledge, RefDiff 2.0 [28]

is currently the only other tool capable of detecting refactorings performed in JavaScript

projects. Therefore, we evaluated JsDiffer’s precision and recall by comparing it with

RefDiff 2.0 on an oracle of 341 JavaScript refactorings.

In our evaluation we investigate the following research questions:

RQ1. What is the accuracy of JsDiffer in refactoring detection and how does it compare

to that of RefDiff 2.0?

RQ2. What is the accuracy of JsDiffer in variable-related refactoring detection?

RQ3. How does the execution time of JsDiffer compare to that of RefDiff 2.0?
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4.1 Oracle Creation

4.1.1 Dataset Creation

In their paper, Silva et al. [28] mentioned a dataset consisting of 3,481 reported JavaScript

refactoring instances out of which 87 instances were manually validated to calculate the

precision and recall of their tool.

Interestingly, we discovered that not all the refactorings that were found in the dataset

provided in the paper were reported when executing the latest version of RefDiff1. Addi-

tionally, we have discovered a different file containing 4,365 refactoring instances in their

evaluation project on GitHub. Moreover, Silva et al. also provided 65 instances of docu-

mented refactorings based on the commit message. Combining all these sources, we ended

up with a total of 608 unique commits each containing at least one reported refactoring

across 19 unique projects.

The inconsistency in the reported refactorings in the paper and those actually detected

by RefDiff 2.0 could result in a noisy or biased precision and recall. Therefore, we decided

to run the latest versions of both tools. RefDiff 2.0 and JsDiffer reported 3708 and 2365

refactorings, respectively, from these 608 commits which constitute our dataset.

4.1.2 Commit Selection for Oracle

Due to the difficult nature and time-consuming manual process of validation, it was not

feasible to validate all refactorings from the dataset to create an oracle. One way to calcu-

late the precision and recall of both tools would be to validate a specific number of random

refactoring instances. This approach was taken by RefDiff 2.0 when evaluating its accuracy

on JavaScript projects by taking 10 random refactoring instances for each of the different

refactoring types.

1https://github.com/aserg-ufmg/RefDiff/commit/889b0bf
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Figure 7: Open-source JavaScript projects used for the evaluation.

However, we opted for validating all instances in a commit versus validating random

refactoring instances, mainly because of the increased chance of discovering other refac-

torings undetected by one of the tools. This potentially helps us to calculate recall more

accurately. Furthermore, validating all refactorings in a commit could provide a better es-

timation of accuracy because ultimately both tools detect refactorings between two source

codes that could be represented by a commit. Therefore, we felt this approach for validat-

ing precision and recall is better than validating random instances. It’s also important to

note that, all the commits come from modern popular JavaScript library projects such as

react js, angular, etc. Figure 7 provides short descriptions of the projects that were selected

for evaluation. These were already carefully curated and sorted by RefDiff 2.0 paper [17]

based on popularity, duration, etc. More details of the selection criteria for these projects

can be found in their paper.

To create an oracle from the dataset, we selected 5 random commits from each of the

projects which fulfill the following criteria:

First, the commit must contain at least one common refactoring type that was reported
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by either of the tools. This helps us compare both tools as we don’t have to validate a

commit that does not contain a commonly supported refactoring instance. Second, the

number of reported refactorings that is supported by both tools in that commit should not

exceed more than 10, because JsDiffer and RefDiff 2.0 reported more than 10 refactorings

in only 29 and 44 commits respectively out of these 5 commits. Therefore we felt confident

that choosing these commits represents a more general population. For example, in one of

the commits2, JsDiffer and RefDiff 2.0 reported 408 and 362 refactorings, respectively.

Both tools reported 362 Move File refactoring in this commit which is a significant portion

of their total reported refactorings. From Table 1 it can be seen that this huge number of

refactorings in a single commit can be considered an anomaly and thus could adversely

affect the practical precision or recall.

Table 1: Distribution of reported refactoring instances among commits when both tools
were applied in 608 commits.

# Commits
# Refactorings JsDiffer RefDiff 2.0
1 118 218
2 44 95
3 15 34
4 11 24
5 4 15
06-10 18 38
11-20 10 15
more than 20 19 28
Total Commits 239 467

Furthermore, a large number of refactoring instances in a commit not only makes it

difficult to understand the source code during manual inspection, but it also increases the

chance of making errors while validating refactorings. Last but not the least, having a

smaller number of refactorings in a single commit makes it easier for the evaluator to

fully validate a commit while increasing the chance of noticing refactorings missed by

2https://github.com/mui/material-ui/commit/3e4854b39b17511d9b312071ca93061eeb503f5d
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the evaluated tools.

4.1.3 Validation of Refactorings

To validate the refactorings, we employed a semi-automated approach which involves iden-

tifying commonly reported refactorings and manual inspection of source code.

First, the reported instances from both JsDiffer and RefDiff 2.0 were stored in a com-

mon format. This helped us to compare and identify refactorings reported by both tools. If

a refactoring is reported by both tools, in many cases we were able to automatically mark

them as a true positive instance. For the rest, the author of this thesis manually inspected

the commit, and each reported refactoring was marked as true positive, false positive, true

negative, or false negative for JsDiffer and RefDiff 2.0, respectively. If one of the tools

reports a false positive instance and the other tool does not report it, we put a true negative

for the other tool, but keep the false positive for the first tool. Moreover, in case of the same

refactorings reported by both tools, we keep only one refactoring instance in our oracle as

it is considered a duplicate.

In case of difficult or complex refactorings, either the author asks for validation from

the thesis supervisor who has much more expertise in validating refactorings or keeps them

as invalidated. This way we feel confident that the oracle we have created is quite accurate.

In addition to validating reported refactorings, during the inspection, if a refactoring is

discovered which is not reported anywhere, it is also added to the oracle as a false negative

for both JsDiffer and RefDiff 2.0.

Internal_Move_Function and Internal_Move_Rename_Function are only supported by

RefDiff 2.0 which represents the change of the parent container of a function. It also reports

internal move functions for cases where a function is moved to another block statement

i.e., moved to another pair of curly braces, and JsDiffer does not report such refactorings.

Moreover, sometimes all the child functions are reported as individual internal moves by
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RefDiff 2.0 when the parent function is actually moved to another container and JsDiffer

reports only the parent container move. In such cases, manual validation is necessary to

consider multiple internal moves as one single Move Function refactoring. On the other

hand, we did validate refactorings that are not supported by RefDiff 2.0 to find the precision

of JsDiffer as an individual tool.

4.2 Result and Discussion

In this section, we will compare our tool with the current state-of-the-art RefDiff 2.0 based

on their precision and recall of our carefully constructed Oracle. We will also compare

their execution time and finally discuss cases where JsDiffer outperforms RefDiff 2.0 and

vice versa.

4.2.1 RQ1: Refactoring Detection Accuracy

Table 2 shows the precision and recall for each refactoring type for RefDiff 2.0 and JsDiffer,

respectively.

Table 2: Precision and Recall per commonly supported refactoring types. Hyphenated (-)
cells represent cases where there was not enough data to calculate the precision or recall.

SL# RefactoringType #Validated JsDiffer
Precision

RefDiff 2.0
Precision

JsDiffer
Recall

RefDiff 2.0
Recall

1 EXTRACT_FUNCTION 65 1 0.93 0.43 0.82
2 EXTRACT_MOVE_FUNCTION 14 - 0.83 - 0.38
3 INLINE_FUNCTION 10 1 1 0.14 0.71
4 MOVE_CLASS 1 1 1 1 1
5 MOVE_FILE 36 1 1 1 1
6 MOVE_FUNCTION 42 1 0.97 0.3 0.94
7 MOVE_RENAME_FILE 10 1 1 0.5 1
8 MOVE_RENAME_FUNCTION 13 - 1 - 1
9 RENAME_CLASS 4 0.5 1 0.33 1
10 RENAME_FILE 17 0.92 0.94 0.73 1
11 RENAME_FUNCTION 67 0.96 0.92 0.39 0.92

Total 279 0.97 0.95 0.45 0.89

For each tool, we calculated precision and recall for each category of refactorings based
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on the following formulas:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Where TP = Number of True Positives and FP = Number of False Positives and FN =

Number of False Negatives.

The total precision and recall are also calculated by using the total number of true

positives, false positives, and true negative instances. Table 3 shows the overall precision

and recall as well as precision and recall for only the common refactorings of both types.

Note that this does not include 73 instances of Rename Variable refactorings which are

discussed separately.

Table 3: Oracle precision and recall for 341 validated instances overall and out of 279
instances were a refactoring type supported by both tools (Common Types).

Tool Precision
(Overall)

Precision
(Common

Types)

Recall
(Overall)

Recall
(Common

Types)
JsDiffer 0.96 0.97 0.44 0.45
RefDiff 2.0 0.86 0.95 0.9 0.89

The result shows that RefDiff 2.0 has significantly outperformed JsDiffer in terms of

recall. JsDiffer seems to have better precision in every category except for Rename Class

refactoring. JsDiffer obtained a very poor recall on Inline Function and Move Function

refactorings. We inspected 37 false negative instances of JsDiffer to categorize the root

cause of missing them and present them in Figure 8.

We can generalize the moving or extracting outside of a container categories into a

single one and can say that it is the most prevalent reason for the missing refactorings. This

happens when a piece of code or a function is moved from a file to another file or in the
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Figure 8: Top reasons behind the low recall of JsDiffer

Figure 9: The expression Function.prototype.toString.call(fn) has been
extracted to stringifyFn function.

same container. Therefore it’s a limitation of RefactoringMiner’s approach.

Figure 9 represents a sub expression base matching problem where an expression be-

comes a statement in a extracted function. Even though it is textually identical it is not

currently possible to match by RefactoringMiner’s approach.

On the other hand, JsDiffer missed Inline Function refactorings where the removed

function resides outside of its destination container or has its statements become part of an

expression of the destination container. Figure 10 however, describes a different scenario

where JsDiffer fails to support the addition of named argument passing (i.e. configurable:

Figure 10: The function loadDataOverProcessBoundary has been inlined to the
parent container class. This is not currently detected by JsDiffer.
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Figure 11: Extract Function toggleObserving from updateChildComponent

true) and thus cannot match the statement of 155 to 57. In practice, we have found cases

where the whole program is passed to a function call as an argument. Therefore, a more

sophisticated approach is needed to handle such a part. ReDiff 2.0, however, was able to

successfully report this refactoring because it has many textually similar tokens that were

matched.

For Rename Class refactorings, the missed cases by JsDiffer are cases where a class

contains a single functional expression-based statement. Since, during class matching,

RefactoringMiner’s approach does not consider any directly written statement, we cannot

match if they are renamed.

However, JsDiffer has found 10 unique instances which are not detected by RefDiff

2.0. For example, in Figure 12, although the toggleOserving function has been ex-

tracted from the updateChildComponent method it was not reported by RefDiff but

2.0 JsDiffer was able to successfully identify that refactoring.

JsDiffer is able to keep track of the arguments passed to a function, when detecting

extract method refactoring, it can identify when a variable has been parameterized. In this

case, JsDiffer considered the parameter "value" of toggleObserving function as "true"
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Figure 12: Change Variable Kind refactoring from var to let

when it encountered the function invoking statement - toggleObserving(true).

Therefore it can exactly match the shouldObserve = value statement to the state-

ment observerState.shouldConvert = true; This is very similar to the "argu-

mentization" process used by RefactoringMiner 2.0 for mapping function invocation with

added operations. On the other hand, we assume that because of the low textual similarity

between the removed statement and the newly added function, RefDiff 2.0 was not able to

detect this refactoring.

4.2.2 RQ2: Accuracy on Detecting Variable Related Refactorings

From 608 commits, JsDiffer reported 355 Rename Variable Refactorings. We validated

73 instances and calculated a precision of 88%. We could not calculate recall as it is an

extremely challenging and subjective task to find all the rename variable refactorings per-

formed in a commit. However, our assumption is that most of the missed rename variable

refactorings would be inside of a container expression which is currently poorly supported

by JsDiffer.

In Addition, to Rename Variable refactorings, we also found Rename Parameter, and

Add/Remove Parameter refactoring instances. Only one Change Variable Kind refactoring

was reported which turned out to be a true positive. Modern JavaScript allows 3 kinds of

named variable kinds - var, let, and const which can be used to declare variables. A Change

Variable Kind refactoring occurred when the declaration kind is changed. For example, var

can be changed to let. This is somewhat similar to Change Type Refactoring of Java (such

as int to long).
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After taking a closer look at some of the false positives of Rename Variable refactor-

ings, we have found that without static types, the syntax-aware replacement technique of

RefactoringMiner does not perform very well in detecting variable level refactorings. This

limitation was also mentioned in their paper. RefactoringMiner 2.0 relies heavily on types

while detecting the signature of a method which helps find a pair of methods for compari-

son even after it has been renamed. This caused many false positives.

4.2.3 RQ3: Performance Comparison

RefDiff 2.0 outperforms JsDiffer in terms of execution time. Table 4 shows the execution

time range for both tools. It took less than a second to detect refactorings in more than

half of the commits for RefDiff 2.0. On the other hand, for the majority of the commits,

JsDiffer took 1 to 9 seconds to process.

Table 4: Execution Time Distribution over 608 commits.

Commit Count Percentage of Commits
Time Range (seconds) JsDiffer RefDiff 2.0 JsDiffer RefDiff 2.0
Less Than 1 202 340 33.22 55.92
1 - 9 333 217 54.77 35.69
10 - 19 33 13 5.43 2.14
20 - 29 10 16 1.64 2.63
30 -59 23 17 3.78 2.80
Greater Than 60 7 5 1.15 0.82

We narrowed down the performance issue of JsDiffer into two phases: the parsing of

source code and generation of source models, and the refactoring detection.

Both JsDIffer and RefDiff 2.0 are written in Java language. Both of them use Babel as

the JavaScript source code parser in a virtual node.js environment. However, RefDiff 2.0

gets the source code back to the Java side in a tokenized format as a string where JsDiffer

traverses the source code and passes back data from the JavaScript side to the Java Side for

each node in the Abstract Syntax Tree. These multiple calls back and forth from Java to
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the JavaScript side turned out to be very costly and on average it took about 3 seconds to

parse and create a model from a commit.

On the other hand, the performance of detection of refactorings was degraded by Leven-

sthein string distance calculation even though we have removed it for matching statements

with container expressions. This occurs when having a large block of code inside an array

access (e.g., arr[]) and the overall number of functions and statements is large.

4.3 Limitations and Threats to Validity

The reason behind such a low recall for JsDiffer is because RefactoringMiner employs a

top-down approach when matching container elements where it checks the signature of two

containers are similar, so that they are potential candidates for matching.

For example, if a class has more than half of its attributes matched with the same types,

then our tool performs a diff between the classes similar to RefactoringMiner 2.0. How-

ever for JavaScript, since there are no types, the only indicator is the name. So, if the

name changes between two versions, the probability of finding a potential candidate to

be matched with is reduced and since we do not employ a brute force approach, JsDiffer

misses many refactorings.

To remedy this problem, we currently check for child function names up to a nesting

depth of 3. That means if two containers have similarly named functions inside their body

or in their children/grandchildren’s (up to depth 3) they are considered for matching.

Unfortunately, this has proven to be highly inadequate for cases where the two contain-

ers do not contain any function declarations. In such a case, we cannot do the statement

mapping because two differently named containers have no common function declarations

and without static types, it’s not possible to properly match the signature of the containers.

This essentially became a Chicken and Egg problem where we want to do the statement

mapping between two potential container elements but without the statement mappings
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sometimes it is not possible to find such candidate container pairs.

We do consider the name and number of the parameters during matching two function

signatures. However, due to the style of JavaScript code, we found that in many cases the

whole program was written as a functional expression and assigned as a default value to

the parameter. Therefore our approach can handle only simple cases and cannot generalize

the structure yet.

As for the evaluation, even though we were careful when constructing our oracle, it

is possible that we might have wrongly but unintentionally put the wrong validation. For

example, whenever both tools reported the same refactoring, we considered it automatically

as a True positive for both tools. However, we have found that in at least one case, both

tools reported an Extract Function refactoring as Rename Function refactoring.

In addition, JsDiffer by default processes files with .js extensions from a commit. It

is very likely that a huge portion of the source code is left unprocessed which is typically

found in .html, .jsx, or .ts file extensions. These files may contain vanilla JavaScript, Type-

Script, JSX, or a mix of them. To reduce the scope we opted to not process other file

extensions at this moment.

Additionally, because of the low number of validated instances for some refactoring,

the accuracy of the tools might not reflect their correctness in practice. For example, we

validated only one instance of Move Class refactoring and both tools were able to detect

that. But only a single instance validation is not enough to judge the strength of the tools.

Moreover, estimating recall for both tools suffers from the lack of information on all

the actually applied refactorings in the commit history. However, we do believe precision

is more important than recall in a refactoring detection tool. Because having a tool with

higher precision produces a less noisy result for the end users. This increases the trust in

the tool put in by the developer. Since recall is difficult to calculate and validate fully,

precision represents the effectiveness of the tool more explicitly. Especially for empirical
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study, it is preferred to have high precision tool because we don’t want wrong instances

that can adversely affect the findings.
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Chapter 5

Conclusion and Future Work

In this thesis, we represent our tool JsDiffer which can detect Refactorings in JavaScript

projects. We described our methodology and thoroughly discussed the difference between

our tool and compared it with the current state-of-the-art RefDiff 2.0.

Our result showed that even though RefDiff 2.0 performed significantly better than

JsDiffer in Recall, our approach was able to find some interesting refactorings that were

missed by RefDiff 2.0. Especially our tool was able to find refactorings that were signifi-

cantly structurally different.

In summary, we learned the followings from this thesis:

1. Though JsDiffer achieved a decent precision of 96% in the oracle it has a low recall

of 44% for detecting JavaScript refactorings.

2. JsDiffer achieved a precision of 88% on detecting Rename Variable refactorings.

3. RefDiff 2.0 also outperformed JsDiffer in execution as the majority of the commits

were processed in under one second by RefDiff, while JsDiffer took 1-9 seconds to

process the majority of the commits in the oracle.

4. JsDiffer was able to detect a single true positive Change Variable Kind refactoring
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instance.

Additionally, we learned that JavaScript programs have very different structure com-

pared to Java programs. For instance, typical JavaScript programs have more nesting depth

of container elements, declare functions within other functions, and in many case the entire

source code of a file is written in a single statement. RefactoringMiner was designed hav-

ing the typical Java program structure in mind. It matches code at statement level and does

not support sub-expression matching (i.e., part of a statement being matched with another

statement). However, we found many scenarios where a sub-expression of a statement was

extracted into a new function.

On the other hand, RefDiff completely ignores the code structure, and this makes it

robust to structural changes. However, we should emphasize that RefDiff by design cannot

support low-level refactorings within the body of a function (e.g., variable renames) as

RefDiff cannot find token replacements, because the location of the tokens in the code

structure is lost after extracting the bag of tokens.

Based on our experiments, we recommend that JavaScript projects may need a hybrid

approach that combines both RefDiff and RefactoringMiner approaches, where at first,

high-level program elements (functions, classes, files) are matched following RefDiff’s

approach, and then RefactoringMiner’s statement mapping approach is applied to detect

low-level refactorings.
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