
Automatic Motivation Detection for Extract Method

Refactoring Operations

Mohammad Sadegh Aalizadeh

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

August 2021

© Mohammad Sadegh Aalizadeh, 2021

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Mohammad Sadegh Aalizadeh
Entitled: Automatic Motivation Detection for Extract Method Refactoring

Operations

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Tse-Hsun Chen
Chair

External

Dr. Weiyi Shang
Examiner

Dr. Tse-Hsun Chen
Examiner

Dr. Nikolaos Tsantalis
Thesis Supervisor

Approved by
Dr. Leila Kosseim, Graduate Program Director

August 19, 2021
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Automatic Motivation Detection for Extract Method Refactoring
Operations

Mohammad Sadegh Aalizadeh

Refactoring is a common maintenance practice that enables developers to improve the in-

ternal structure of a software system without altering its external behaviour. In this study

we propose a novel method to automatically detect 11 motivations driving the applica-

tion of EXTRACT METHOD refactoring operations. We conduct a large-scale study on

325 open-source Java repositories to automatically detect the motivations of 346K EX-

TRACT METHOD refactoring instances. Previous studies have been merely based on sur-

veys, manual analysis of pull requests or commit-messages to detect the motivations of

developers. In this study we develop motivation detection rules to automatically extract

the developer motivations based on the context of a refactoring operation in the commit.

We find that the top four motivations for EXTRACT METHOD refactoring is to introduce

reusable methods, remove duplication, facilitate the implementation of new features and

bug fixes, and decompose long methods to improve their readability. There is an asso-

ciation between the removal of duplication and the introduction of reusable methods in

the refactoring instances with multiple motivations. The findings of this study provide es-

sential feedback and insight for the research community, refactoring recommendation tool

builders, and project managers, to better understand why and how developers perform EX-

TRACT METHOD refactorings and help them build refactoring tools tailored to the needs

and practices of developers.

iii

Acknowledgments

I would like to express my best gratitude and thanks to my supervisor, Prof. Nikolaos Tsan-

talis. This thesis could not be possible without his compassionate guidance and invaluable

motivational insights that opened new horizons of knowledge towards me.

I would also like to express my appreciation to my family, my wife, Faezeh and my

daughter, Fatemeh for all the beautiful moments and the serenity and aspiration they pro-

vided for me to concentrate and proceed in all the hard times.

Finally, I would like to thank my colleagues, Hassan Mansour, Mehran Jodavi ,Mosab-

bir Khan Shiblu and Ameya Ketkar that shared their best experiences and were amazing in

teamwork and helped me to learn a lot in my journey at Concordia.

Thank you.

Mohammad Sadegh Aalizadeh

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Objectives and Contributions . 5

1.4 Outline . 6

2 Literature Review 7

2.1 Refactoring mining tools . 8

2.2 Refactoring Motivation . 9

3 Research Methodology 13

3.1 Automatic Refactoring Motivation Detection 13

3.2 Step 1: Building Motivation Detection Rules 14

3.2.1 Generic Motivation Detection Rules 15

3.2.2 Apply the Rules on the Training Dataset 15

3.2.3 Handle Exceptional Cases . 16

3.2.4 Filtering Motivations by Applying Precedence Rules 17

v

3.2.5 Optimize the Detection Rules . 17

3.3 Extract Operation Motivation Detection 18

3.3.1 Reusable Method . 19

3.3.2 Introduce Alternative Method Signature 22

3.3.3 Decompose Method to Improve Readability 24

3.3.4 Facilitate Extension . 28

3.3.5 Remove Duplication . 31

3.3.6 Replace method Preserving Backward Compatibility 32

3.3.7 Improve Testability . 35

3.3.8 Enable Overriding . 36

3.3.9 Enable Recursion . 38

3.3.10 Introduce Factory Method . 40

3.3.11 Introduce Async Operation . 42

3.4 Step 2: Applying the Detection Rules in Large Scale 43

4 Experiment Results 45

4.1 RQ1: Accuracy of Automatic Motivation Extractor 45

4.1.1 Accuracy on the Training Dataset 45

4.1.2 Accuracy on the Test Dataset . 46

4.2 RQ2: Most Prevalent Motivations for Extract Method Refactoring Operations 52

4.3 RQ3: What are the characteristics of the EXTRACT METHOD refactorings

having Facilitate Extension as motivation 60

4.4 RQ4: Multiple concurrent EXTRACT METHOD Motivations 63

5 Threats to Validity 66

5.1 Internal Validity . 66

5.2 Construct Validity . 67

vi

5.3 External Validity . 67

6 Conclusion and future work 69

Bibliography 71

vii

List of Figures

1 Refactoring Motivation Detection Process in Large Scale 14

2 Reusable Method Decision Tree . 22

3 Introduce Alternative Method Signature Decision Tree 24

4 Decompose Method To Improve Readability Decision Tree 27

5 Facilitate Extension Decision Tree . 30

6 Remove Duplication Decision Tree . 32

7 Replace Method Preserving Backwards Compatibility Decision Tree 34

8 Improve Testability Decision Tree . 36

9 Enable Overriding Decision Tree . 37

10 Enable Recursion Decision Tree . 39

11 Introduce Factory Method Decision Tree 41

12 Introduce Async Operation Decision Tree 42

13 Comparison of our automatically extracted motivation ranking with Silva

et al. (2016) survey ranking . 52

14 Reusable Extracted Methods Visibility Changes 54

15 Multiple Method vs. Single Method Duplication Removal 56

16 Multiple and Single Method Decomposition to Improve Readability 59

17 Top SAR patterns in message of commits that include EXTRACT METHOD

with Facilitate Extension as motivation . 62

18 Extract Motivation Motivation Detection Rate 64

viii

List of Tables

1 Extract Method Motivation Themes . 18

2 General Notations used in EXTRACT METHOD Motivation Detection Rules 19

3 Reusable Method Detection Rule . 20

4 Introduce Alternative Method Signature Detection Rule 23

5 Decompose to Improve Readability Detection Rule 25

6 Facilitate Extension Detection Rule . 28

7 Remove Duplication Detection Rule . 31

8 Replace Method Preserving Backwards Compatibility Detection Rule . . . 33

9 Improve Testability Detection Rule . 35

10 Enable Overriding Rule . 37

11 Enable Recursion Detection Rule . 38

12 Introduce Factory Detection Rule . 40

13 Enable Async Detection Rule . 42

14 Extract Method Refactoring Motivation Flags 44

15 Extract Method Motivations Detection Precision and Recall 46

16 Pull Request Motivation Mapping to Extract Method Motivations 48

17 Pull Request Motivations . 50

18 Precision and Recall of Extract Method Motivations in Pull Requests 51

19 Self-affirmed refactoring patterns . 61

20 Association Rules for EXTRACT METHOD concurrent motivations 65

ix

Chapter 1

Introduction

1.1 Motivation

Software systems continuously evolve and adapt to new requirements implemented through

maintenance tasks, such as feature additions or bug fixes (Chen et al., 2016). In such

environments, refactoring has been adopted by developers as a useful practice to improve

the internal structure of software without altering its functional behaviour (Kaya et al.,

2018).

Many research studies have been conducted to build refactoring recommendation and

prediction tools based on product and process metrics (Pantiuchina et al., 2020; Nyamawe

et al., 2018). Next generation tools and techniques, such as user-aware intelligent refac-

toring bots, automatic advisors and smart search-based refactoring methods, have been

developed to optimize the refactoring recommendation process according to the developer

decisions and feedback (Ivers et al., 2020; Stefano et al., 2020).

However, there is a lack of large-scale empirical research that signifies the main in-

terest points and reasons behind developer refactoring activities. Therefore, in this study

we propose a novel context-aware approach to automatically find the developer motiva-

tions behind applied refactoring operation. We focus our study on the EXTRACT METHOD

1

refactoring that is known as the Swiss army knife of refactoring due to its applicability in

many different scenarios (Silva et al., 2016; Hora and Robbes, 2020).

Previous research mainly focused on surveys or interviews and investigations of pull

request reviews and commit messages to generate taxonomies and categorize refactoring

motivations (Bavota et al., 2015; Silva et al., 2016; Pantiuchina et al., 2020). These research

works discovered 11 major motivations behind the application of EXTRACT METHOD

refactoring operations. These motivations are detected based on source code changes in

commits. Therefore, we formulate detection rules and use them at the core of our auto-

matic motivation detection tool to analyze the context of EXTRACT METHOD refactoring

instances and determine the motivation(s) of the developer. We have not analyzed higher-

level design artifacts, such as UML models or architecture documents to detect motivations,

which can be studied in the scope of architectural refactoring.

1.2 Problem Statement

In this study we will investigate EXTRACT METHOD refactoring motivations from different

aspects. We initially evaluate the accuracy of our motivation detection tool in RQ1 accord-

ing to a dataset of actual developer responses about the reasons they applied EXTRACT

METHOD refactorings in their projects. The remaining research questions will shed light

to the most prevalent EXTRACT METHOD refactoring motivations (RQ2), investigate what

self-affirmed refactoring-related keywords AlOmar et al. (2019a) appear in the messages of

commits including EXTRACT METHOD refactorings (RQ3) and investigate the associations

between different motivations in the cases of refactoring activities with multiple detected

motivations (RQ4).

RQ1: How accurate is our EXTRACT METHOD refactoring motivation detection tool?

The automatic motivation detection tool utilizes an enriched source code representation

model, which provides the required contextual information about the EXTRACT METHOD

2

refactoring operations. In chapter 3, we define detection rules for each motivation by an-

alyzing the context in which an EXTRACT METHOD refactoring instance is applied. The

accuracy and efficiency of the refactoring detection process can affect the motivation de-

tection results. Therefore, we relied on the current state-of-the-art refactoring mining tool,

RefactoringMiner (Tsantalis et al., 2020; Tsantalis et al., 2018), which has an overall pre-

cision of 99.6% and a recall of 94%. Furthermore, it is essential to validate the results

of the automatic motivation detection tool by examining the responses from developers

about the reason behind the application of specific refactoring instances. Therefore, we

reconstructed a training dataset of developer responses about the reasons they applied cer-

tain EXTRACT METHOD refactoring operations in specific commits of their projects (Silva

et al., 2016). The motivation detection algorithm is optimized on this training dataset to

reach an acceptable accuracy level for a large scale study. We further validate the accuracy

of the motivation detection algorithm on a testing dataset of manually analyzed and tagged

refactoring motivations at pull-request level (Pantiuchina et al., 2020). The high accuracy

obtained at this stage will have a direct effect on the analysis of the results to answer the

research questions of the study.

RQ2: What are the most prevalent motivations behind the application of EXTRACT

METHOD refactoring operations?

Developers commonly apply refactoring techniques to maintain and improve the de-

sign quality of software systems during the development period. Automated tools have

been developed to detect and recommend refactoring opportunities to assist developers in

maintenance tasks, but they are often underused. To tailor these tools to the actual needs

and practices of the developers, it is essential to find the most common reasons that moti-

vate developers to refactor code. In this research question we will answer what specific rea-

sons have the highest prevalence when a developer decides to perform EXTRACT METHOD

refactoring operations.

3

There have been a few studies (Silva et al., 2016; Pantiuchina et al., 2020) that cate-

gorized possible motivations and reasons for refactoring through manual investigation and

surveys to build motivation taxonomies. However, these studies due to their manual analy-

sis nature focused on a small number of project commits and refactoring instances. We au-

tomated the detection process of 11 motivations that were recognized in these taxonomies

for the EXTRACT METHOD refactoring operations found in a large number of analyzed

commits (346K commits from 325 open-source Java repositories). The results for this re-

search question will give us the big picture about the reasons that motivate developers to

extract methods.

RQ3: What are the characteristics of the EXTRACT METHOD refactoring instances

having Facilitate Extension as motivation?

Refactoring is not always done for the sole purpose of design quality improvements and

at times can be interleaved with other common development tasks, such as bug fixing or

adding new features.

In cases where an EXTRACT METHOD refactoring is tangled with such tasks, we can

categorize motivations based on the self-affirmed commit messages (AlOmar et al., 2019a;

AlOmar et al., 2021). For instance, bug-removal related keywords, such as fix, bug, issue,

remove, cleanup can be used to detect the code extension motivation at a more fine-grained

level (i.e., the refactoring operation facilitates a bug fix). On the other hand, collateral

refactoring tasks are done without any clear discussions or messages, and therefore it is

more complicated to find the exact intent of the developer without manual analysis.

We have formulated a thorough detection rule for the Facilitate Extension motivation

(Section 3.3.4), which captures EXTRACT METHOD refactoring instances with additional

statements contributing to a bug fix or a feature addition. The rule is optimized to find

statements that are directly contributing to functionality extension. At the same time, it

filters out the statements inside the extracted method that have a minimal effect on adding

4

a new feature or fixing a bug.

We will discuss the results of the Facilitate Extension motivation detection and the

features that are considered in the detection rule. Furthermore, we will discuss what self-

affirmed refactoring keywords are commonly used in the messages of commits that include

EXTRACT METHOD refactorings with a Facilitate Extension motivation.

RQ4: Are there concurrent motivations for extracting methods?

The motivation detection process is designed to analyze the EXTRACT METHOD refac-

toring context to find the evidence related to each defined motivation. Therefore at times it

is possible that multiple motivations are reported for a single EXTRACT METHOD refactor-

ing instance. In such circumstances, various post-processing rules are applied to eliminate

the conflicting motivations that have less priority.

We will study the combinations of refactoring motivations that appear concurrently and

analyze their co-occurrence to understand the possible relation between different refactor-

ing motivations.

1.3 Objectives and Contributions

In this thesis, we formulate the logical rules to detect the motivations of developers that per-

form EXTRACT METHOD refactoring operations. The proposed approach and developed

tool for the automatic refactoring motivation detection can be utilized in refactoring-related

studies that require more detailed information about the intention of the developers when

performing refactoring activities. It can be also used for building smart refactoring advisors

and recommendation tools to address more effectively the developer needs and practices.

Our most significant and important contributions are listed as follows:

• We build a general motivation detection approach for refactoring operations.

• We formulate EXTRACT METHOD motivation detection rules based on the context of

5

a refactoring instance for 11 major motivations based on two prominent studies that

provided refactoring motivation taxonomies through developer surveys and manual

analysis.

• We develop an open-source automated motivation detection tool that can detect EX-

TRACT METHOD motivations, named Motivation Extractor, which is based on Refac-

toringMiner 2.0 (Aalizadeh, 2021; Tsantalis et al., 2020).

• We manually analyze the Pull Requests (PRs) studied by Pantiuchina et al. (2020),

which contain EXTRACT METHOD refactoring instances in order to validate the high

precision and recall of our automated tool that was achieved on a training dataset

from real developer responses Silva et al. (2016).

• We present and discuss empirical results found by analyzing 346K commits from

325 open-source Java repositories.

1.4 Outline

The rest of the thesis is organized as follows. In chapter 2 we discuss the various related

works that have investigated the developer motivations to perform refactoring operations

during maintenance tasks. In chapter 3 we present the details of the motivation detection

model for EXTRACT METHOD refactoring and the detection rules for 11 different moti-

vations. These rules are formulated based on the context of a refactoring instance. We

will demonstrate the rules using decision trees that clarify how different detection rule con-

ditions are matched to determine the developer motivations. In chapter 4 we present the

results of our large scale study and the answers to our research questions. Threats to the

validity are discussed further in chapter 5. Finally, we conclude the thesis in chapter 6.

6

Chapter 2

Literature Review

There has been a tremendous body of research in the field of software refactoring in the past

30 years. The term refactoring was first coined by Opdyke (1990) to describe source code

transformations that can be automated and used to improve understandability and reusabil-

ity. Since then there have been numerous papers about the different aspects of refactoring

activity, such as the refactoring process, goals and incentives, automation techniques, and

recommendation systems.

Refactoring and its applications have been studied on various software artifacts from

source code to models and design patterns (Derezińska, 2017). Tanhaei (2020) propose a

method to automate architectural refactoring based on stakeholder quality attributes.

Researchers have used different methods to study refactoring activities. For instance,

search-based techniques are used to find an optimized refactoring sequence for automated

design quality optimization (Mohan and Greer, 2017). Data mining techniques are uti-

lized to predict the effect of refactoring on code quality during software evolution and

also analyze the impact of refactoring on design quality metrics (AlOmar et al., 2019b).

Some studies use fuzzy logic for automatic code smell detection and refactoring, as well

as formal verification methods to ensure refactoring has not caused behavioural changes

(Nasagh et al., 2021; LUO et al., 2011). Refactoring actions are performed for multiple

7

objectives. Refactoring can improve the internal quality attributes of the software like co-

hesion, coupling, complexity, inheritance depth, and size (Chávez et al., 2017). It can

also improve external software quality attributes that are indirectly measured through code

metrics like reusability, flexibility, understandability, functionality, extensibility, and effec-

tiveness (Vashisht et al., 2018). Performance-related measures can also be improved by

refactoring at various scales. Arcelli et al. (2018) use performance anti-patterns to perform

non-functional driven refactoring on UML models. Refactoring is further used for security

purposes. Abid et al. (2020) study the impact of refactoring on security metrics related to

data access, when improving quality attributes from the QMOOD model.

2.1 Refactoring mining tools

Refactoring actions can be performed manually by editing the code or through the automa-

tion support provided in IDEs. Various refactoring detection tools have been developed and

researchers used methods to detect the application of a wide range of refactoring types in

software systems.

Dig et al. (2006) developed Refactoring Crawler that uses a combination of syntactic

and semantic analysis for detecting and refining of refactorings with an accuracy above

85%. Prete et al. (2010) used a template-based refactoring reconstruction approach that

uses logic rules to describe code elements and their dependencies (adopted from their pre-

vious work on LSdiff (Kim and Notkin, 2009)) and a logic programming engine to infer

concrete refactorings. Their tool, Ref-Finder, can identify complex refactoring instances

that consist of multiple atomic refactoring types between program versions, and achieves a

precision of 0.79 and recall of 0.95.

Silva and Valente (2017) propose RefDiff, an automated tool that employs heuristics

based on static analysis and code similarity to detect refactoring operations between two

successive revisions of a Git repository. This tool finds 13 well-known refactoring types

8

and has a precision of 100% and a recall of 88%. It is extended in RefDiff 2.0 to support

multiple programming languages using the Code Structure Tree (CST) to abstract the spec-

ifications of programming languages. In addition to Java, RefDiff 2.0 supports JavaScript

and C programming languages (Silva et al., 2020).

Tsantalis et al. (2018) designed, implemented and evaluated RefactoringMiner, which

detects refactoring operations with a precision of 98% and a recall of 87%. Refactoring-

Miner uses in its core an AST statement matching algorithm to detect refactorings in project

revisions without requiring user-defined thresholds. In a more recent work Tsantalis et al.

(2020), RefactoringMiner has been extended to support low-level refactorings that are per-

formed within the body of methods. The accuracy of the tool was further improved reaching

a precision of 99.6% and a recall of 94%.

2.2 Refactoring Motivation

In the human behaviour domain of refactoring, the developer’s motivation is recognized as

a key factor that has theoretical and practical implications on software development and

maintenance.

Liu and Liu (2016) conduct an interview with 25 developers to find the motivations

of developers when they perform EXTRACT METHOD refactorings. Among all motiva-

tions reuse, decomposition of long methods, clone resolution are known to be the major

motivations. They analyze 7 open source repositories to validate the results. They find

that EXTRACT METHOD opportunities should not merely be affected by the inner struc-

ture of the methods (e.g., complexity or size). Due to the high prevalence of immediate

reuse, they suggest refactoring recommendation tools can utilize recognition or prediction

of reuse to improve chances of developers applying the recommended EXTRACT METHOD

refactorings.

9

Wang (2009) conducts a semi-controlled interview and presents an empirical model of

refactoring that describes the relationship between motivators, contextual factors, and ac-

tions. This research only considers psychological and personal values along with cultural,

economic and other aspects of refactoring in organizations to determine motivations.

Silva et al. (2016) applied thematic analysis on the responses received from 222 devel-

opers contributing in 124 open source projects about why they perform specific refactoring

operations. They used RefactoringMiner to detect refactorings and then manually inspected

true positives. A catalogue of 44 distinct motivations for 12 types of refactoring operations

was compiled. The results show refactorings are mainly performed due to requirement

changes rather than code smells. For instance, among all 11 motivations for EXTRACT

METHOD refactoring only two of them (decompose method to improve readability and

remove duplication) are targeting code smells. Their study also shows that 55% of the

studied refactoring instances are performed manually, mainly because of the developers’

lack of trust in automated tools. This research has been the main motivation of our research

and it also explicitly proposes that future research should refocus from code-smell-oriented

to maintenance-task-oriented refactoring solutions. For this purpose, we automate the pro-

cess of detecting motivations to facilitate analyzing the motivation categories of refactoring.

We believe our empirical findings will help to build smarter recommendation tools that can

target the actual developer needs.

Kim et al. (2014) present a field study at Microsoft to quantitatively assess the benefits

and challenges of refactoring from the developer perception. They utilize three comple-

mentary research methods: survey, semi-structured interviews with professional software

engineers and quantitative analysis of version history data. In the survey, they find that

developers perceive substantial costs and risks when they refactor, and that refactoring def-

inition is not confined to a rigorous semantic-preserving code transformation. Furthermore,

10

in the quantitative analysis of Windows 7 version history, they find that the top 5% of pref-

erentially refactored modules experience a higher reduction of inter-module dependencies

and complexity measures. This study investigates system-wide metrics such as defects,

inter-module dependencies, size and locality of code changes, complexity, test coverage,

people and organization metrics. However, it has some limitations, as it analyzes only

the commits using the “refactor” keyword in their message, and thus misses a substantial

undocumented refactoring activity. Moreover, the quantitative analysis focuses on the ver-

sion history of a single large system, namely Windows 7, which is a threat to the external

validity of the findings.

Bavota et al. (2015) analyze refactoring operations over 63 releases of three Java open

source projects. They utilize Ref-Finder to detect refactoring operations and build logistic

regression models to find code smells and quality metrics that are significantly correlated

with refactoring types. They highlight WMC metric as the only exception for quality met-

rics that has a clear relationship with refactoring. They also find that only some of the

analyzed code smells such as Blob, Long Method, Spaghetti Code and Feature Envy in-

crease the chance of affected classes being refactored. Among all refactoring operations

detected in the release history of the three examined Java projects, 42% are performed on

code smells and 7% actually removed the code smells. Manual analysis is performed to

improve the detection of code smells. They conclude that the developers’ point-of-view of

classes in need of refactoring does not always match with quality indicators.

Pantiuchina et al. (2020) present a large-scale study to quantitatively and qualitatively

investigate why developers refactor in order to generalize and complement previous studies

that are based on surveys. They mine 287,813 refactoring operations and build a mixed ex-

planatory logistic regression model to find the correlation between 42 product and process

related metrics and refactoring operations in 150 open-source projects. Among product-

related factors code readability is mostly correlated with refactoring. In process-related

11

metrics, source code change, fault-proneness, and the experience of developers changing a

code component, play a significant role in triggering refactoring. They also manually tag a

randomly stratified sample of 551 pull requests with 8,108 refactorings to build a taxonomy

of 67 motivations in 6 main categories. This study demonstrates the factors and reasons that

make a refactoring meaningful from the developers’ perspective and can be utilized to make

better refactoring recommendation tools to address specific developer needs.

AlOmar et al. (2021) propose a two-step approach to automatically classify self-affirmed

refactoring (SAR) operations that contain developer-related events documented in commit

messages. They build a model with a high F-measure that combines N-Gram TF-IDF

feature selection and binary and multi-class classifiers that outperforms pattern-based and

random classifier approaches in classifying SAR commits into internal/external quality at-

tributes and code smells categories. Their method is solely based on the commit messages

to find the intent or rationale behind the refactoring.

Paixão et al. (2020) inspect and classify developer intents behind refactoring during

code reviews in 7 distinct categories. They manually analyze code changes in 1,780 code

reviews that employ refactoring operations. They study the sequence, composition and

evolution of refactoring operations in code reviews. They find that developers most often

apply refactoring with other code changes to support feature additions or bug fixes.

Our work is the first to automate the detection of refactoring motivations by analyzing

the refactoring-related edits and the context in which the refactoring operations are applied

within a commit. Such fine-grained analysis allows to extract the refactoring motivations

with a high accuracy. Moreover, it enables the collection of refactoring motivations in a

large-scale, as it has been implemented as a fully automated process.

12

Chapter 3

Research Methodology

In this chapter, we first present a general method for the automatic refactoring motivation

detection. Using this method, we came up with logical rules and decision trees customized

to detect 11 major motivations for EXTRACT METHOD refactorings. The motivation de-

tection rules are implemented in an open-source tool named Motivation Extractor, which

is built on top of RefactoringMiner Tsantalis et al. (2020) and is available on GitHub (Aal-

izadeh, 2021).

3.1 Automatic Refactoring Motivation Detection

We have developed a general process for the automatic detection of refactoring motivations.

This process can be further extended and applied to detect the motivations of different

refactoring types. Figure 1 shows the two main steps of our method. In the first step,

we build motivation detection rules in an iterative process and optimize them based on a

training set that is constructed from the motivations given by the actual developers who

performed specific refactoring operations in open source projects Silva et al. (2016). In

the second step, we use the optimized detection rules and perform a large scale motivation

detection in the commit history of open-source repositories.

13

Automatic Refactoring Motivation Detection Process

Training

Dataset:
Analyzed

motivation of real

developers

5. Optimize
the

Detection
Rules

1. Generic
Motivation
Detection

Rules

2. Apply the
Rules on
Training

Set

3. Handle
Exceptional

Cases

4.Apply
Motivation

Precedence
Rules

Step 1: Building Motivation Detection Rules Step 2: Applying Detection Rules in Large Scale

Motivation Themes

Refactoring Operations Detected in Commit

(Refactoring Miner 2.0)

325 GitHub

Java

Repositories

Final Developer Motivation(s)

Motivation Detection for each Refactoring

Applying Optimized Motivation
Detection Rules

132,897 commits

Figure 1: Refactoring Motivation Detection Process in Large Scale

3.2 Step 1: Building Motivation Detection Rules

The first step of the automatic motivation detection process is to build the motivation de-

tection rules from the generic descriptions of refactoring motivation themes, which are

obtained from the Silva et al. (2016) study. In this study, the authors monitored 185 open-

source projects for commits including refactoring operations. When such commit was

detected, the commit author was contacted via email to explain the reasons behind the

application of the detected refactoring operations. By applying thematic analysis on the

responses received from 222 developers, Silva et al. created a catalogue of 44 distinct

motivations for 12 well-known refactoring types. Each motivation theme is accompanied

with a number of refactoring instances, which were applied for the reason described in the

corresponding motivation description.

We initially build a generic detection rule based on the motivation description and then

optimize it by handling exceptional cases and conflicts with other co-detected motivations

14

in an iterative process as shown in Figure 1.

3.2.1 Generic Motivation Detection Rules

The generic motivation detection rules are initially formed based on the description of the

motivations themes in natural language. Table 1 shows the descriptions of the motivation

themes for the EXTRACT METHOD refactoring type. For example, the description for

Reusable Method is “Extract a piece of reusable code from a single place and call the

extracted method in multiple places”. As a result, the generic rule should check if the

extracted method is called in at least one more method other than the method from which

it was extracted.

These generic rules are very simple at first and are not tuned to address exceptional

cases or conflicts with other co-detected motivations. Therefore, we need to use our train-

ing dataset to assess the current precision and recall of the generic rules, and guide the

optimization of the rules to detect the motivations in various refactoring contexts more

accurately.

3.2.2 Apply the Rules on the Training Dataset

It is necessary to ensure the compatibility of the automatically detected motivations with

the actual intentions of the developers. Therefore, we apply the rules derived from the

previous step on our training dataset, which includes instances of refactoring operations

labeled with a motivation theme based on the explanations of the developers who actually

performed these refactorings Silva et al. (2016). Since the motivation labels come directly

from the developers who performed the refactorings, we consider our training dataset a

reliable ground truth (i.e., oracle), based on which we can optimize the detection rules.

We can compute the precision and recall of the detection rules based on this oracle, and

we can find all the exceptional cases in which the generic rules missed or mislabeled the

15

actual developer motivation(s). We use these insights to add the missing logic to the generic

detection rules and handle specific scenarios.

3.2.3 Handle Exceptional Cases

Guided by the missed and mislabeled refactoring instances from the oracle, we analyze the

commits in which these refactoring were detected to find exceptional cases that should be

taken into account when enhancing the detection rules. For example, a missed case for the

Reusable Method motivation, involved an extracted method that was reused in the same

method from which it was extracted from. This case helped us to improve the detection

rule to handle additional calls to the extracted method that were added in the origin method

after the EXTRACT METHOD refactoring.

Moreover, by analyzing individually each refactoring in a commit we might get motiva-

tions that are in disagreement with the motivations obtained when analyzing refactorings in

groups. For example, when a duplicated piece of code is extracted from multiple methods,

a separate EXTRACT METHOD refactoring instance is reported for each source method.

Analyzing each EXTRACT METHOD instance in isolation from the rest triggers the detec-

tion of the Reusable Method motivation, as the corresponding rule finds that the extracted

method is also called in methods other than the method from which it was extracted. How-

ever, by combining the information from multiple EXTRACT METHOD instances, we can

group the instances that have exactly the same extracted method, detect the correct motiva-

tion, namely Remove Duplication, and discard the individually reported Reusable Method

motivations.

We will show these exceptional cases while explaining the motivation detection rules in

Section 3.3 and demonstrate how different contexts in which a refactoring is applied affect

the detected motivation.

16

3.2.4 Filtering Motivations by Applying Precedence Rules

In some cases there are multiple detected motivations for a single refactoring instance. For

example, if we have a method that is extracted in production code, and in the same commit

a unit test is added calling the extracted method, two motivations will be detected, namely

Reusable Method as the extracted method is called in a method other than the method

from which it was extracted, and Improve Testability as a new unit test is added to test

the extracted method. In that case, Improve Testability is a more dominant motivation, as it

captures more accurately the refactoring intention of the developer, and thus has precedence

over Reusable Method.

We present the precedence rules for each motivation in Section 3.3, and use them to fil-

ter out some co-detected motivations with lower priority for the same refactoring instance.

3.2.5 Optimize the Detection Rules

Following this iterative process for each motivation rule, we end up with a set of optimized

detection rules, which maximizes the overall precision and recall on our training dataset.

The achieved accuracy results on the training dataset are shown in Section 4.1.1. To make

sure our detection rules are not over-fitting the training dataset, we applied them also on

a testing dataset. The accuracy results on the testing dataset are shown in Section 4.1.2.

The high accuracy levels achieved in both training and testing dataset gives us confidence

that the automatically detected motivations in our large-scale experiment (Section 3.4) will

accurately reflect the intentions of the developers, and thus our experimental results will

have a strong validity.

17

3.3 Extract Operation Motivation Detection

In this section, we describe the motivation detection rules for the EXTRACT METHOD

refactoring. We are focusing on the motivations of EXTRACT METHOD refactoring for

two reasons. First, according to Negara et al. (2013) and Tsantalis et al. (2020), EXTRACT

METHOD is the most commonly applied refactoring on methods. Second, according to

Silva et al. (2016), EXTRACT METHOD has the most observed motivations (11 in total)

compared to other refactoring types. Therefore, EXTRACT METHOD is a significant refac-

toring that is worth investigating the reasons driving its application at a large-scale.

Table 1 shows 11 motivation themes along with their descriptions, as documented by

Silva et al. (2016). We used the descriptions of the motivation themes, along with the

accompanied refactoring instances for each motivation theme, as inputs for the process

explained in Section 3.2 in order to derive our motivation detection rules.

Table 1: Extract Method Motivation Themes
Extract Method Motivation Description

Reusable Method Extract a piece of reusable code from a single place and call the extracted method
in multiple places.

Introduce Alternative Method Signature Introduce an alternative signature for an existing method (e.g., with additional
or different parameters) and make the original method delegate to the extracted
one.

Decompose Method to Improve Readability Extract a piece of code having a distinct functionality into a separate method to
make the original method easier to understand.

Facilitate Extension Extract a piece of code in a new method to facilitate the implementation of a
feature or bug fix, by adding extra code either in the extracted method, or in the
original method.

Remove Duplication Extract a piece of duplicated code from multiple places and replace the dupli-
cated code instances with calls to the extracted method.

Replace Method Preserving Backward Compatibility Introduce a new method that replaces an existing one to improve its name or re-
move unused parameters. The original method is preserved for backward com-
patibility, it is marked as deprecated, and delegates to the extracted one.

Improve Testability Extract a piece of code in a separate method to enable its unit testing in isolation
from the rest of the original method.

Enable Overriding Extract a piece of code in a separate method to enable subclasses override the
extracted behavior with more specialized behavior.

Enable Recursion Extract a piece of code to make it a recursive method.
Introduce Factory Method Extract a constructor call (class instance creation) into a separate method.
Enable Async Operation Extract a piece of code in a separate method to make it execute in a thread.

The motivation rules are described in two ways. First, in a formal way using logical

conditions combined with AND or OR logical operators, and second in a visual way using

decision trees. Each of the sub-section that follows includes the definition of one of the 11

18

motivation detection rules. For the formal descriptions, we use the some common general

notations shown in Table 2, while specific notations applicable only for a single motivation

detection are shown in the corresponding sub-sections.

Table 2: General Notations used in EXTRACT METHOD Motivation Detection Rules
Notation Description

EM Extract Method Refactoring instance
ma → mb A single call from method ma to method mb

calls(C,mb) A set of calls within class C to the method mb

calls(M,mb) A set of calls from the set of methods M to method mb

calls(S,mb) A set of calls from the set of statements to method mb

ma Source Operation Before Extraction
ma′ Source Operation After Extraction
mb.n Signature of the Extracted Method
mb.C Name of the Class containing the Extracted Method
ma.P Ordered Parameter list of ma

ma.b Set of All statements in the ma

ma.b.C Set of Composite statements in method ma

ma.b.L Set of leaf statements in method ma

mb.T2 Set of added statements(T2) in the extracted method mb

ma′ .T2 Set of added statements(T2) in the source operation after extraction ma′

mb.T2.L Set of leaf statements added in method mb

codeElementType(ma.leaf) Code element type of the leaf statement in method ma

calls(ma.leaf) Set of all invocations in the leaf statement of method ma

Msi Set of Methods in the parent commit si
C+ Set of Added Classes in child commit si+1

C∼ Set of Modified Classes in child commit si+1

M+ Set of Added Methods in child commit si+1

M∼ Set of Modified Methods in child commit si+1

EM.Mapping Mapped code in the extracted method
EM.Mapping.Fragment1 Set of mapped code statements before extraction
EM.Mapping.Fragment2 Set of mapped code statements after extraction

EM.Mapping.L Set of Leaf statements in the Extract Method Refactoring mapped code
EM.Mapping.C Set of Composite statements in the Extract Method Refactoring mapped code

EM.NotMapped.T1 Set of not-mapped statements that are deleted from ma

EM.NotMapped.T2 Set of all not-mapped statements that are added to ma′ , mb

EM.NotMapped.T2.Child Set of not-mapped statements that are added to mb

EM.NotMapped.T2.Parent Set of not-mapped statements that are added to ma′

Tsi+1
All test methods present in child commit si+1

mb.b.L.Return Set of return statements in the extracted method mb

3.3.1 Reusable Method

Reusability is a significant external quality attribute that can be improved by refactoring

(Bogart et al., 2020). EXTRACT METHOD refactoring is useful to extract smaller pieces of

19

functionality from longer methods for reusability purposes (Yang et al., 2009).

Generic Motivation Detection Rules

The rule to detect the Reusable Method motivation is shown in Table 3.

• All the changed classes and newly added classes will be examined to find invocations

to the Extracted Operation.

• Additional invocations should exist outside of the Extracted Operation and Source

Operation After Extraction.

• OR multiple invocations should exist within the Source Operation After Extraction.

Table 3: Reusable Method Detection Rule

∃mr → mb |mr ∈ {C+ ∪ C∼} ∧
1 mr → mb /∈ calls(Dsi+1

,mb) ∧
2 (mr → mb /∈ calls(Tsi+1

,mb) ∧ma′ /∈ Tsi+1
) ∨ (mr → mb ∈ calls(Tsi+1

,mb) ∧ma′ ∈ Tsi+1
) ∧

3 ¬mr → ma replaced with mr → mb ∧
4 @mr → mb′ |mb′ .n = mb.n ∧mb′ .C 6= mb.C ∧
5 mr → mb /∈ calls(Nsi+1 ,mb)
∨ |calls({ma′},mb)| > 1

mb′ : Another method with the same signature as the extracted method mb

Dsi+1
: All methods from which the body of mb was extracted in child commit si+1

Nsi+1 : All nested extracted methods in child commit si+1

Exceptional cases

1. Duplicate code fragments extracted from a single method or multiple methods. The

call site of an extracted method which is involved in duplication removal should not

be considered as reuse. (e.g., BuildCraft 1)

2. Test methods call the extracted method, but it belongs to production code. If the

extracted method belongs in production code, all calls from test code are ignored

1https://github.com/BuildCraft/BuildCraft/commit/a5cdd8c

20

when assessing reusability. However, if the extracted method belongs in test code,

then calls from test code are considered when assessing reusability.

3. The additional call takes place in a method which was originally calling the source

method, but calls the extracted method after the refactoring. This typically happens

when the entire body of a method is extracted in a new method for the purpose of

deprecating the source method, or introducing an alternative signature for the source

method. In such case, the additional call is ignored when assessing the reusability

of the extracted method, because it simply changes the delegation from the source to

the extracted method. (e.g., Google truth2)

4. The additional call to the extracted method takes place in another class, in which a

new method is added having the same signature as the extracted method. In such

case, the additional call is ignored when assessing the reusability of the extracted

method, since a local method is called and not the extracted one. (e.g., Intellij 3)

5. When we have nested EXTRACT METHOD refactorings (i.e., a method is extracted

from the body of another extracted method), the calls to the extracted methods are

not placed in the source method originally containing the extracted code, but inside

the bodies of the subsequently extracted methods. As a result, although the refactor-

ing instance reports that the nested extracted method came from the source method

originally containing the extracted code, the call site to the nested extracted method

is not placed in the source method. In such case, the call inside the body of a nested

extracted method is ignored when assessing the reusability of the extracted method.

(e.g., Checkstyle4 , JGroup5)

2https://github.com/google/truth/commit/200f157
3https://github.com/JetBrains/intellij-community/commit/10f769a
4https://github.com/checkstyle/checkstyle/commit/5a9b724
5https://github.com/belaban/JGroups/commit/f153375

21

Furthermore, The motivation detection logic for Reusable Method is demonstrated as

the decision tree shown in Figure 2.

Reusable Method

Non SOAE Invocation(s)

NO Invocation In Callsite of Remove Duplication Extracted Method(s)

Invocation in Test Opearation

Invocation to Method with Equal Signature to Extracted Method

NO Invocations to SOBE Replaced

NO Nested Extract Invocations

NO YES

SOAE In Production Code

NO

SOAE in Test Code

Invocation to Method with Equal Signature to Extracted Method

NO Invocations to SOBE Replaced

NO Nested Extract Invocations

NO YES

NO

SOAE Invocations

NO YES

HAS

FALSE TRUE

FALSE

FALSE

TRUE FALSE

TRUE FALSE

TRUE FALSE

TRUE

TRUE TRUE

TRUE FALSE

TRUE FALSE

TRUE FALSE

TRUE

HAS

FALSE TRUE

Figure 2: Reusable Method Decision Tree

Filtering the set of refactoring motivations

Precedence of Backward Compatibility and Alternative Method Signature: An extracted

method is not considered as reusable, if the Backward Compatibility or Alternative Method

Signature motivations are detected for the same instance.

3.3.2 Introduce Alternative Method Signature

EXTRACT METHOD refactorings are sometimes used to introduce an alternative method

signature. The original method will be used as a delegate to the extracted method that

may have added parameters or changed parameter types. Understanding the signature-

level changes can be utilized to improve refactoring-based tools for API migration (Dig

and Johnson, 2006).

22

Table 4: Introduce Alternative Method Signature Detection Rule

ma′ .P 6= mb.P ∧
|calls({ma′},mb)| = 1 ∧
@ leaf ∈ ma′ .b.L | {calls(ma′ .leaf) ∩ calls({ma′},mb)} = 0 ∧
¬codeElementType(ma′ .leaf) = V ARIABLE_DECLARATION_STATEMENT

Generic Motivation Detection Rules

The rule to detect the Alternative Method Signature motivation is shown in Table 4.

• The extracted operation parameter types are not equal with the Source Operation

After Extraction (SOAE) parameter types. Therefore, either the number of the pa-

rameters or their types changes in the extracted method.

• And Source Operation After Extraction (SOAE) should delegate and hand over the

responsibility to the extracted method. Hence, we look for the invocations to the

extracted method in the source operation after extraction. The number of the invoca-

tions to the extracted method should be one to consider that as delegation.

• And SOAE can include temporary variables. The source operation after extraction

may include statements which declare temporary variables. Therefore, all the leaf

nodes that do not subsume EXTRACT METHOD invocations in the SOAE will be ex-

amined to see if they are variable declaration statements (VDS). If all the statements

in the source operation after extraction are solely used to declare temporary variables

and the two previous conditions also hold true, we report the Introduce Alternative

Method Signature motivation.

There are no exceptional cases to examine for the detection of the Alternative Method

Signature motivation.

Figure 3 shows the decision tree for the EXTRACT METHOD refactoring operations that

are performed to Introduce Alternative Method Signature.

23

Introduce Alternative Method Signature

Extracted Method and SOAE Parameter Type(s) Not Equal

NO Delegate SOAE (Only One Invocation From SOAE to Extracted Method)

NO SOAE Leaves with no Extract Method Invocation are All Temp Variables

NO YES

HAS

FALSE TRUE

FALSE TRUE

FALSE TRUE

Figure 3: Introduce Alternative Method Signature Decision Tree

Filtering the set of refactoring motivations

Precedence of Remove Duplication: In cases where a Remove Duplication motivation is

also detected, we do not consider Alternative Method Signature. Furthermore, if Facilitate

Extension was previously detected as a motivation it is discarded.

3.3.3 Decompose Method to Improve Readability

Developers consider readability and understandability as an important quality attribute and

mainly adopt refactoring for the purpose of source code understandability (Vassallo et al.,

2019). EXTRACT METHOD refactorings can also be used to improve the understandability

and readability of source code. A piece of code with a distinct functionality can be ex-

tracted to a separate method and this makes the original method more readable and easier

to understand.

Decomposition of the original method can be performed to break it into multiple smaller

extracted methods. When decomposition is performed to extract multiple methods from the

source operation, it is required to analyze the list of all EXTRACT METHOD and EXTRACT

AND MOVE METHOD refactoring operations together. Decomposition can also be detected

with a single extracted method, if the extracted piece of code makes the original method

more readable after extraction.

24

Table 5: Decompose to Improve Readability Detection Rule

Decompose Multiple Method to Improve Readability:
∃ EM1, .., EMn 3 n > 1 ∧ mb1 6= .. 6= mbn ∧ma1

= .. = man
= ma ∧

1 EM1 6= .. 6= EMn ∧
2 editDistance(EMi.Mapping.Fragment1, subsume(ma′ → mb)) > 0.55
3 |EM.Mapping.L| = 1, 1 < i < n
Decompose Single Method to Improve Readability:
∃ EM 3
1 |ma.b| − |EM.Mapping.Fragment2| > 0 ∧
ma.b− EM.Mapping.fragment2 /∈ EM.NotMapped.T1 ∧
2 ¬ (getter(mb) ∨ setter(mb) ∧
3 editDistance(EM.Mapping.Fragment1, subsume(ma′ → mb)) > 0.55
3 |EM.Mapping.L| = 1 ∧
|EM.Mapping.composite| > 0 ∨ |calls(ma′ .b.C.Expression,mb)| > 0 ∨
|callV ars(ma′ ,mb) ∩ma′ .b.C.Expression.V ars| > 0 ∨
(|ma′ .b.L| > 1 ∧ |calls(ma′ .b.L.Return,mb)| > 0)

subsume(ma′ → mb): Statement subsuming a call from method ma′ to method
mb

editDistance(s1, s2): Normalized Levenshtein Edit Distance of statements s1,s2.
getter(mb): mb is a getter method , setter(mb): mb is a setter method.
calls(ma′ .b.C.Expression,mb): A set of calls from the set of composite statement
expressions in ma′ to method mb

ma′ .b.C.Expression.V ars: Set of all the variables in the composite statement ex-
pressions of ma′

callV ars(ma′ ,mb): Variables in method ma′ that are initialized with an expression
that has a call to mb

25

Generic Motivation Detection Rules

The rule to detect the Decompose Method to Improve Readability motivation is shown in

Table 5.

• Multiple EXTRACT METHOD Decompositions: We primarily check the decomposi-

tion from one source method to multiple extracted methods. The detection of the

extraction of multiple different pieces of code from a source method depends on

analyzing together the groups of EXTRACT METHOD refactorings having the same

source method in the same commit (e.g., Closure6).

• Single EXTRACT METHOD decompositions: The invocation to the extracted method

is

1. in return statements,

2. in composite statement expressions of the source operation after extraction

3. in the initializer of a variable declaration, which is referenced in composite

statement expressions of the source operation after extraction

4. the extracted piece of code has nested composite statements, and therefore its

extraction can improve the readability and understandability of the Source Op-

eration Before Extraction.

Exceptional cases

1. If there is only one statement in the extracted method, we compute the normalized

Levenshtein (1966) distance between the statement calling the extracted method in

the SOAE and the mapped statement in the source operation before extraction (with

a threshold greater than 0.55) to determine whether the decomposition is performed

6https://github.com/google/closure-compiler/commit/ea96643

26

for the purpose of readability. If the distance shows that the text similarity between

the statements before and after extraction is not much different (less than threshold)

we do not consider these cases as Decompose to Improve Readability (e.g., jackson-

databind7).

2. For every EXTRACT METHOD in the commit we check if the extracted method is

either a getter or a setter method, and if so, the EXTRACT METHOD refactoring is not

considered to have the Decompose to Improve Readability Readability motivation.

3. For single method decompositions we should not have all statements in the source

operation mapped to the extracted method statements.

Decompose Method To Improve Readability

Decompose Multiple Methods

Same Source Operations

NO Distinct Extract Operations

NO Invocation Edit Distance (Multiple)

NO YES

Decompose Single Method

All Source Operation Nodes Mapped

NO Getter/Setter Extracted Method

NO Invocation Edit Distance (Single)

NO Nested Composite Structure n Mapping

Invocations From Composite Statement Expression to Extracted Method

SOAE callVar In Composite Statement Expression

Extract Method Invocations In Return Statement(s)

NO YES

YES

YES

YES

HAS

HAS

FALSE TRUE

FALSE TRUE

FALSE TRUE

HAS

HAS

TRUE FALSE

TRUE FALSE

FALSE TRUE

FALSE

FALSE

FALSE

FALSE TRUE

TRUE

TRUE

TRUE

Figure 4: Decompose Method To Improve Readability Decision Tree

The decision tree to detect Decompose Method to Improve Readability motivation is

demonstrated in Figure 4. Tree nodes show all the circumstances and criteria to detect

multiple or single decompositions for the Improve Readability motivation.
7https://github.com/FasterXML/jackson-databind/commit/cfe88fe3

27

Filtering the set of refactoring motivations

No filtering is applied for this motivation.

3.3.4 Facilitate Extension

Refactoring is a complex process that is performed for various purposes like facilitating

feature additions or supporting bug fixes (Ferreira, 2018). EXTRACT METHOD refactor-

ings can facilitate the implementation of features or bug fixes by adding extra code in the

extracted operation or in the original method. The added statements will be verified and

filtered to ensure they are used to facilitate extension.

Table 6: Facilitate Extension Detection Rule

∃ EM 3 |EM.NotMapped.T2| > 0 ∧
1 |calls(mb.T2,mbi)| = 0, i >= 1 ∧
{mb.T2 ∩ EM.NotMapped.T1} = 0 ∧ {mb.T2.L ∩ EM.Mapping.Fragment2} = 0 ∧
{invocationExpression(EM.NotMapped.T2.Child) ∩mb.P} = 0 ∧
|mb.T2.Neutral| = 0 ∧
2 |calls(ma′ .T2,mbi)| = 0, i >= 1 ∧
{ma′ .T2 ∩ EM.NotMapped.T1} = 0 ∧
{invocationExpression(EM.NotMapped.T2.Parent) ∩mb.P} = 0 ∧
|ma′ .T2.Neutral| = 0 ∧ {declaredV ariables(ma′) ∩mb.P} = 0 ∧
|{ma′ .T2 ∩ callScope(mb)}| = |ma′ .T2|
∨ |ternary(EM.Mapping.Fragment2)| > 0

invocationExpression(EM.NotMapped.T2.Child):Set of invocation expression in the
added statements of method mb

invocationExpression(EM.NotMapped.T2.Parent):Set of invocation expression in the
added statements of method ma′

mb.T2.Neutral:Set of added statements in method mb that are neutral (i.e.
BLOCK,RETURN_STATEMENT or other code element types like IF_STATEMENT ,
EXPRESSION_STATEMENT, VARIABLE_DECLARATION_STATEMENT if there is no
invocation to mb and other methods in them)
declaredV ariables(ma′): Set of all the declared variables in the method ma′

callScope(mb): Set of all the statements that are located in the body of the innermost composite
statement that encompasses the invocation to mb

ternary(EM.Mapping.Fragment2): Set of added ternary statements in the mapped code
statements after extraction

Generic Motivation Detection Rules

The rule to detect the Facilitate Extension motivation is shown in Table 6.

28

• Added statements (leaf or composite) exist in the extracted operation

• Or Added statements (leaf or composite) exist in the Source Operation After Extrac-

tion (SOAE)

Exceptional cases

To handle specific scenarios we examine the following exceptional cases to find valid added

nodes (i.e., leaf or composite statements) in the extracted method or SOAE:

1. There should be no invocation to the Extracted Method in the added nodes. In cases

that there is an invocation to the extracted method the added node is excluded.

2. Added nodes should not be neutral statements (i.e., block, return statement, if

statement, expression statement, or variable declaration statement, if there is no in-

vocation to the extracted method in them)

3. If all or part of an added node is in the deleted statements of the source operation

before extraction we do not consider it as an added node.

4. The added nodes that contain invocation expressions, or declare variables that are

used in the parameters of the extract method invocation are excluded.

5. In cases where a new ternary operator is utilized in a statement mapping between the

source operation and the extracted method, then this statement will be considered as

an added node (e.g., intellij-community 8).

6. Added nodes (leaf/composite) in Source Operation After Extraction (SOAE) should

be located in the EXTRACT METHOD call scope. If added nodes in the SOAE are

off the scope of extracted method call site, we do not consider them as added code

for facilitating extension. We determine the valid scope for added statements in the
8https://github.com/JetBrains/intellij-community/commit/a973419

29

SOAE to be the inner-most composite statement that includes the extracted method

invocation.

Facilitate Extension

Unfiltered Extracted Method Nodes > 0

Unfiltered SOAE Nodes > 0

NO Filtered SOAE Nodes > 0

NO YES

Filtered Extracted Method Nodes > 0

NO YES

Mapped Nodes

New Ternary Operator In Fragment2 Mappings

NO YES

HAS

FALSE

FALSE TRUE

FALSE TRUE

TRUE

FALSE TRUE

HAS

HAS

FALSE TRUE

Figure 5: Facilitate Extension Decision Tree

The decision tree to detect EXTRACT METHOD with the Facilitate Extension motiva-

tion is demonstrated in Figure 5. Validity rules are used to filter the added statements in the

Extracted Method (EM) and Source Operation after Extraction (SOAE) and to ensure they

are related to facilitating extension.

Filtering the set of refactoring motivations

This motivation is removed if Alternative Method Signature, Replace Method for Back-

ward Compatibility, Improve Testability, Enable Overriding or Introduce Factory Method

motivations are detected for the same refactoring instance.

Furthermore, to determine the validity of the Facilitate Extension motivation, we per-

form post-processing to examine if this refactoring instance is included in any of the ex-

tracted operations removing duplication. In that case Facilitate Extension will be elimi-

nated (e.g., j2objc9).

9https://github.com/google/j2objc/commit/fa3e6fa

30

3.3.5 Remove Duplication

Code duplication can occur to reuse some existing functionality and can potentially be

destructive for the evolution and maintainability of the software (Kaur and Mittal, 2017).

Various refactoring patterns exist for removing clones and EXTRACT METHOD refactor-

ings can be applied on duplicate code (Chen et al., 2018). Duplication can be removed from

a single method or from multiple methods. The duplicated piece of code will be extracted

into a new method and there will be an invocation to the extracted method replacing each

code duplicate.

Table 7: Remove Duplication Detection Rule

Single Method Remove Duplication:
∃ EM1, .., EMn 3 n > 1 ∧ mb1 = .. = mbn = mb ∧
EM1 = .. = EMn = EM ∧ (|EM.Mapping| > 1, n = 2)

Multiple Method Remove Duplication:
∃ EM1, .., EMn 3 n > 1 ∧ma1 6= .. 6= man ∧ mb1 = .. = mbn = mb∧
EM1 6= .. 6= EMn ∧ (|EM1.Mapping| = |EM2.Mapping| = s > 1, n = 2)

Generic Motivation Detection Rules

The rule to detect the Remove Duplication motivation is shown in Table 7.

• Single Method Duplication Removal: If a single EXTRACT METHOD is used several

times to extract a duplicated piece of code from different parts of the same source

operation. In this case we will have repetitive EXTRACT METHOD refactorings in

the same commit.

• Multiple Method Duplication Removal: In this case, there are more than one EX-

TRACT METHOD refactoring instances, which have different source operations, but

all of them have a common extracted method.

31

Exceptional cases

For both, single method and multiple method cases of Duplication Removal, we have set

a threshold for the number of mapped statements in the extracted method to be more than

one, when there are only two EXTRACT METHOD refactoring instances that are used to

remove duplication.

Remove Duplication

Extract Methods With Same Extracted Operations

NO Number of Duplication Removal Extract Methods > 1

NO Extract Method Mapping Size > 1 (For 2 Extract Methods)

NO Distinct Extract Methods

YES (Single Method) YES (Multiple Method)

HAS

FALSE TRUE

FALSE TRUE

FALSE TRUE

FALSE TRUE

Figure 6: Remove Duplication Decision Tree

The decision tree in Figure 6 shows how single method and multiple method Duplica-

tion Removal is detected.

Filtering the set of refactoring motivations

This motivation has priority over Decompose Method motivation detected for the same

EXTRACT METHOD refactoring instance.

3.3.6 Replace method Preserving Backward Compatibility

Software library maintainers use backwards compatibility to create a replacement for dep-

recated methods, which provides the clients of the library an option between the backwards

32

compatible version and the new version (Perkins, 2005). EXTRACT METHOD can be a use-

ful refactoring tool for library maintainers to introduce new changes to previous methods.

The new method can have a better name or remove some unused parameters. The original

method is marked as deprecated and delegates to the extracted method.

Table 8: Replace Method Preserving Backwards Compatibility Detection Rule

(ma′ .P 6= mb.P ∨ma′ .n 6= mb.n) ∧
|calls({ma′},mb)| = 1 ∧
accessModifier(ma′) 6= protected ∧ accessModifier(ma′) 6= private ∧
@ leaf ∈ ma′ .b.L | {calls(ma′ .leaf) ∩ calls({ma′},mb)} = 0 ∧
¬codeElementType(ma′ .leaf) = V ARIABLE_DECLARATION_STATEMENT ∨
annotation(ma′) = @Deprecated

accessModifier(ma′) Access modifier of the ma′

annotation(ma′) JavaDoc annotation of the method ma′

Generic Motivation Detection Rules

The rule to detect the Replace method Preserving Backward Compatibility motivation is

shown in Table 8.

• The Extracted Operation and Source Operation After Extraction (SOAE) parameters

are not equal. Therefore, either the number of the parameters or their types change

in the extracted method. OR Extracted Operation and SOAE have different names.

• AND SOAE should be a delegate and hand over the responsibility to the extracted

method. Hence, we look for the invocations to the extracted method in the source

operation after extraction. The number of the invocations to the extracted method

should be equal to one to consider it as delegation.

• AND the access modifier of the source operation after extraction should not be pro-

tected or private to provide access to the backward compatible version of the method.

• AND SOAE can include temporary variables. The source operation after extraction

may include statements which declare temporary variables. Therefore, all the leaf

33

nodes that do not include invocations to the extracted method within the SOAE will

be examined to see if they are variable declaration statements (VDS).

• OR SOAE uses the @deprecated annotation. When the @deprecated anno-

tation is not available the JavaDoc is also checked to find usages of the keyword

“deprecated”.

Exceptional cases

In some cases the developer forgets to use the @deprecated annotation for the SOAE.

The detection rule enables us to detect backward compatibility even when @deprecated

annotation is not provided.

Replace Method Preserving Backwards Compatibility

Delegate SOAE (Only One Invocation From SOAE to Extracted Method)

NO SOAE Leaves with no Extract Method Invocation are All Temp Variables

NO SOAE Access Modifier Is Not Private or Protected

NO Extracted Method and SOAE Parameter Type(s) Not Equal

Extracted Method and SOAE Names Not Equal

SOAE Has @Deprecated Annotation

YES YES

SOAE Has @Deprecated Annotation

YES YES

HAS

FALSE TRUE

FALSE TRUE

FALSE TRUE

FALSE

TRUE

FALSE TRUE

TRUE

FALSE TRUE

Figure 7: Replace Method Preserving Backwards Compatibility Decision Tree

The decision tree to detect EXTRACT METHOD refactorings that are performed to Re-

place Method for Backward Compatibility is shown in Figure 7 in which the logic to detect

this EXTRACT METHOD motivation is demonstrated.

Filtering the set of refactoring motivations

• Precedence of Remove Duplication.

34

• Removing Introduce alternative Method, Improve Testability and Facilitate Exten-

sion if they are detected for the same refactoring instance.

3.3.7 Improve Testability

To achieve the highest confidence in software quality, it is essential to utilize techniques like

refactoring to improve the design for testability (Tarlinder, 2016). EXTRACT METHOD

refactorings can facilitate the unit testing of a method by isolating a piece of code for

testability purposes in a separate method.

Table 9: Improve Testability Detection Rule

∃mt → mb |mt ∈ {C+ ∪ C∼} ∧
1 mt ∈ Tsi+1 ∧
2 {mt → mb ∩ calls(mb.C,mb)} = 0 ∧
3 {calls({mt},mb) ∩ {calls(M+,mb) ∪ calls(mt.T2,mb)}} > 0

Generic Motivation Detection Rules

The rule to detect the Improve Testability motivation is shown in Table 9.

• All changed classes and newly added classes are examined to find test methods. We

check the annotations of test methods and also their signature to find if they are test

methods in a test class (i.e., include “test” in their name).

• And there is an invocation from a test method to the extracted method.

Exceptional cases

1. The invocation should be located in a different class than the extracted method class.

If the test method is inside the extracted method class, it has already been part of the

test code and therefore the extract method is not used for testability purposes.

35

2. And the invocation should be in the added or edited nodes. Otherwise we do not

consider that invocation valid for improving testability (e.g., VoltDB10).

Improve Testability

Invocations From Test Method to Extracted Method > 0

NO Invocation(s) are outside the Extracted Method Class

NO Invocation(s) are In Added Nodes

NO YES

HAS

FALSE TRUE

FALSE TRUE

FALSE TRUE

Figure 8: Improve Testability Decision Tree

Figure 8 shows the decision tree that is used to detect the EXTRACT METHOD refactor-

ings that are used to improve testability.

Filtering the set of refactoring motivations

• Precedence of Remove Duplication

• Removing Decompose to Improve Readability if they are detected for the same refac-

toring instance.

• Removing Facilitate Extension if they are detected for the same refactoring instance.

3.3.8 Enable Overriding

EXTRACT METHOD refactorings can be utilized to edit a stable piece of code for the pur-

pose of preparing it to be overridden in a subclass. The extracted method will be overridden
10https://github.com/VoltDB/voltdb/commit/e58c9c3

36

in a separate method with a more specialized behaviour when it is intended to enable over-

riding. Sometimes developers do not override the extracted method, but simply extract the

method for future changes related to overriding the method.

Table 10: Enable Overriding Rule

∃mv → mb |mv ∈ {C+ ∪ C∼} ∧ subType(mV .C,mb.C) ∧ mv.n = mb.n
∨ |{overridingRelatedKeywords() ∩ commentTokens(mb)}| > 0

subType(mV .C,mb.C): returns true if class of the virtual method mv.C is a sub-
type of the class of the extracted method mb.C
overridingRelatedKeywords(): Returns set of all overriding-related keywords
like virtual, override, etc.
commentTokens(mb): Set of all words in the extracted method comment.

Enable Overriding

Equal Operation Signature in SubType Class of Extracted Method Class

Overriding related keywords in Extracted Method Comments

NO YES

YES

HAS

FALSE

FALSE TRUE

TRUE

Figure 9: Enable Overriding Decision Tree

Generic Motivation Detection Rules

The rule to detect the Enable Overriding motivation is shown in Table 9.

• All the changed classes and newly added classes will be examined.

• A method with equal signature to the extracted method is found in a Subtype class of

the extracted method class. This method implements the specialized behaviour for

the extracted method.

Exceptional cases

We further check the following scenarios to improve the precision of the detected instances:

37

1. The extracted method behaviour is sometimes specialized in an anonymous class.

Therefore we also check anonymous classes that override the extracted method.

2. And we further check the comments of the extracted method to find certain keywords

in the Javadoc (e.g., virtual, override, etc.) that shows the intention of the developer

to override the extracted method behaviour in the future.

Figure 9 depicts the decision tree to detect EXTRACT METHOD refactorings that are used

to enable overriding. The extracted method might not be overridden in the current commit

but it may have keywords to show that it is intended to be utilized for such a purpose in the

future.

Filtering the set of refactoring motivations

• Precedence of Remove Duplication

• Removing Reusable Method, Facilitate Extension, Introduce Factory Method and

Remove Decompose to Improve Readability if they are detected for the same refac-

toring instance.

3.3.9 Enable Recursion

Recursive structures make it easier for developers to understand, remember and imple-

ment algorithms that are more elegantly expressed (Kourie and Watson, 2012). EXTRACT

METHOD refactorings can be intended to extract a piece of code to implement a recursive

method.

Table 11: Enable Recursion Detection Rule

∃ma,mb 3 |calls({ma},ma)| = 0 ∧ |calls(mb,mb)| > 0 ∧
|{invocationExpression(mb.b) ∩ {this, null}}| > 0

invocationExpression(mb.b):Set of invocation expressions in
all of the mb statements.

38

Generic Motivation Detection Rules

The rule to detect the Enable Recursion motivation is shown in Table 11.

• Source Operation After Extraction (SOAE) should be recursive (with at least one

matching invocation inside itself)

Exceptional cases

1. The Source Operation Before Extraction should not be recursive.

2. To ensure that the recursive invocation in the extracted method is calling the extracted

method, we check the expression of the matched invocations in the extracted method

to ensure that it is either null or this.

Enable Recursion

Recursive Source Operation Before Extraction

NO Recursive Extracted Method

NO YES

HAS

TRUE FALSE

FALSE TRUE

Figure 10: Enable Recursion Decision Tree

The decision tree for detecting recursive extracted methods is shown in Figure 10.

Filtering the set of refactoring motivations

No filtering is applied for the detection of this motivation.

39

3.3.10 Introduce Factory Method

Factory methods create objects and have a non-void return type corresponding ot the type

of the object being created (Seng et al., 2006). EXTRACT METHOD refactorings can be

utilized to create factory methods by extracting the constructor call to a separate method.

Table 12: Introduce Factory Detection Rule

∃mb 3 |newOperator(mb.b.L.Return)| > 0 ∧
|{newExpressionType(mb.b) ∩ {mb.t ∪ subType(mb.t)}}| > 0 ∨
{objectCreationV ars(mb.b.L.Return) ∩mb.t} > 0 ∧ allFactoryRelated(V ars(mb)) ∧
¬factoryMethod(ma)

mb.t:Return type of the method mb.t
subType(t): Set of subtypes of the type t
newOperator(S): Statements in S that have only one new object creation operator
newExpressionType(S): Set of types of new expressions in the set of statements S
objectCreationV ars(S): Set of variables in the set of statements S that are initialized with
object-creation expression
V ars(mb):Set of all variables in method mb

allFactoryRelated(V):Returns true if all the variables in V are used for object creation or state
setting
factoryMethod(m): Reutrns true if method m is a factory method.

Generic Motivation Detection Rules

The rule to detect the Introduce Factory Method motivation is shown in Table 12.

• There is an object created in the return statement of the extracted method using the

new keyword.

• And the object that is created in the return statement has an equal type or is a subtype

of the extracted method return type.

• OR, All variables appearing in the return statements are initialized with an object

creation that is equal to the return type of the extracted method.

Exceptional cases

1. Source Operation Before Extraction (SOBE) should not be a Factory Method. If

SOBE is already a factory method the extracted method will not be accepted as a

40

valid factory method.

2. To ensure that extra statements in the extracted method are contributing to the factory

method implementation, we also further ensure that all the statements in the extracted

method are related to object creation. This means they should help create the object

for the first time or change its state after it is created. Otherwise, we do not consider

the extracted method a valid factory method.

Introduce Factory Method

Extracted Method Return Statement > 0

NO New Operator in the Return Statement

NO Source Operation Before Extraction Is Not Factory Method

NO All Extracted Method Variables are Factory Method Related

NO New Expression Type in the Extract Method Return Statement
Equals Extracted Method Return Type

Object Creation Variables Returned in the Extracted Method

NO YES

YES

HAS

FALSE TRUE

FALSE TRUE

FALSE TRUE

FALSE TRUE

FALSE

FALSE TRUE

TRUE

Figure 11: Introduce Factory Method Decision Tree

The decision tree in Figure 11 shows the detection logic to find the motivation of the

developer when EXTRACT METHOD refactoring is used to Introduce Factory Method.

Filtering the set of refactoring motivations

• Facilitate Extension and Remove Duplication motivations are removed if they are

detected for the same refactoring instance.

41

3.3.11 Introduce Async Operation

In concurrent programming, developers usually utilize low-level constructs to implement

asynchronous operations. Vendors are interested to know the code transformations done by

developers to introduce better constructs for improving performance and reducing execu-

tion time (Pinto et al., 2015). For instance, Asynchronizer, is a refactoring tool that extracts

a piece of sequential code into a concurrent one (Lin et al., 2014). It is important to know

how EXTRACT METHOD refactorings are used to extract a piece of code to introduce an

asynchronous operation that is executable in a separate thread.

Table 13: Enable Async Detection Rule

∃EM 3 |{calls(ma′ ,mb) ∩ calls(anonymousRunnableClass(ma′),mb)}| > 0

anonymousRunnableClass(m): Set of anonymous runnable classes in method m

Generic Motivation Detection Rules

The rule to detect the Introduce Async Operation motivation is shown in Table 13.

• There is at least one anonymous class implementing the Runnable interface in the

Source Operation After Extraction (SOAE)

• And there is an invocation from within the anonymous class to the extracted method.

Introduce Async Operation

Anonymous Runnable Class In Source Operation After Extraction

NO Invocations From Anonymous Runnable Class To Extracted Method > 0

NO YES

HAS

FALSE TRUE

FALSE TRUE

Figure 12: Introduce Async Operation Decision Tree

The detection rules are used to form the decision tree of the EXTRACT METHOD refac-

torings which are intended to enable an async operation and shown in Figure 12.

42

Filtering the set of refactoring motivations

No filtering is applied for this motivation.

3.4 Step 2: Applying the Detection Rules in Large Scale

In the second step, we use the optimized detection rules to detect the developer motivations

in a large number of open source projects. We built our dataset based on the projects

that were selected in the two most prominent studies on refactoring motivations (Silva

et al., 2016; Pantiuchina et al., 2020). More specifically, we included all 185 projects

used in the Silva et al. (2016) dataset and all 150 projects used in the Pantiuchina et al.

(2020) dataset, reaching a total of 325 projects (as 10 projects were commonly used in

both studies). For each one of the 325 projects, we mined their entire commit history

(master branch), excluding merge commits, as the analysis of merge commits introduces

duplicate refactoring instances (Tsantalis et al., 2013). This resulted in 346K EXTRACT

METHOD and EXTRACT AND MOVE METHOD refactoring instances, which were detected

in 132,897 commits. We used RefactoringMiner 2.0 as it is the current state-of-the-art

refactoring mining tool with the highest precision and recall and fastest execution time

among the currently available tools.

We have also defined certain flags that show the characteristics of code elements and

changes in the commit that are related to each EXTRACT METHOD motivation. These flags

can be considered as the motivation detection triggers and are logged by the tool. We can

manually validate each motivation by checking the type of changes and code characteristics

that confirm the corresponding detection rule. Table 14 shows the motivation flags that are

used for all the EXTRACT METHOD motivations.

43

Table 14: Extract Method Refactoring Motivation Flags
Motivation Flags Flag Description
1. Reusable Method Flags:
EM_INVOCATION_IN_REMOVE_DUPLICATION EM Invocation is in the SOAE of RemoveDuplication Refactoirng
EM_INVOCATION_IN_TEST_OPERATION EM Invocation is in test Opeataion
SOAE_IS_TEST_OPERATION SOAE is a Test Operation
EM_INVOCATION_EQUAL_MAPPING Equal Mapping of invocations in SOBE AND SOAE
EM_EQUAL_SINATURE_INVOCATIONS Invocations to an operation with an equal signature to Extracted Mewthod
EM_NESTED_INVOCATIONS Invocation to an EM from within a Nested Extrcted Method
EM_SOAE_INVOCATIONS Invocations to the EM from SOAE
EM_NONE_SOAE_INVOCATIONS Invocations to the EM from Non SOAE methods
2. Introduce Alternative Method Signature Flags:
EM_SOAE_EQUAL_PARAMETER_TYPES EM has Euqal Paramater Types with SOAE
SOAE_IS_DELEGATE_TO_EM EM is a delegate to the SOAE
SOAE_IS_ALL_TEMP_VARIABLES All SOAE statements h temporary variables
EM_HAS_ADDED_PARAMETERS Extracted Operation has more parameters than the Source Operation
3. Introduce Decompose Method to Improve Readability Flags:
EM_DECOMPOSE_SINGLE_METHOD Single Method Decomposition to Improve Readability
EM_DECOMPOSE_MULTIPLE_METHODS Multiple Method Decomposition to Improve Readability
EM_WITH_SAME_SOURCE_OPERATION EMs Have same source operation
EM_DISTINCT EMs are Distinct
EM_INVOCATION_EDIT_DISTANCE_THRESHOLD_SM EM Invocation Edit Distance in Single Decomposition
EM_INVOCATION_EDIT_DISTANCE_THRESHOLD_MM EM Invocation Edit Distance in Multiple Decomposition
EM_ALL_SOURCE_OPERATION_NODES_MAPPED All the nodes in the source operation are mapped to the Extracted Operation
EM_GETTER_SETTER EM is a Getter/Setter Method
EM_MAPPING_COMPOSITE_NODES Number of Composite Nodes in the Mapping
EM_COMPOSITE_EXPRESSION_INVOCATIONS Invocations to the EM from the Composite expression
EM_COMPOSITE_EXPRESSION_CALLVAR callVar to the EM exists in the Composite expression
EM_RETURN_STATEMENT_INVOCATIONS Invocations to the EM from the Return Statement
4. Facilitate Extension Flags :
EM_MAPPING_FRAGMENT2_TERNARY Ternary operator is used in the fragment 2 of the EM Mapping
SOAE_NOT_MAPPED_T2_UNFILTERED Unfiltered notMapped T2 nodes in the SOAE
EM_NOTMAPPED_T2_UNFILTERED Unfiltered notMapped T2 nodes in the Extracted Operation
SOAE_NOTMAPPED_T2_FILTERED Filtered notMapped T2 nodes in the SOAE
EM_NOTMAPPED_T2_FILTERED Filtered notMapped T2 nodes in the Extracted Operation
EM_T2_IN_T1 NotMapped T2 Nodes exist in NotMapped T2 Nodes in the EM
SOAE_T2_IN_T1 NotMapped T2 Nodes exist in NotMapped T2 Nodes in the SOAE
EM_T2_IN_MAPPING T2 NotMapped Nodes are in the EM(child) mapping
SOAE_T2_IN_MAPPING T2 NotMapped Nodes are in the SOAE mappings
EM_T2_IE_IN_EM_PARAMETERS EM T2 NotMapped Nodes Invocation Expressions are in the EM Parameters
SOAE_T2_IE_IN_EM_PARAMETERS SOAE T2 NotMapped Nodes Invocation Expressions are in the EM Parameters
EM_T2_NEUTRAL EM T2 NotMapped Nodes are Neutral
SOAE_T2_NEUTRAL SOAE T2 NotMapped Nodes are Neutral
SOAE_T2_DV_IN_EM_PARAMETERS SOAE Declared Variable are in the EM Parameters
EM_T2_EM_INVOCATIONS Extracted Operation T2 has invocation to the EM
SOAE_T2_EM_INVOCATIONS SOAE T2 has invocation to the EM
5. Remove Duplication Flags :
EM_SAME_EXTRACTED_OPERATIONS EM operations with the same extracted operations
EM_MAPPING_SIZE EM Mapping Size
EM_NUM_METHODS_USED_IN_DUPLICATION_REMOVAL Number of EMs used in Duplication Removal
6. Replace Method Preserving Backwards Compatibility Flags :
EM_SOAE_EQUAL_PARAMETER_TYPES EM has Euqal Paramater Types with SOAE
SOAE_IS_DELEGATE_TO_EM EM is a delegate to the SOAE
EM_SOAE_EQUAL_NAMES EM has equal names with the SOAE
SOAE_DEPRECATED SOAE is Deprecated
SOAE_PRIVATE SOAE is Private
SOAE_PROTECTED SOAE is Protected
7. Improve Testability Flags :
EM_INVOCATION_IN_TEST_OPERATION EM Invocation is in test Opeataion
EM_TEST_INVOCATION_CLASS_EQUAL_TO_EM_CLASS EM test invocation class is equal to the EM class
EM_TEST_INVOCATION_IN_ADDED_NODE EM test invocation is in added nodes
8. Enable Overriding Flags :
EM_EQUAL_OPERATION_SIGNATURE_IN_SUBTYPE Equal Operation Signature in SubType of the EM exists
EM_OVERRIDING_KEYWORD_IN_COMMENT EM has overriding keywords in its comment
9. Enable Recursion Flags :
SOBE_RECURSIVE Source Operation Before Extraction is recursive
EM_RECURSIVE EM is recursive
10. Introduce Factory Method Flags :
EM_HAS_RETURN_STATEMENTS EM has return statements
EM_RETURN_STATEMENT_NEW_KEYWORDS new keywords exist in the return statement.
EM_RETURN_EQUAL_NEW_RETURN EM return type equals the object creation type in the return statement
EM_OBJECT_CREATION_VARIABLE_RETURNED Variabale initialized with Object Creation is returned in the EM
EM_VARS_FACTORY_METHOD_RELATED EM Variables are related to object creation for factory method
SOBE_FACTORY_METHOD SOBE is Factory Method
11. Introduce Async Operation Flags :
SOAE_STATEMENTS_CONTAIN_RUNNABLE_TYPE SOAE statements have Runnable Type
SOAE_ANONYMOUS_CLASS_RUNNABLE_EM_INVOCATION SOAE has an anonymous class and runnable type that has invocation to EM

EM : Extracted Method
SOAE: Source Operation After Extraction
SOBE: Source Operation Before Extraction

44

Chapter 4

Experiment Results

In this chapter we present the results of our large scale study on EXTRACT METHOD refac-

toring motivations. We conducted an experiment on 346K instances of EXTRACT METHOD

and EXTRACT AND MOVE METHOD refactoring operations in 132,897 commits of 325

open-source repositories hosted in GitHub.

4.1 RQ1: Accuracy of Automatic Motivation Extractor

To evaluate the accuracy of our motivation detection rules, we used two separate oracles

of developer motivations based on previous studies (Silva et al., 2016; Pantiuchina et al.,

2020) as our training and testing datasets, respectively.

4.1.1 Accuracy on the Training Dataset

The oracle provided by Silva et al. (2016) is very convenient for the purpose of training

and evaluating our motivation detection rules, as the refactoring motivations are provided

at commit-level based on the responses of the actual developers who performed the refac-

torings. We filtered all commits that include at least one EXTRACT METHOD refactoring

45

instance, and then mapped the motivations related to EXTRACT METHOD (i.e., the 11 mo-

tivation themes shown in Table 1) to the actual refactoring instances. This process resulted

in a total of 261 EXTRACT METHOD refactoring instances assigned with 320 motivation

labels, as some instances are involved in multiple motivations.

After following the process explained in Section 3.2 to optimize our motivation detec-

tion rules, we reached the precision and recall shown in Table 15. The overall precision

and recall of our tool on the training dataset is 97.2% and 95.9%, respectively.

Table 15: Extract Method Motivations Detection Precision and Recall
Motivation Type TP FP FN Precision Recall

1. Reusable Method 72 2 4 0.973 0.947
2. Alternative Method Signature 37 3 3 0.925 0.925
3. Improve Readability 54 0 3 1.000 0.947
4. Facilitate Extension 50 0 0 1.000 1.000
5. Remove Duplication 39 3 1 0.929 0.975
6. Backwards Compatibility 10 1 0 0.909 1.000
7. Improve Testability 8 0 1 1.000 0.889
8. Enable Overriding 3 0 1 1.000 0.750
9. Enable Recursion 2 0 0 1.000 1.000
10. Introduce Factory Method 31 0 0 1.000 1.000
11. Introduce Async Method 1 0 0 1.000 1.000

Total 307 9 13 0.972 0.959

The high precision and recall achieved on the training dataset might be the result of

overfitting (i.e., the detection rules overfit the characteristics of the refactoring instances

in the training dataset). Therefore, to ensure that our tool has no overfitting problems, we

compute its accuracy on an another refactoring motivation oracle with refactoring instances

from different projects.

4.1.2 Accuracy on the Test Dataset

The motivations of refactoring activities were also manually analyzed and tagged at pull

request level in a study by Pantiuchina et al. (2020). We used the oracle available in this

46

study as our test dataset to further validate the accuracy of our motivation detection tool.

We filtered the pull requests from the test oracle, which contained only EXTRACT

METHOD or EXTRACT AND MOVE METHOD refactoring instances. Since the motivation

labels are assigned at the pull request level, it would be very risky to map the motivation

labels to the actual refactoring instances within commits in pull request containing multiple

different refactoring types in addition to the EXTRACT METHOD refactoring type. There-

fore, we ended up with 56 pull requests in total and assigned the motivation labels to the

individual refactoring instances detected in the commits of each pull request. Moreover, be-

cause Pantiuchina et al. (2020) use in some cases different names for the motivation themes,

we did a mapping between the motivation themes used in the studies by Pantiuchina et al.

(2020) and Silva et al. (2016), as shown in Table 16.

We automatically detected 170 motivations using our tool in these 56 pull requests. 61

motivations were matched according to the mappings shown in Table 16. For the remain-

ing 109 motivations that were not matched (i.e., potential false positives), we manually

analyzed the commits to ensure that the automatically detected motivation is present in the

commits of each pull request.

Motivation Extractor provides extra information about the detection of a certain moti-

vation. For instance, in the case of Reusable Method motivation, we have the fully qualified

name of the operation(s) where the extracted method is reused. Furthermore, the detection

rule contains numerous flags that are logged during the motivation detection process. These

flags that are shown in Table 14 indicate how code elements in the refactoring context are

related to the detected motivation. We used these flags along with the information retrieved

from the Motivation Extractor to accurately trace each motivation in the pull request com-

mits and validate the 109 detected motivations that were not matched with the assigned

motivation labels by Pantiuchina et al. (2020).

After manual analysis we found that only 3 out of 109 unmatched motivations were

47

Table 16: Pull Request Motivation Mapping to Extract Method Motivations
Extract Method Motivations Pull Request Motivations

Resuable Method
Adhere to DRY principle
Foster code reuse
To adhere to naming convention

Introduce Alternative Method Signature To keep consistency in naming
Replace Method Preserving Backwards Compatibility To simplify API usage

To use more specific names
To promote API compatibility

Decompose Method to Improve Readability
Better distribute responsibilities
Improve Understandability & Readability
Refactoring confusing code

Facilitate Extension

For implementing a new feature
Improve error messages and logging
Improve exception handling
Improve extensibility
To improve performance

Remove Duplication Remove Clones

Improve Testability

Improve organization of test directory
Improve quality of test code
To ensure a better mapping between test & production code
To simplify testing activities

Enable Overriding Facilitate subclassing
Enable Recursion None
Introduce Factory Method None
Introduce Async Operation None

None

Cleanup code
Fix warnings from static analysis tools
Other motivations
Improve modularization
Remove unnecessary code
Unclear
Improve Maintainability
To expand abbreviations

actually false positives. The remaining 106 unmatched motivations were actually true pos-

itives. We suspect that these motivations were missed by Pantiuchina et al. (2020), because

their analysis was done at pull request level, and thus some refactoring instances might be

missed from the analysis or considered less significant than others at the pull request level.

We also further analyzed the motivations that were tagged in the test oracle at pull

request level, but were not detected by our tool (i.e., potential false negatives). For the

examined 56 pull requests we had 103 manually tagged motivations among which 21 mo-

tivations were matched according to the mappings shown in Table 16. We divided the

remaining 82 unmatched motivations into five categories as following:

48

1. Super-Motivation: Motivations in the test oracle that were more general than the

automatically detected motivations.

2. Sub-Motivation: Motivations in the test oracle that were more specific than the auto-

matically detected motivations.

3. Non EXTRACT METHOD Motivation: Motivations in the test oracle that were not

related to the EXTRACT METHOD refactoring instances found in the pull request

commits.

4. Filtered-out Motivation: Motivations in the test oracle that were filtered out in the

automatic motivation detection process due to the fact that another motivation with

higher priority was detected.

5. False Negative (FN): Motivations in the test oracle that were not detected by our

automatic motivation detection tool. This can be attributed to missed refactoring

instances by RefactoringMiner. For instance, if RefactoringMiner detects only one

of the instances involved in the removal of duplicated code, then our detection rules

cannot infer the Remove Clone motivation.

Table 17 shows the number of motivations from the Pantiuchina et al. (2020) study that

were not detected by our detection rules categorized in the aforementioned categories. To

compute the overall precision and recall of the tool we consider the super-motivations and

sub-motivations as true positives since it is basically the different approach the two studies

followed coming up with more general/specific themes. Filtered motivations are consid-

ered as false negatives since our tool does not report them at the end and Non EXTRACT

METHOD motivations are removed from the oracle. We consider as false negatives the

instances in the FN column.

Table 18 shows the accuracy of our motivation detection rules on the testing dataset.

The Auto column refer to FNs that resulted by analyzing the motivations detected by our

49

Table 17: Pull Request Motivations
Unmached Motivations

Pull Request Motivations All Matched(TP) Super Sub Non-EM Motivation Filtered FN
1- Adhere to DRY principle 1 1 0 0 0 0 0
2- Foster code reuse 12 4 0 0 4 3 1
3- To adhere to naming convention 1 0 0 0 1 0 0
4- To keep consistency in naming 1 0 0 0 0 0 1
5- To simplify API usage 1 0 0 1 0 0 0
6- To use more specific names 1 0 0 0 1 0 0
7- To promote API compatibility 1 0 0 0 1 0 0
8- Better distribute responsibilities 6 2 0 0 2 0 2
9- Improve Understandability & Readability 15 3 6 0 5 1 0
10- Refactoring confusing code 4 1 0 1 2 0 0
11-To better reflect code responsibility 1 1 0 0 0 0 0
12- For implementing a new feature 6 0 0 3 3 0 0
13- Improve exception handling 3 1 0 1 0 0 1
14- Improve extensibility 3 1 0 0 1 0 1
15- To improve performance 3 0 0 0 3 0 0
16- Remove Clones 7 4 0 0 1 0 2
17- Improve organization of test directory 1 0 0 0 1 0 0
18- Improve quality of test code 1 1 0 0 0 0 0
19- To ensure a better mapping between test & production code 1 0 1 0 0 0 0
20- To simplify testing activities 3 1 1 0 1 0 0
21- Facilitate subclassing 1 1 0 0 0 0 0
22- Cleanup code 9 0 0 2 7 0 0
23- Fix warnings from static analysis tools 1 0 0 0 1 0 0
24- Other motivations 4 0 0 0 4 0 0
25- Improve modularization 2 0 0 2 0 0 0
26- Remove unnecessary code 2 0 0 1 1 0 0
27- Unclear 9 0 0 0 9 0 0
28- Improve Maintainability 2 0 0 0 2 0 0
29- To expand abbreviations 1 0 0 0 1 0 0

Total 103 21 8 12 50 4 8

50

tool. The Manual columns refer to TPs and FNs, respectively, that resulted by analyzing

the motivations manually labelled in the test oracle. The Validated column refers to TPs

that resulted by analyzing the motivations detected by our tool, for which no matching

motivation label was found in the test oracle.

Table 18: Precision and Recall of Extract Method Motivations in Pull Requests
TP FN

Motivation Type Matched Validated Manual Auto Filtered Manual FP TN Precision Recall
1. Reusable Method 5 20 0 0 3 1 0 4 1.000 0.862
2. Alternative Method Signature 0 16 2 1 0 1 3 2 0.857 0.900
3. Improve Readability 14 6 7 0 1 1 0 9 1.000 0.931
4. Facilitate Extension 12 24 4 0 0 3 0 7 1.000 0.930
5. Remove Duplication 27 31 0 0 0 2 0 1 1.000 0.967
6. Backwards Compatibility 0 3 0 0 0 0 0 0 1.000 1.000
7. Improve Testability 2 3 2 0 0 0 0 2 1.000 1.000
8. Enable Overriding 1 0 0 0 0 0 0 0 1.000 1.000
9. Enable Recursion 0 1 0 0 0 0 0 0 1.000 1.000
10. Introduce Factory Method 0 1 0 0 0 0 0 0 1.000 1.000
11. Introduce Async Method 0 1 0 0 0 0 0 0 1.000 1.000
12. None 0 0 5 0 0 0 0 25 - -

Total 61 106 20 1 4 8 3 50 0.984 0.935

There are 21 manually tagged motivations at pull request level that were matched with

61 automatically detected motivations at refactoring instance level. Overall, we identi-

fied 187 refactoring-level true positives including 61 matched, 106 Validated, 20 Manual

(12 sub-motivations and 8 super-motivations), and 13 false negatives (4 Filtered-out, 1

Auto, 8 Manual). Finally, we eliminated 50 tagged motivations as true negatives. These

motivations were not specifically related to EXTRACT METHOD refactoring instances in

the pull requests. These tags were either related to the pull request comments and dis-

cussions, or code changes not involving Extract Method refactorings. In some cases the

motivation was related to EXTRACT METHOD refactorings, but the manual analysis of the

changes in the pull request resulted in an incorrect motivation. For instance, instances re-

lated to Remove Duplication or Improve Testability motivations were mistakenly classified

as Reusable Method, because the analysis of the extracted method call sites was not prop-

erly done. We computed an overall precision of 98.4% and recall of 93.5% on the testing

dataset, which are very close to the precision and recall achieved on the training dataset

(97.2% and 95.9%, respectively).

51

RQ1 Conclusion: In both training and testing datasets, our motivation detection rules

achieved a precision over 97% and a recall over 93%. Therefore, our Motivation Ex-

tractor tool is reliable to conduct a large-scale study on the reasons driving refactoring

with automatically computed motivations based on our rules.

4.2 RQ2: Most Prevalent Motivations for Extract Method

Refactoring Operations

In Figure 13, we present the ranking of the motivations we automatically extracted by ana-

lyzing 346K instances of EXTRACT METHOD and EXTRACT AND MOVE METHOD refac-

toring operations in 132,897 commits of 325 open-source repositories hosted in GitHub.

Moreover, we show side-by-side the ranking of the motivations obtained from the survey

by Silva et al. (2016) based on developer answers. With red arrows we highlight some

notable differences or similarities in the two rankings.

Automatic Extract Method Motivations Survey Results (FSE 2016)

Introduce Async Method
Enable Recursion
Enable Overriding

Backwards Compatibility

Improve Testability
Introduce Factory Method

Alternative Method Signature
Decompose to Improve Readability

Facilitate Extension
Remove Duplication

Reusable Method

Introduce Async Method

Introduce Factory Method

Enable Recursion

Enable Overriding

Backwards Compatibility

Improve Testability

Remove Duplication

Facilitate Extension

Decompose to Improve Readability

Alternative Method Signature

Reusable Method

1354
3251
5254
8023
11663
16934

47413
62776

71136
89111

1

1

2

4

6

6

14

15

21

25
142134 43

Extract Method

Extract And Move Method

Figure 13: Comparison of our automatically extracted motivation ranking with Silva et al.
(2016) survey ranking

Reusable Method is the top-most frequent EXTRACT METHOD refactoring motivation

in both studies. About 41% of the examined refactoring instances are intended for reusing

the extracted code within the same commit. Unfortunately, there is a huge research gap

in recommendation systems for extracting reusable methods and components. Therefore,

52

researchers that are building refactoring recommendation tools should focus on developing

techniques that find opportunities to extract reusable methods. The characteristics of the

reusable extracted methods that we found in our dataset using our motivation detection rules

can be a useful resource to better understand the factors driving this particular motivation.

In a recent study, AlOmar et al. (2020) found that extracting reusable functionality is

increasing the number of methods in a class. Therefore, developers can pull up reusable

methods to a superclass to share them with all subclasses, or relocate and move them in

classes outside their inheritance hierarchy. At the same time, the visibility of the reusable

methods can be changed to allow other objects and methods to access their functionality.

We found that 31% of the reusable extracted methods are a result of EXTRACT AND

MOVE METHOD refactorings and 69% of them are a result of EXTRACT METHOD refactor-

ings. We also analyzed the access modifiers of the extracted methods and compared them

with the access modifiers of the methods from which they were extracted. We ordered

access modifiers from higher to lower visibility levels (public > protected > package > pri-

vate) and recorded whether the visibility of the extracted methods increased, decreased, or

remained the same compared to the visibility of the original methods from which they were

extracted.

Figure 14 shows the percentages of resuable extracted methods with increased, de-

creased and the same visibility for EXTRACT METHOD and EXTRACT AND MOVE METHOD

refactorings, respectively. About 58% of the extracted methods in EXTRACT METHOD

refactorings have a decreased visibility and about 4% have an increased visibility. More-

over, in 74% of the EXTRACT METHOD refactorings with decreased visibility, the extracted

methods are private, while the methods from which they were extracted are public. This

shows that locally extracted methods are more intended for local reuse within the class in

which they are extracted. On the other hand, in the case of EXTRACT AND MOVE METHOD

refactorings about 18% of the extracted methods have a decreased visibility and about 27%

53

Extract Method Extract And Move Method
Refactoring Type

0

20000

40000

60000

80000

100000

Re
us

ab
le

 E
xt

ra
ct

ed
 M

et
ho

d

37.4%

54.8%

58.3%

17.9%

4.3%

27.2%

N = 97706

N = 44428

Same Visibility
Decrease Visibility
Increase Visibility

Figure 14: Reusable Extracted Methods Visibility Changes

54

of them have an increased visibility. Therefore, when the extracted methods are moved to

other classes the intention is to make reusable in more classes other than the class from

which they were extracted.

Liu and Liu (2016) suggest that practitioners should consider the cost and benefits of

EXTRACT METHOD refactoring. They find that extracted methods have a small chance

to be reused in the future and on the average 17% of them are reused in the future. But

at the same time they find that 39% of the extracted methods are reused immediately and

are also reused in the future in order to remove clones. Therefore, the development of

techniques for recommending the extraction of reusable methods and components has great

merit. In our study we found that about 30% of reusable methods are also used to remove

duplication in the same commit. We will further discuss the multiplicity of EXTRACT

METHOD motivations in Section 4.4.

Remove Duplication motivation is ranked in the second place, while it is ranked fifth

place in the Silva et al. (2016) study. About 25% (89111 instances) of all examined EX-

TRACT METHOD and EXTRACT AND MOVE METHOD refactorings have Remove Dupli-

cation as their motivation, which shows that the refactoring of clones is an important reason

for extracting methods.

Duplication removal can be performed from multiple different source methods, as well

as from a single source method. 64% of the Remove Duplication motivations are re-

lated to EXTRACT METHOD and the remaining 36% are related to EXTRACT AND MOVE

METHOD refactorings. Figure 15 shows the number of Remove Duplication motivation in-

stances, in which the involved EXTRACT METHOD and EXTRACT AND MOVE METHOD

refactorings have been extracted from multiple methods or a single method, respectively.

We can see that 37% of all instances are extracted from a single source method, while 63%

are extracted from multiple source methods.

Due to the importance of clone detection and refactoring many researchers developed

55

Multiple Method Single Method
Duplication Removal

0

10000

20000

30000

40000

50000

M
ot

iv
at

io
n

Co
un

t

32726

23901

22667

9817

N = 55393

N = 33718

Extract Method
Extract And Move Method

Figure 15: Multiple Method vs. Single Method Duplication Removal

56

methods and tools to eliminate clones. Tairas and Gray (2012) propose CeDAR that uni-

fies clone detection and refactoring by filtering out clones and reporting only those clones

that can be refactored with EXTRACT METHOD refactorings. Mazinanian et al. (2016)

extended JDeodorant to import the clone detection results of CCFinder, NICAD, ConQat,

CloneDR and Deckard clone detection tools, perform refactorability analysis (Tsantalis

et al., 2015), and support multiple clone refactorings, such as EXTRACT METHOD, EX-

TRACT AND PULL UP METHOD, INTRODUCE TEMPLATE METHOD, and INTRODUCE

UTILITY METHOD. In all these refactorings the differences between the refactored clones

can be parameterized with Lambda expressions if needed. Chen et al. (2018) propose a

pattern-based clone refactoring technique to summarize refactorings of duplicated codes

and find clones that are not consistently refactored. Yue et al. (2018) propose a learning-

based approach and a tool named CREC that uses 34 features for the characterization of

clones to automatically suggest EXTRACT METHOD refactorings for eliminating clones.

Our findings and dataset about single method and multiple method duplication removals

can be used to better train the clone detection models and find features that are useful to

eliminate clones using various clone-removal-related refactorings.

Facilitate Extension motivation is ranked third in our large scale study and is ranked

fourth in the survey by Silva et al. (2016). 20.51% of refactoring instances in our study

are detected having Facilitate Extension as motivation. Among these refactoring instances,

81.70% are EXTRACT METHOD and the remaining 18.30% are EXTRACT AND MOVE

METHOD refactorings. We discuss the characteristics of EXTRACT METHOD refactorings

that are used to Facilitate Extension in more detail in Section 4.3.

Although the have been some recent efforts in the recommendation of refactorings

based on feature requests (Nyamawe et al., 2019, 2020), this area is still under-researched.

Developers spend most of their time trying to fix bugs and implement new requirements.

57

Therefore, there is a great need in recommending refactorings based on the particular main-

tenance task they are currently working on that could help them to complete their task faster

and improve the overall quality of the code involved in the maintenance task.

Decompose Method to Improve Readability motivation is ranked fourth in our large

scale study and third in the survey by Silva et al. (2016). About 18% of all refactoring

instances are detected having Decompose to Improve Readability as motivation. Among

these instances, about 78% are EXTRACT METHOD and the remaining 12% are EXTRACT

AND MOVE METHOD refactorings.

Figure 16 shows the number of Decompose Method motivation instances, in which the

involved EXTRACT METHOD and EXTRACT AND MOVE METHOD refactorings introduce

multiple extracted methods, and a single method, respectively. in 65% of these instances

the source method is decomposed into multiple methods, while in the remaining 35% only

a single method is extracted. This results shows that in general when the developers’ in-

tention is to decompose a method, they typically extract multiple methods from the source

method. In the literature, there as many refactoring recommendation systems targeting the

decomposition of methods. Some of the most well-known refactoring recommendation

tools supporting the Decompose Method motivation are JDeodorant (Tsantalis and Chatzi-

georgiou, 2011), JExtract (Silva et al., 2014), SEMI (Charalampidou et al., 2017), and

GEMS (Xu et al., 2017).

Introduce Alternative Method Signature motivation is ranked fifth in our large scale

study and second in the survey by Silva et al. (2016). To the best of knowledge, there are

no recommendation systems targeting this particular motivation for EXTRACT METHOD

refactoring. Therefore, the development of techniques for recommending the extraction of

methods with an alternative signature to support different input parameter types or output

types has a lot of merit.

Finally, we can observe in Figure 13 that the Introduce Factory Method motivation is

58

Multiple Method Single Method
Decomposition to Improve Readability

0

5000

10000

15000

20000

25000

30000

35000

40000

M
ot

iv
at

io
n

Co
un

t

34926

20090

5941

1819

N = 40867

N = 21909

Extract Method
Extract And Move Method

Figure 16: Multiple and Single Method Decomposition to Improve Readability

59

ranked sixth in our study with a much larger representation compared to the survey by

Silva et al. (2016), in which it is ranked last among the 11 motivations. The development

of recommendation systems supporting this motivation is quite straightforward, as it in-

volves finding object creations or builder call chains that are complex or long enough to be

extracted into a separate method. Factory methods are also great for extendibility, as they

allow the consumers to create new objects without having to know the details of how they

are created, or what their dependencies are.

RQ2 Conclusion: Despite the prevalence of Reusable Method, Facilitate Extension

and Introduce Alternative Method Signature motivations, there is very limited research

on refactoring recommendation systems targeting these motivations. On the other

hand, the Remove Duplication and Decompose Method motivations have received great

attention from researchers who developed techniques to find relevant refactoring op-

portunities and automate the required refactoring process.

4.3 RQ3: What are the characteristics of the EXTRACT

METHOD refactorings having Facilitate Extension as

motivation

Among all 346k EXTRACT METHOD refactoring instances, 71136 (20.51%) are related to

the Facilitate Extension motivation, i.e., refactorings performed to facilitate the addition of

new features or fixing of bugs.

To better understand how developers use EXTRACT METHOD refactorings for exten-

sion, we analyzed the added AST nodes (i.e., new statements) in the extracted method and

in the source method after extraction.

Among the 71136 refactoring instances having Facilitate Extension as motivation, 26.66%

60

have added nodes in the Source Operation After Extraction (SOAE), 61.30% have added

nodes in the Extracted Method and 8.41% have added nodes in both SOAE and Extracted

Method. Also in 3.74% of the instances the extension is done with the use of a ternary

operator in the extracted method. Therefore, the extensions are more often performed in

the extracted method than the source operation after extraction.

Table 19: Self-affirmed refactoring patterns

Patterns
Added more checks for quality factors Fix quality issue Reformat
Antipattern bad for performances Fixing naming convention Remove
Avoid future confusion Flaw Remove dependency
Chang Formatted Remove redundant code
Change design Get rid of Removed poor coding practice
Change package structure Getting code out of Renam
Cleaned up unused classes Improv Renamed for consistency
Cleanup Improve naming consistency Reorganiz
Code cleansing Improvement Reorganize project structures
Code maintenance for refactoring Inlin Replac
Code optimization Inlined unecessary classes Replace it with
Code quality Issue Restructur
Code redundancies Make maintenance easier Rework
Code reformat Minor enhancement Rewrit
Code reordering Modify Simplification
Code revision Modularize the code Simplify
Cosmetic mov Simplify code redundancies
Creat Moved and gave clearer names to Simplify internal design
Decompos Moved more code out of Simplify the code
Deleting a lot of old stuff Naming improvement Smell
Easily extend Nicer name Split
Encapsulat Nonfunctional Structural change
Enhanc Polishing code Structure
Enhanced code beauty Pull some code up Technical debt
Extend Quality factor Unnecessary code
Extract Redesign Unused code
Fix Reduc Use a safer method
Fix a desgin flaw Refactor Use better name
Fix module structure Refactor bad designed code Use less code
Fix quality flaw Refactoring towards nicer name analysis

We further used the self-affirmed refactoring patterns catalogued by AlOmar et al.

(2019a) to find commit messages that are related to self-affirmed refactoring activities. Ta-

ble 19 shows 89 refactoring patterns that we used. These are some keywords and phrases

that are commonly used by developers when they document their refactoring activities in

61

commit messages.

For some patterns we used a more general subset to find matching commit messages.

For instance, patterns like Fix a design flaw or Fix a quality flaw had 0 and 7 matches,

respectively, but we found similar variations of the pattern by applying the general Flaw

keyword with 14 matches. We excluded some patterns like Merg and Add. Merg was used

in many automatically generated merge commit messages for pull requests. Add is also

a general keyword that might not be directly associated with a certain task like adding a

new feature besides refactoring. The remaining keywords were utilized to understand what

kind of maintenance tasks are supported by the EXTRACT METHOD refactoring instances

having Facilitate Extension as motivation.

Fix

27.81%
(5231)

chang

9.54%
(1794)

issue

9.24%
(1738)

Mov

8.74%
(1644)

Refactor

8.31%
(1563) Improve

6.59%
(1238)

Remove
5.29%
(996)

Creat
5.03%
(947)

Cleanup

2.14%
(402)

Other

17.32%
(3257)

Motivation
Fix
chang
issue
Mov
Refactor
Improve
Remove
Creat
Cleanup
Other

Figure 17: Top SAR patterns in message of commits that include EXTRACT METHOD with
Facilitate Extension as motivation

Figure 17 shows the top-10 most used keywords in the message of commits including

EXTRACT METHOD refactorings having Facilitate Extension as motivation. About 28%

62

of instances with self-affirmed keywords include the Fix keyword, which is the most fre-

quent pattern that can be associated with a bug-fixing task. This suggests that EXTRACT

METHOD refactoring is a very useful tool for fixing bugs.

The remaining self-affirmed refactoring patterns in the top-10 list cannot be directly

associated with bug fixing or the implementation of a new feature, but they are clearly

related with some maintenance task affecting the functionality of the project, as indicated

from Chang, Issue, or the organization of the project, as indicated from Mov, Remove and

Cleanup. The remaining 80 self-affirmed patterns constitute 17% of the matched keywords.

RQ3 Conclusion: In around 70% of the EXTRACT METHOD refactoring instances

having Facilitate Extension as motivation, the new code related to the bug fix or the

implemented feature is added in the extracted method. Moreover, by analyzing the

commit messages, we found that at least 28% of the EXTRACT METHOD refactoring

instances having Facilitate Extension as motivation, target a bug fix. Therefore, we

can conclude that EXTRACT METHOD refactoring is a very useful tool for fixing bugs.

4.4 RQ4: Multiple concurrent EXTRACT METHOD Moti-

vations

In this section, we analyze the co-existence of multiple motivations for the same EXTRACT

METHOD refactoring instance. Among all refactoring instances, 56% of them have only a

single motivation, while 37% of them have multiple motivations. More specifically, 34%

of all refactoring instances have two different motivations, and about 2.5% have 3 dif-

ferent motivations. Figure 18 shows the percentages of refactoring instances falling into

four different categories, namely single motivation, two motivations, three motivations, no

motivation.

63

3 Motivations

2.49%
(8645)

2 Motivations
34.26%

(118774)

None

6.92%
(23994)

Single Motivation
56.33%

(195293)

Motivation
3 Motivations
2 Motivations
None
Single Motivation

Figure 18: Extract Motivation Motivation Detection Rate

In about 7% of the instances, no specific motivation is automatically detected. We fur-

ther manually analyzed a random selection of these instances and found that about 50% of

them only contain one statement in the extracted method. In about 25% of them, the entire

body of the source method was extracted, and the remaining 25% were not related to any of

the 11 motivation categories considered in our study. These instances can serve for further

improving the recall of our motivation detection rules, as some motivations were missed,

but also discover new motivation categories, which were not previously documented in the

literature.

We used association rule mining to better understand the relationship between multi-

ple refactoring motivations co-existing in EXTRACT METHOD refactoring instances. The

association rules we mined are shown in Table 20. We found the association of motiva-

tions among all instances with multiple motivations, and also separately for categories with

only two or three motivations. We found consistently in all categories a strong associa-

tion between Remove Duplication and Reusable Method. This means that when developers

remove duplication, they also tend to find opportunities to reuse the extracted duplicated

code.

64

Table 20: Association Rules for EXTRACT METHOD concurrent motivations
Multiplicity Rule Support Confidence Lift

All
RD→RM 0.326 0.888 1.143
FE→RM 0.243 0.679 0.874

2 Motivations
RD→RM 0.328 0.882 1.152
FE→RM 0.222 0.647 0.846

3 Motivations

RD→RM 0.290 0.988 1.057
DIR→RM 0.688 0.946 1.012
FE →RM 0.528 0.944 1.010
FE →DIR 0.523 0.934 1.284

RM : Reusable Method
RD : Remove Duplication
DIR : Decompose Method to Improve Readability
FE : Facilitate Extension

RQ4 Conclusion: In 37% of the studied EXTRACT METHOD refactoring instances,

we found two or three concurrent motivations. By applying association rule mining,

we found that when developers remove duplication, they also tend to find opportunities

to reuse the extracted duplicated code.

65

Chapter 5

Threats to Validity

5.1 Internal Validity

The internal threats to the validity of our study involve biases or errors. We validated and

improved our refactoring motivation detection rules based on a primary oracle that was

built from the actual developer responses in 222 commits (Silva et al., 2016). However, to

evaluate the accuracy of our detection rules, we compared the motivations detected from

our tool with manually validated motivations found in pull requests (Pantiuchina et al.,

2020). The number of refactoring instances were limited for some motivation categories,

such as Enable Async Operation and Enable Overriding. Therefore, the detection rules

for these motivations may be further improved, if more cases are discovered in the future

studies.

One more threat is that we had to reconstruct the two available motivation oracles from

commit level (Silva et al., 2016), and pull request level (Pantiuchina et al., 2020), respec-

tively, to refactoring instance level. This means we had to map the motivations given at

commit and pull request levels to specific refactoring instances found in the commits. How-

ever, as explained in Section 4.1, we followed a very careful and systematic process when

performing the mapping of the motivations from a higher level of granularity (i.e., commit

66

and pull request) to a lower one (i.e., refactoring instance).

5.2 Construct Validity

The construct threats to validity are mainly concerned with the accuracy that Refactor-

ingMiner detects EXTRACT METHOD and EXTRACT AND MOVE METHOD refactoring

operations in the commit history of a project, as well as the level of detail Refactoring-

Miner provides for the context in which the refactoring operations are applied (e.g., the

call sites of the extracted method within the project’s code base, the added statements in

the bodies of the extracted and source methods). The accuracy of RefactoringMiner in

the detection of EXTRACT METHOD has been shown to be very high with a precision of

99.8% and recall of 95.8% (Tsantalis et al., 2020), which gives us confidence that the vast

majority of the detected refactoring instances in our dataset are correct (almost zero false

positives), and that we didn’t miss many true instances (i.e., low number of false negatives).

Moreover, RefactoringMiner matches the refactored code at statement level, and provides

a fine-grained level of details about the call sites of the extracted methods, the statements

matched between the source and the extracted methods, and the newly added statements

in the bodies of the extracted and source methods. This level of detail allowed us to build

very accurate motivation detection rules taking into account several special cases.

5.3 External Validity

In this study, we focused on EXTRACT METHOD and EXTRACT AND MOVE METHOD

refactoring types, but there is a large catalogue of refactoring types, which we did not ex-

amine. This is due to the fact that EXTRACT METHOD in very common and extensively

applied by developers. Moreover, it is the only refactoring type that serves so many differ-

ent motivations. Our general method can be extended to detect the motivations for other

67

refactoring types as well.

We selected popular Java systems of various sizes and domains that were previously

used in other researches to know why developers refactor source code. In our large scale

study we analyzed all the commits in 325 projects to have a better understanding of the

motivations driving EXTRACT METHOD refactoring. Our approach is utilizing Refactor-

ingMiner, which only supports Java systems. But our motivation detection rules can be

generalized to other programming languages, provided that the refactoring mining tools

supporting other languages can provide thorough information about the context of the de-

tected refactoring operations to replicate this study.

68

Chapter 6

Conclusion and future work

Refactoring is a well-known practice among developers to improve the quality of a software

system by altering its internal structure without changing the external behaviour. Among

all refactoring activities, EXTRACT METHOD is widely utilized to refactor code for various

motivations. In this study we propose a method for the automatic detection of the motiva-

tions driving the application of EXTRACT METHOD and EXTRACT AND MOVE METHOD

refactoring operations. We conducted a large scale study on 325 open-source java projects,

which included 346k EXTRACT METHOD and EXTRACT AND MOVE METHOD instances.

We developed detection rules to automatically detect 11 major motivations of these refac-

torings. The automated motivation detection results are validated against an oracle with

manually labelled motivations on refactorings taking place in pull requests with a precision

of 98% and recall of 93%.

In out large-scale empirical study, we found that Reusable Method, Remove Duplica-

tion, Facilitate Extension and Decompose Method to Improve Readability are the the most

common reasons for applying EXTRACT METHOD refactorings. We further studied the

EXTRACT METHOD instances that have more than one motivation. About 56% of the

refactoring instances had a single motivation and about 36% had multiple motivations,

while 7% had no detection motivation. We performed association rule mining and found

69

that the Remove Duplication and Reusable Method motivations have a strong association.

This means that when developers remove duplication, they also tend to find opportunities

to reuse the extracted duplicated code.

The results show the feasibility and effectiveness of our approach to detect the motiva-

tions related to the EXTRACT METHOD refactoring type. In the future, we aim to extend

our tool to automatically detect the motivation of other refactoring types besides EXTRACT

METHOD. This will provide to researchers and tool-makers the empirical evidence required

to build refactoring recommendation systems tailored to the developer needs and practices.

70

Bibliography

Aalizadeh, M. S. (2021). Motivation extractor. https://github.com/mosaliza/
RefactoringMiner.

Abid, C., Kessentini, M., Alizadeh, V., Dhouadi, M., and Kazman, R. (2020). How does
refactoring impact security when improving quality? a security-aware refactoring ap-
proach. IEEE Transactions on Software Engineering, pages 1–1.

AlOmar, E., Mkaouer, M. W., and Ouni, A. (2019a). Can refactoring be self-affirmed?
an exploratory study on how developers document their refactoring activities in commit
messages. In 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR), pages
51–58.

AlOmar, E. A., Mkaouer, M. W., and Ouni, A. (2021). Toward the automatic classification
of self-affirmed refactoring. Journal of Systems and Software, 171:110821.

AlOmar, E. A., Mkaouer, M. W., Ouni, A., and Kessentini, M. (2019b). On the impact of
refactoring on the relationship between quality attributes and design metrics. In 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM), pages 1–11.

AlOmar, E. A., Rodriguez, P. T., Bowman, J., Wang, T., Adepoju, B., Lopez, K., Newman,
C., Ouni, A., and Mkaouer, M. W. (2020). How do developers refactor code to improve
code reusability? In International Conference on Software and Software Reuse, pages
261–276. Springer.

Arcelli, D., Cortellessa, V., and Di Pompeo, D. (2018). Performance-driven software model
refactoring. Information and Software Technology, 95:366–397.

Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., and Palomba, F. (2015). An experi-
mental investigation on the innate relationship between quality and refactoring. J. Syst.
Softw., 107(C):1–14.

Bogart, A., AlOmar, E. A., Mkaouer, M. W., and Ouni, A. (2020). Increasing the trust in
refactoring through visualization. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, pages 334–341.

71

https://github.com/mosaliza/RefactoringMiner
https://github.com/mosaliza/RefactoringMiner

Charalampidou, S., Ampatzoglou, A., Chatzigeorgiou, A., Gkortzis, A., and Avgeriou, P.
(2017). Identifying extract method refactoring opportunities based on functional rele-
vance. IEEE Transactions on Software Engineering, 43(10):954–974.

Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., and Garcia, A. (2017). How does
refactoring affect internal quality attributes? a multi-project study. In Proceedings of the
31st Brazilian Symposium on Software Engineering, SBES’17, page 74–83, New York,
NY, USA. Association for Computing Machinery.

Chen, J., Xiao, J., Wang, Q., Osterweil, L. J., and Li, M. (2016). Perspectives on refactoring
planning and practice: An empirical study. Empirical Softw. Engg., 21(3):1397–1436.

Chen, Z., Kwon, Y.-W., and Song, M. (2018). Clone refactoring inspection by summarizing
clone refactorings and detecting inconsistent changes during software evolution. Journal
of Software: Evolution and Process, 30(10):e1951.

Derezińska, A. (2017). A structure-driven process of automated refactoring to design pat-
terns. In International Conference on Information Systems Architecture and Technology,
pages 39–48. Springer.

Dig, D., Comertoglu, C., Marinov, D., and Johnson, R. (2006). Automated detection of
refactorings in evolving components. In Thomas, D., editor, ECOOP 2006 – Object-
Oriented Programming, pages 404–428, Berlin, Heidelberg. Springer Berlin Heidelberg.

Dig, D. and Johnson, R. (2006). How do apis evolve? a story of refactoring. Journal of
software maintenance and evolution: Research and Practice, 18(2):83–107.

Ferreira, I. V. (2018). Assessing the Bug-Proneness of Refactored Code: Longitudinal
Multi-Project Studies. PhD thesis, PUC-Rio.

Hora, A. C. and Robbes, R. (2020). Characteristics of method extractions in java: a large
scale empirical study. Empir. Softw. Eng., 25(3):1798–1833.

Ivers, J., Ozkaya, I., Nord, R. L., and Seifried, C. (2020). Next generation automated soft-
ware evolution refactoring at scale. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2020, page 1521–1524, New York, NY, USA. Association
for Computing Machinery.

Kaur, P. and Mittal, P. (2017). Impact of clones refactoring on external quality attributes
of open source softwares. International Journal of Advanced Research in Computer
Science, 8(5).

Kaya, M., Conley, S., Othman, Z. S., and Varol, A. (2018). Effective software refactoring
process. In 2018 6th International Symposium on Digital Forensic and Security (ISDFS),
pages 1–6.

72

Kim, M. and Notkin, D. (2009). Discovering and representing systematic code changes. In
Proceedings of the 31st International Conference on Software Engineering, ICSE ’09,
page 309–319, New York, NY, USA. Association for Computing Machinery.

Kim, M., Zimmermann, T., and Nagappan, N. (2014). An empirical study of refactor-
ingchallenges and benefits at microsoft. IEEE Trans. Softw. Eng., 40(7):633–649.

Kourie, D. G. and Watson, B. W. (2012). Procedures and recursion. In The Correctness-
by-Construction Approach to Programming, pages 161–195. Springer.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):707–710. Doklady Akademii Nauk SSSR,
V163 No4 845-848 1965.

Lin, Y., Radoi, C., and Dig, D. (2014). Retrofitting concurrency for android applications
through refactoring. In Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 341–352.

Liu, W. and Liu, H. (2016). Major motivations for extract method refactorings: analysis
based on interviews and change histories. Frontiers of Computer Science, 10(4):644–
656.

LUO, T., bo GUO, Y., hui HAO, Y., and LI, H. (2011). Method verifying the correctness
of code refactoring program. Journal on Communications, 32(11A):152.

Mazinanian, D., Tsantalis, N., Stein, R., and Valenta, Z. (2016). Jdeodorant: clone refac-
toring. In Proceedings of the 38th international conference on software engineering
companion, pages 613–616.

Mohan, M. and Greer, D. (2017). Multirefactor: automated refactoring to improve software
quality. In International Conference on Product-Focused Software Process Improvement,
pages 556–572. Springer.

Nasagh, R. S., Shahidi, M., and Ashtiani, M. (2021). A fuzzy genetic automatic refac-
toring approach to improve software maintainability and flexibility. Soft Computing,
25(6):4295–4325.

Negara, S., Chen, N., Vakilian, M., Johnson, R. E., and Dig, D. (2013). A compara-
tive study of manual and automated refactorings. In Proceedings of the 27th European
Conference on Object-Oriented Programming, ECOOP’13, pages 552–576, Berlin, Hei-
delberg. Springer-Verlag.

Nyamawe, A. S., Liu, H., Niu, N., Umer, Q., and Niu, Z. (2019). Automated recommenda-
tion of software refactorings based on feature requests. In 2019 IEEE 27th International
Requirements Engineering Conference (RE), pages 187–198. IEEE.

73

Nyamawe, A. S., Liu, H., Niu, N., Umer, Q., and Niu, Z. (2020). Feature requests-based
recommendation of software refactorings. Empirical Software Engineering, 25(5):4315–
4347.

Nyamawe, A. S., Liu, H., Niu, Z., Wang, W., and Niu, N. (2018). Recommending refactor-
ing solutions based on traceability and code metrics. IEEE Access, 6:49460–49475.

Opdyke, W. F. (1990). Refactoring : An aid in designing application frameworks and
evolving object-oriented systems. Proc. SOOPPA ’90 : Symposium on Object-Oriented
Programming Emphasizing Practical Applications.

Paixão, M., Uchôa, A., Bibiano, A. C., Oliveira, D., Garcia, A., Krinke, J., and Arvonio,
E. (2020). Behind the Intents: An In-Depth Empirical Study on Software Refactoring
in Modern Code Review, page 125–136. Association for Computing Machinery, New
York, NY, USA.

Pantiuchina, J., Zampetti, F., Scalabrino, S., Piantadosi, V., Oliveto, R., Bavota, G., and
Penta, M. D. (2020). Why developers refactor source code: A mining-based study. ACM
Trans. Softw. Eng. Methodol., 29(4).

Perkins, J. H. (2005). Automatically generating refactorings to support api evolution. In
proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pages 111–114.

Pinto, G., Torres, W., Fernandes, B., Castor, F., and Barros, R. S. (2015). A large-scale
study on the usage of java’s concurrent programming constructs. Journal of Systems and
Software, 106:59–81.

Prete, K., Rachatasumrit, N., Sudan, N., and Kim, M. (2010). Template-based reconstruc-
tion of complex refactorings. In Proceedings of the 2010 IEEE International Conference
on Software Maintenance, ICSM ’10, page 1–10, USA. IEEE Computer Society.

Seng, O., Stammel, J., and Burkhart, D. (2006). Search-based determination of refactorings
for improving the class structure of object-oriented systems. In Proceedings of the 8th
annual conference on Genetic and evolutionary computation, pages 1909–1916.

Silva, D., Silva, J., De Souza Santos, G. J., Terra, R., and Valente, M. T. O. (2020). Refd-
iff 2.0: A multi-language refactoring detection tool. IEEE Transactions on Software
Engineering, pages 1–1.

Silva, D., Terra, R., and Valente, M. T. (2014). Recommending automated extract method
refactorings. In Proceedings of the 22nd International Conference on Program Compre-
hension, ICPC 2014, page 146–156, New York, NY, USA. Association for Computing
Machinery.

Silva, D., Tsantalis, N., and Valente, M. T. (2016). Why we refactor? confessions of github
contributors. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

74

on Foundations of Software Engineering, FSE 2016, page 858–870, New York, NY,
USA. Association for Computing Machinery.

Silva, D. and Valente, M. T. (2017). Refdiff: Detecting refactorings in version histories. In
2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
pages 269–279.

Silva, I. P., Alves, E. L., and Machado, P. D. (2018). Can automated test case generation
cope with extract method validation? In Proceedings of the XXXII Brazilian Symposium
on Software Engineering, pages 152–161.

Stefano, M. D., Pecorelli, F., Tamburri, D. A., Palomba, F., and Lucia, A. D. (2020). Refac-
toring recommendations based on the optimization of socio-technical congruence. In
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 794–796.

Tairas, R. and Gray, J. (2012). Increasing clone maintenance support by unifying clone
detection and refactoring activities. Information and Software Technology, 54(12):1297–
1307.

Tanhaei, M. (2020). A model transformation approach to perform refactoring on software
architecture using refactoring patterns based on stakeholder requirements. AUT Journal
of Mathematics and Computing, 1(2):179–216.

Tarlinder, A. (2016). Developer testing: Building quality into software. Addison-Wesley
Professional.

Tsantalis, N. and Chatzigeorgiou, A. (2011). Identification of extract method refactor-
ing opportunities for the decomposition of methods. Journal of Systems and Software,
84(10):1757–1782.

Tsantalis, N., Guana, V., Stroulia, E., and Hindle, A. (2013). A multidimensional empirical
study on refactoring activity. In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’13, pages 132–146, Riverton,
NJ, USA. IBM Corp.

Tsantalis, N., Ketkar, A., and Dig, D. (2020). Refactoringminer 2.0. IEEE Transactions on
Software Engineering, pages 1–1.

Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., and Dig, D. (2018). Accu-
rate and efficient refactoring detection in commit history. In Proceedings of the 40th In-
ternational Conference on Software Engineering, ICSE ’18, pages 483–494, New York,
NY, USA. ACM.

Tsantalis, N., Mazinanian, D., and Krishnan, G. P. (2015). Assessing the refactorability of
software clones. IEEE Transactions on Software Engineering, 41(11):1055–1090.

75

Vashisht, H., Bharadwaj, S., and Sharma, S. (2018). Analysing of impact of code refac-
toring on software quality attributes. IJ Scientific Research and Engineering Trends,
4:1127–1131.

Vassallo, C., Grano, G., Palomba, F., Gall, H. C., and Bacchelli, A. (2019). A large-scale
empirical exploration on refactoring activities in open source software projects. Science
of Computer Programming, 180:1–15.

Wang, Y. (2009). What motivate software engineers to refactor source code? evidences
from professional developers. In 2009 IEEE International Conference on Software Main-
tenance, pages 413–416.

Xu, S., Sivaraman, A., Khoo, S.-C., and Xu, J. (2017). Gems: An extract method refactor-
ing recommender. In 2017 IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE), pages 24–34.

Yang, L., Liu, H., and Niu, Z. (2009). Identifying fragments to be extracted from long
methods. In 2009 16th Asia-Pacific Software Engineering Conference, pages 43–49.
IEEE.

Yue, R., Gao, Z., Meng, N., Xiong, Y., Wang, X., and Morgenthaler, J. D. (2018). Auto-
matic clone recommendation for refactoring based on the present and the past. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME), pages
115–126. IEEE.

76

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Objectives and Contributions
	Outline

	Literature Review
	Refactoring mining tools
	Refactoring Motivation

	Research Methodology
	Automatic Refactoring Motivation Detection
	Step 1: Building Motivation Detection Rules
	Generic Motivation Detection Rules
	Apply the Rules on the Training Dataset
	Handle Exceptional Cases
	Filtering Motivations by Applying Precedence Rules
	Optimize the Detection Rules

	Extract Operation Motivation Detection
	Reusable Method
	Introduce Alternative Method Signature
	Decompose Method to Improve Readability
	Facilitate Extension
	Remove Duplication
	Replace method Preserving Backward Compatibility
	Improve Testability
	Enable Overriding
	Enable Recursion
	Introduce Factory Method
	Introduce Async Operation

	Step 2: Applying the Detection Rules in Large Scale

	Experiment Results
	RQ1: Accuracy of Automatic Motivation Extractor
	Accuracy on the Training Dataset
	Accuracy on the Test Dataset

	RQ2: Most Prevalent Motivations for Extract Method Refactoring Operations
	RQ3: What are the characteristics of the Extract Method refactorings having Facilitate Extension as motivation
	RQ4: Multiple concurrent Extract Method Motivations

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion and future work
	Bibliography

