1.6 MOBILITY

One of the first concerns in either the design or the analysis of a mechanism is the number of
degrees of freedom, also called the mobility of the device. The mobility* of a mechanism is
the number of input parameters (usually pair variables) that must be controlled independently
in order to bring the device into a particular position. Ignoring for the moment certain excep-
tions to be mentioned later, it is possible to determine the mobility of a mechanism directly
from a count of the number of links and the number and types of joints that it includes.

To develop this relationship, consider that before they are connected together, each
link of a planar mechanism has three degrees of freedom when moving relative to the fixed
link. Not counting the fixed link, therefore, an n-link planar mechanism has 3(n—-1)
degrees of freedom before any of the joints are connected. Connecting a joint that has one
degree of freedom, such as a revolute pair, has the effect of providing two constraints be-
tween the connected links. If a two-degree-of-freedom pair is connected, it provides one

*The German literature distinguishes between movability and mobility. Movability includes the
six degrees of freedom of the device as a whole, as though the ground link were not fixed, and thus
applies to a kinematic chain. Mobility neglects these and considers only the internal relative motions,
thus applying to a mechanism. The English literature seldom recognizes this distinction, and the
\erms are used somewhat interchangeably.
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constraint. When the constraints for all joints are subtracted from the total freedoms of the
unconnected links, we find the resulting mobility of the connected mechanism. When we
use j; to denote to number of single-degree-of-freedom pairs and j, for the number of two-
degree-of-freedom pairs, the resulting mobility m of a planar n-link mechanism is given by

m=3n—-1—-2ji—j (L.1)



m = 1, the mechanism can be driven by a single input motion. If m = 2, then two separate
input motions are necessary to produce constrained motion for the mechanism; such a case
is shown in Fig. 1.3d.

If the Kutzbach criterion yields m = 0, as in Fig. 1.3a, motion is impossible and the
mechanism forms a structure, If the criterion gives m = —1 or less, then there are redundant
constraints in the chain and it forms a statically indeterminate structure. Examples are shown
in Fig. 1.4. Note in these examples that when three links are joined by a single pin, two joints
must be counted; such a connection is treated as two separate but concentric pairs.

Figure 1.5 shows examples of Kutzbach'’s criterion applied to mechanisms with two- |
degree-of-freedom joints. Particular attention should be paid to the contact (pmr) between
the wheel and the fixed link in Fig. 1.5b. Here it is assumed that slipping is possibh
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between the links. If this contact included gear teeth or if friction was high enough to pre-
vent slipping, the joint would be counted as a one-degree-of-freedom pair, because only
one relative motion would be possible between the links.

Sometimes the Kutzbach criterion gives an incorrect result. Notice that Fig. 1.6a rep-
resents a structure and that the criterion properly predicts m = 0. However, if link 5 is
arranged as in Fig. 1.6b, the result is a double-parallelogram linkage with a mobility of 1
even though Eq. (1.1) indicates that it is a structure. The actual mobility of 1 results only if
the parallelogram geometry is achieved. Because in the development of the Kutzbach cri-
terion no consideration was given to the lengths of the links or other dimensional proper-
ties, it is not surprising that exceptions to the criterion are found for particular cases with
equal link lengths, parallel links, or other special geometric features,



Even though the criterion has exceptions, it remains useful because it is so easily ap-
plied. To avoid exceptions, it would be necessary to include all the dimensional properties
of the mechanism. The resulting criterion would be very complex and would be useless at
the early stages of design when dimensions may not be known.

An earlier mobility criterion named after Griibler applies to mechanisms with only
single-degree-of-freedom joints where the overall mobility of the mechanism is unity.
Putting j, = 0 and m = 1 into Eq. (1.1), we find Griibler’s criterion for planar mechanisms
with constrained motion:

IM—2j,—4=0 (1.2)

From this we can see, for example, that a planar mechanism with a mobility of 1 and only
single-degree-of-freedom joints cannot have an odd number of links. Also, we can find
the simplest possible mechanism of this type; by assuming all binary links, we find

(a) ()



n = j; = 4. This shows why the four-bar linkage (Fig. 1.3c) and the slider-crank mecha-
nism (Fig. 1.3b) are so common in application,

Both the Kutzbach criterion, Eq. (1.1), and the Griibler criterion, Eq. (1.2), were
derived for the case of planar mechanisms. If similar criteria are developed for spatial
mechanisms, we must recall that each unconnected link has six degrees of freedom; and

each revolute pair, for example, provides five constraints. Similar arguments then lead to
the three-dimensional form of the Kutzbach criterion,

m=6n—1)—5jy—4j2—3j3—2js—Js (1.3)
and the Griibler criterion,
6n—-5j,-7=0 (1.4)

The simplest form of a spatial mechanism,* with all single-freedom pairs and a mo-
bility of 1, is therefore n = j; = 7.



1.9 GRASHOF’S LAW

A very important consideration when designing a mechanism to be driven by a motor,
obviously, is to ensure that the input crank can make a complete revolution. Mechanisms
in which no link makes a complete revolution would not be useful in such applications. For
the four-bar linkage, there is a very simple test of whether this is the case.

Grashof’s law states that for a planar four-bar linkage, the sum of the shortest and
longest link lengths cannot be greater than the sum of the remaining two link lengths if there
is to be continuous relative rotation between two members. This is illustrated in Fig. 1.23,
where the longest link has length /, the shortest link has length s, and the other two links have
lengths p and g. In this notation, Grashof’s law states that one of the links, in particular the
shortest link, will rotate continuously relative to the other three links if and only if

s+i<p+gq (1.6)

If this inequality is not satisfied, no link will make a complete revolution relative to another.
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Figure 1.23 Four inversions of the Grashof chain: (a, b) crank-rocker mecha-
nisms; (c) drag-link mechanism; and (d) double-rocker mechanism.



Attention is called to the fact that nothing in Grashof’s law specifies the order in which
the links are connected or which link of the four-bar chain is fixed. We are free, therefore,
to fix any of the four links. When we do so, we create the four inversions of the four-bar
linkage shown in Fig. 1.23. All of these fit Grashof’s law, and in each the link s makes a
complete revolution relative to the other links. The different inversions are distinguished
by the location of the link s relative to the fixed link.

If the shortest link s is adjacent to the fixed link, as shown in Figs. 1.23a and 1.23b, we
obtain what is called a crank-rocker linkage. Link s is, of course, the crank because it is able
to rotate continuously; and link p, which can only oscillate between limits, is the rocker.

The drag-link mechanism, also called the double-crank linkage, is obtained by fixing
the shortest link s as the frame. In this inversion, shown in Fig. 1.23c, both links adjacent
to s can rotate continuously, and both are properly described as cranks; the shorter of the
two is generally used as the input.

Although this is a very common mechanism, you will find it an interesting challenge
to devise a practical working model that can operate through the full cycle.

By fixing the link opposite to s we obtain the fourth inversion, the double-rocker
mechanism of Fig. 1.23d. Note that although link s is able to make a complete revolution,
neither link adjacent to the frame can do so; both must oscillate between limits and are
therefore rockers.

In each of these inversions, the shortest link s is adjacent to the longest link /. How-
ever, exactly the same types of linkage inversions will occur if the longest link / is opposite
the shortest link s; you should demonstrate this to your own satisfaction.



Reuleaux approaches the problem somewhat differently but, of course, obtains the
same results. In this approach, and using Fig. 1.23a, the links are named

s the crank p the lever
{ the coupler q the frame
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Figure 1.24 (a) Equation (1.7); s +/ + p < ¢ and the links cannot be connected. (b) Equation (1.8):
s +1 — p > q and 5 is incapable of rotation. (c) Equation (1.9); s + g + p < | and the links cannot bﬁ
connected. (d) Equation (1.10); s 4+ ¢ — p <! and s is incapable of rotation. ;



where [ need not be the longest link. Then the following conditions apply:

s+l+p=>gq (1.7)
s+l-p=gqg (1.8)
Stq+p=l (1.9)
stq—-p=<li (1.10)

These four conditions are illustrated in Fig. 1.24 by showing what happens if the conditions
are not met.



