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Lecture 8

Time: M _ _ _ _14:45 - 17:30

MECH 344/M             

Machine Element Design



Contents of today's lecture



• Springs are elastic members that exert forces, or torques, and 

absorb energy, which is usually stored and later released. 

• Mostly made of metal. Plastics, and rubber are used when loads 

are light 

• For applications requiring compact springs providing very large 

forces with small deflections, hydraulic springs have proved 

effective.

• If energy absorption with maximum 

efficiency (minimum spring mass) is the 

objective, the ideal solution is an 

unnotched tensile bar, 

• Unfortunately, tensile bars of any 

reasonable length are too stiff for most 

spring applications; hence it is necessary 

to form the spring material so that it can 

be loaded in torsion or bending.



• Simplest spring is the torsion bar spring

• Used in automotive applications

• Stress, angular deflection and spring rate

• For a solid bar of diameter ‘d’

• Shear modulus G is





• Figure shows compression and extension springs of small helix angle 

• Force F applied along helix axis, and on the whole length the wire experiences F 

(transverse force) and FD/2 (torsion force)

• For spring of solid wire with dia ‘d’                                          where D = di+do/2



• The curvature of the spring, implies that there is an additional stress on the inside 

of the coil (fig)

• This effect is severe for small values of spring index C (ie C=D/d) 

• The analysis was first published by Wahl and hence called Wahl factor Kw which 

is multiplied with  to get the stress on the inside of the spring



• When static loading the first term can be 1 (considered as stress concentration)

• so

• Which reduces to                              if initial yielding occurs in static loading and 

after which the loads remain uniform the Ks can be approximated to

• Use Ks for static and Kw for fatigue for normal springs C>3, <12

• In case of fatigue loading

• In case of static loading

• The values of Ks, Kw, CKs, CKw are shown in fig



• These equations are derived 

neglecting the following

• The bending stresses, if >15, the 

bending of the coil is > D/4, then 

bending needs to be considered

• Load eccentricity. Load acting 

away from spring axis causes the 

stresses on one side of the spring 

to be higher than indicated by 

equations

• Axial loading. In addition to 

creating a transverse shear stress, 

a small component of force F 

produces axial compression of the 

spring wire. In critical spring 

designs involving relatively large 

values of , this factor may warrant 

consideration.



• Catigliano’s methods, and considering the torsional load as the 

major contribution towards spring deflection ,

• Where N is the “active” number of coils (end                                                              

coils that do not contribute to deflection, are not counted)

• And the spring rate k which is F/ is

• As the spring is loaded, the coils bottom out slowly becoming 

inactive thereby reducing N and increasing K

• In case of conical springs, the solid height will be same of spring 

diameter.

• In this case the torque (which is function of D) will not be uniform

• The deflection and spring constant (stiffness) of conical spring        

can be approximated using the same euqations considering               

the average value of D



• Helical springs are wound from wire of solid round cross section and 

manufactured in standard “gage” diameters. The relative costs and minimum 

tensile strengths of commonly used spring wire materials are given in Table 

12.1 and Figure 12.7, 

• For spring design allowable values of shear stress are needed for use with 

Eq. 12.5.





• First step in designing springs for static loading is avoiding set, or long-term 

shortening Ssy = 0.53Su.

• Max stress on a compression helical spring is loading it to its solid height (all 

coils touching). never should be experienced in service, but can happen 

during installation or removal. Typically then,  (calculated with F equal to the 

load required to close the spring solid) < Ssy, or, less than 0.53Su

• Less than 2% long-term “set” will occur in springs designed for s (where 

subscript s denotes spring “solid”) equal to 0.45Su for ferrous spring, or 

0.35Su for nonferrous and austenitic stainless steel springs.

• If we use the pervious step the safety factor is .53/.45 about 1.18 (good 

enough for known load and high quality spring manufacturing) also little over 

2% set is not a major cause of concern as well

• Springs can be designed for working loads that brings the spring close to 

solid. So a clash allowance of 10% is provided so even when small 

fluctuations in load will not close the spring solid

• Since compression springs are loaded in compression, the residual stress is 

favorable. Initially coiling the spring more than required and allow to yield 

slightly and this is called presetting.



• taking maximum advantage of presetting permits the design stress to 

be increased from the 0.45Su and 0.35Su values to 0.65Su and 0.55Su. 

• To limit long-term set in compression coil springs to less than 2 %, 

shear stresses calculated from Eq. 12.6 (normally with force F 

corresponding to spring “solid”) should be



• 4 “standard” end designs in 

compression helical spring shown 

in figure with equations for their 

solid height, Ls . In all cases Nt = 

total number of turns, and N = 

number of active turns (the turns 

that contribute to the deflection). 

• In all ordinary cases involving end 

plates contacting the springs on 

their end surfaces

• The special springs have loading 

permitted in both tension or 

compression (b, c, and d) also you 

can control the active number of 

turns



• Coil springs loaded in compression 

act like columns and must be 

considered for possible buckling—

particularly for large ratios of free 

length to mean diameter. 

• Figure 12.10 gives the results for two 

of the end 

• Curve A (end plates constrained 

and parallel) represents the most 

common condition. 

• If buckling happens, the preferred 

solution is to redesign the spring. 

• Otherwise, the spring can be 

supported by placing it either inside or 

outside a cylinder that provides a 

small clearance. 

• Friction and wear on the spring may 

have to be considered.



• The two most basic requirements of a coil spring design are an acceptable stress 

level and the desired spring rate. 

• To minimize weight, size, and cost, we usually design springs to the highest 

stress level that will not result in significant long term “set.” 

• Stress is usually considered before spring rate, in designing a spring, because 

stress involves D and d, but not N. 

• In general, the stress requirement can be satisfied by many combinations of D 

and d, and the objective is to find one of these that best suits the requirements of 

the particular problem. 

• With D and d at least tentatively selected, N is then determined on the basis of the 

required spring rate. 

• Finally, the free length of the spring is determined by what length will give the 

desired clash allowance. 

• If the resulting design is prone to buckling, or if the spring does not fit into the 

available space, another combination of D and d may be indicated.

• If the spring comes out too large or too heavy, a stronger material must be 

considered.





























• It may be helpful to note that there are, in general, three types of problems in selecting 

a satisfactory combination of D and d to satisfy the stress requirement.

1. Spatial restrictions place a limit on D, as when the spring must fit inside a hole or 

over a rod. This situation was illustrated by Sample Problem 12.1.

2. The wire size is fixed, as, for example, standardizing on one size of wire for several 

similar springs. This situation is also illustrated by Sample Problem 12.1, if steps 4, 

5, 6, and 7 are omitted, and d = 0.157 in. is given.

3. No spatial restrictions are imposed, and any wire size may be selected. This 

completely general situation can theoretically be satisfied with an almost infinite 

range of D and d, but the extremes within this range would not be economical. 

• Reference to Figure 12.4 suggests that good proportions generally require values of 

D/d in the range of 6 to 12 (but grinding the ends is difficult if D/d exceeds about 9). 

• Hence, a good procedure would be to select an appropriate value of C and then use 

the second form of Eq. 12.6 to solve for d. This requires an estimate of Su in order to 

determine the allowable value of solid. 

• If the resulting value of d is not consistent with the estimated value of Su, a second 

trial will be necessary, as was the case in the sample problem.



• Figure 12.12 shows a generalized S–N curve, for reversed torsional loading of round 

steel wire strength Su, dia < 10 mm, Cs of 1 

• A corresponding constant-life fatigue diagram is plotted in Figure 12.13. Since 

compression coil springs are always loaded in fluctuating compression (and tensile 

coil springs in fluctuating tension), these springs do not normally experience a stress 

reversal. 

• In the extreme case, 

the load drops to 

zero and is then 

reapplied in the 

same direction. 

Thus, as shown in 

Figure 12.13, the 

region of interest 

lies between a/m = 

0 and a/m = 1, 

where a/m is the 

ratio of alternating 

shear stress to mean 

shear stress.



• It is customary when working with coil springs to re plot the information in Figure 

12.13 in the form used in Figure 12.14. This alternative form of constant-life fatigue 

diagram contains only the “region of interest” shown in Figure 12.13. Note, for 

example, that point P of Figure 12.13 corresponds to m = 0.215Su, a = 0.215Su, 

whereas in Figure 12.14 point P plots as min = 0, max = 0.43Su.



• Figure 12.14 is based on actual torsional fatigue tests, with the specimens loaded in a 

zero-to-maximum fluctuation (a/m = 1).

• Figure 12.15 shows S–N curves based on 0-to-maxtress fluctuation. The top curve is 

drawn to agree with the values determined in Figure 12.13. The lower curves in 

Figure 12.15 are 0-to-max torsional S–N curves based on experimental data and 

suggested for design. These reflect production spring wire surface finish, rather than 

Cs = 1, as in the top curve.



• Figure 12.16 is an independently obtained empirical constant-life fatigue diagram 

pertaining to most grades of engine valve spring wire. It represents actual test data. 

Design values should be somewhat lower.

• In the design of helical (or torsion bar) springs for fatigue loading, two previously 

mentioned manufacturing operations are particularly effective: shot peening and 

presetting.

• Recall that presetting always introduces surface residual stresses opposite those 

caused by subsequent load applications in the same direction as the presetting load.



• The corresponding coil spring (or torsion bar) torsional stress fluctuations with and 

without presetting are as shown in Figure 12.17. 

• the theoretical maximum residual stress that can be introduced by presetting is Ssy/3.

• The practical maximum value is somewhat less. The fatigue improvement represented 

by the fluctuation with presetting in Figure 12.17 is readily apparent when the stress 

fluctuations are represented in Figures 12.13, 12.14, and 12.16. 

• Maximum fatigue strengthening can be obtained by using both shot peening and 

presetting.



• Springs used in high-speed machinery must have fn >> machine frequency. 

• a conventional engine valve spring goes through one cycle of shortening and 

elongating every two engine revolutions. At 5000 engine rpm, the spring has an f of 

2500 cpm, and the thirteenth harmonic 32,500 cpm, or 542 Hz. 

• When a helical spring is compressed and then suddenly released, it vibrates 

longitudinally at its fn until the energy is dissipated by damping, this phenomenon is 

called spring surge and causes local stresses approximating those for “spring solid.” 

Spring surge also decreases the ability of the spring

• The natural frequency of spring surge (which should be made higher than the highest 

significant harmonic of the motion involved—typically about the thirteenth) is

• For steel springs fn in Hz is             

• Spring design with high fn

requires operating at high stresses                 

• This minimizes the required mass of the spring, thereby maximizing its fn, which is 

proportional to.


































