MECH 344/M
Machine Element Design

Time: M 14:45-17:30
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@ Introduction )

e Springs are elastic members that exert forces, or torques, and
absorb energy, which is usually stored and later released.

« Mostly made of metal. Plastics, and rubber are used when loads
are light

« For applications requiring compact springs providing very large
forces with small deflections, hydraulic springs have proved
effective.

 If energy absorption with maximum
efficiency (minimum spring mass) is the
objective, the ideal solution is an
unnotched tensile bar,

« Unfortunately, tensile bars of any
reasonable length are too stiff for most
spring applications; hence it is necessary
to form the spring material so that it can
be loaded in torsion or bending.




@ Torsion Bar Springs )

« Simplest spring is the torsion bar spring

Generous
radius

Used in automotive applications

Stress, angular deflection and spring rate

Tr TL JG

T — 7~ H — K — Torsion t}arw:tf[?ri splined ends
.)r .IG L (type used in auto suspensions, etc.)
(see Table 5.1) FIGURE 12.1

« For a solid bar of diameter ‘d’ Torsion bar springs. "and.
4
B ]6T H _ 32TL K — ﬂ'd G & Bearing
T ’i'Td3 ﬂ'd4c 2L Torsion bar

portion

Shear modulus G is

Bearing

E
G:
2(1 + v)

(b)
Rod with bent ends serving as torsion bar spring
(type used for auto hood and trunk counterbalancing, etc.)



@ Torsion Bar Springs )

TapLe 51 Deflection and Stiffness Formulas for Straight Bars ( Rods. Beams)

of Uniform Section

Number Case Deflection Spring Rate
5 —_— g — TL — T KG
: orsion “ X 8-

For solid round

_ i
= L . T bar and deflection
( ) in degrees,
N | S84TL
K" = section property. For solid g =

round section, K* = J = wd%32. d*G




(A58 Coil Spring Stress and Deflection Equations

» Figure shows compression and extension springs of small helix angle A

» Force F applied along helix axis, and on the whole length the wire experiences F
(transverse force) and FD/2 (torsion force)

« For spripg of solid wire with dia ‘d’ Ty

End surface
ground flat

(a)
Compression spring
(ends squared and ground)

Tr 16T _ 8FD

F

(b)
Top portion of
comprassion spring
shown as a free body
in equilibrium.

(c)
Tension spring

FIGURE 12.2

Helical (coil) compression and tension springs.

7d>  md®> where D = di+d /2

(d)
Top portion of tension
spring shown as a free
body in equilibrium



Coil Spring Stress and Deflection Equations

* The curvature of the spring, implies that there is an additional stress on the inside
of the coil (fig)

» This effect is severe for small values of spring index C (ie C=D/d)

« The analysis was first published by Wahl and hence called Wahl factor K, which
is multiplied with t to get the stress on the inside of the spring

™ 0 T F\
T"h../ Tr 0 -
T=—
J
(a)
Straight torsion bar
@ 4C — 1 0.615
Top portion of tension — + —
spring shown as a free w L
body in equilibrium 4C 4 C
(b)
FIGURE 12.2 Curved torsion bar

Helical (coil) compression and tension springs.



Coil Spring Stress and Deflection Equations

* When static loading the first term can be 1 (considered as stress concentration)

_ 0.615
w:4C 1, 0615 K, =1+
. 4C — 4 C SO
SFD
T = 3 S
« Which reduces to Td- if initial yielding occurs in static loading and
after which the loads remain uniform the K, can be approximated to 0.5

5

« Use K, for static and K, for fatigue for normal springs C>3, A<12°

« In case of fatigue loading SFD 8F
T =—2K, = —5CK,
md md
| | SFD 8F
* Incase of static loading 7T = Ky = —CKj;

5
md?> wd

« The values of K, K,, CK,, CK,, are shown in fig



@ Coil Spring Stress and Deflection Equations — 71—

These equations are derived
neglecting the following

The bending stresses, if A>15, the
bending of the coil is > D/4, then
bending needs to be considered

Load eccentricity. Load acting
away from spring axis causes the
stresses on one side of the spring
to be higher than indicated by
equations

Axial loading. In addition to
creating a transverse shear stress,
a small component of force F
produces axial compression of the
spring wire. In critical spring
designs involving relatively large
values of A, this factor may warrant
consideration.

18
K.=1 +£% (shear correction only,
17— " use for static loading) 116
| K, = 4C-1, 0615 (shear and curvature d
AC-4 corrections, use for
fatigue loading) /7’
— 14
12
< ol
=
105
< :’
8
6
€ / ends ground 4
e - —— -
A T T
d < Preferred range, ends not ground ——
1.0 | ! | L | L | L | 2
2 4 6 8 10 12 14
Spring index, C = D/d
FIGURE 12.4

Stress correction factors for helical springs.



Coil Spring Stress and Deflection Equations

« (Catigliano’s methods, and considering the torsional load as the

major contribution towards spring deflection 9, R SFD N
{'j. —
 Where N is the “active” number of coils (end d4G

coils that do not contribute to deflection, are not counted)

* And the spring rate k which is F/d is

4 FIGURE 12.5
k = d"G k = ﬂ Helical compression spring
BDSN ' SNC 3 of unequal pitch.
» As the spring is loaded, the coils bottom out slowly becoming Gl'
inactive thereby reducing N and increasing K )

* In case of conical springs, the solid height will be same of spring
diameter.

« In this case the torque (which is function of D) will not be uniform (—— _;‘D
« The deflection and spring constant (stiffness) of conical spring ‘I‘ |
can be approximated using the same eugations considering

the average value of D

FIGURE 12.6
Conical compression coil

spring.



Stress and Strength Analysis for Helical Compression
Springs—Static Loading

Helical springs are wound from wire of solid round cross section and
manufactured in standard “gage” diameters. The relative costs and minimum
tensile strengths of commonly used spring wire materials are given in Table

12.1 and Figure 12.7,

For spring design allowable values of shear stress are needed for use with

SFD
Wd3

Eq. 12.5.
_

TaeLe 12.1 Relative Cost” of Common Spring Wire
of 2-mm (0.079-in.) Diameter

= —— CK,,

ASTM Relative

Wire Material Specification Cost
Patented and cold-drawn steel A227 1.0
Oil-tempered steel A229 1.3
Music (steel) A228 2.0
Carbon steel valve spring A230 2.5
Chrome silicon steel valve A401 4.0
Stainless steel (Type 302) A313 (302) 6.2
Phosphor bronze B159 7.4
Stainless steel (Type 631) A313 (631) 09
Beryllium copper B197 22.

Inconel alloy X-750 38.

* Average of mill and warehouse quantities [2].

(12.5)



Wire diameter (in.)

0.004 0.008 0.020 0.040 0.080 0.200 0.400 0.800
| | | | | | |
_| 450
3000
| 400
— R.
= 2500 ~ = 350
= ASTM A313 ™S~ ASTM A228 music wire (cold-drawn steel)
= (302) SN~
B LT
i -‘-"i- —
% 2000 — ASTM A401 (Cr-Si steel)
% ASTM A229 ™~ T~ ~ ""“""--u...é
& ASTM A227 S = s - — 250
@ A uin:
E 1500 o tmﬁ:ﬁﬂ gfign - h__-____:x ™~ ASTM A232 (Cr-Va steel)
5 - ~—T ~—_ | | — 200
]
z L T L asneot
E ™ Inconel alloy X-750 (spring temper) ‘;a\\@mpered carbon steel)
— 1 1 1 = 15(]
= 1000 4 . ~ ASTM A227 ——
ASTM B159 1 ' ™. (cold-drawn carbon steel)
{(phosphor bronze) L . - 10
ASTM A313 —
(302 stainless steel)
500
— 50
0 0
1 2 3 4 567891 2 3 4 5678091 2 3 4 567891
0.10 1.0 10.0 100.0
Wire diameter {(mm)
Ficure 12.7

Tensile strengths of various spring wire materials and diameters, minimum values [ 2].

Minimum ultimate tensile strength (ksi)



Stress and Strength Analysis for Helical Compression
Springs—Static Loading d

First step in designing springs for static loading is avoiding set, or long-term
shortening S, = 0.53S,,

Max stress on a compression helical spring is loading it to its solid height (all
coils touching). never should be experienced in service, but can happen
during installation or removal. Typically then, t (calculated with F equal to the

load required to close the spring solid) < S, or, less than 0.53S,,

Less than 2% long-term “set” will occur in springs designed for t (where
subscript s denotes spring “solid”) equal to 0.45S for ferrous spring, or
0.35S, for nonferrous and austenitic stainless steel springs.

If we use the pervious step the safety factor is .53/.45 about 1.18 (good
enough for known load and high quality spring manufacturing) also little over
2% set is not a major cause of concern as well

Springs can be designed for working loads that brings the spring close to
solid. So a clash allowance of 10% is provided so even when small
fluctuations in load will not close the spring solid

Since compression springs are loaded in compression, the residual stress is
favorable. Initially coiling the spring more than required and allow to yield
slightly and this is called presetting.



Stress and Strength Analysis for Helical Compression
Springs—Static Loading d

« taking maximum advantage of presetting permits the design stress to
be increased from the 0.45S, and 0.35S, values to 0.65S,and 0.55S,,.

« To limit long-term set in compression coil springs to less than 2 %,
shear stresses calculated from Eq. 12.6 (normally with force F
corresponding to spring “solid”) should be

Ty = 0455, (ferrous—without presetting)

Ty = 0.355, (nonferrous and austenitic stainless—without presetting)

T, = 0.655, (ferrous—with presetting)

s = 0.555, (nonferrous and austenitic stainless—with presetting)

—

[

8FD 8F
— — K, = FCKS (12.6)



End Designs of Helical Compression Springs)

4 “standard” end designs in
compression helical spring shown
in figure with equations for their
solid height, L . In all cases N, =
total number of turns, and N =
number of active turns (the turns
that contribute to the deflection).

In all ordinary cases involving end
plates contacting the springs on
their end surfaces

N, ~N+2 (12.10)

The special springs have loading
permitted in both tension or
compression (b, ¢, and d) also you
can control the active number of
turns

(a) Plain ends
L= (N+ 1)d

(k) Plain ends,
ground
L,=N.d

(¢) Squared ends
L.=(N+ 1)

(d) Squared and
ground ends
L,=N,d

Ficure 12.8
Compression spring ends and corresponding spring solid-height

equations. (Note: Square ends are wound with a zero helix angle.)

= =
- = =
/,: __-—_—:—:—_::: l
'Vj . o |22
|'h ____—_:‘:“ - o (S|
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++—

(a) (b) (c) (d)

Contoured

and plate



Buckling Analysis of Helical Compression Springs

Ficure 12.10

 Coll SpringS loaded In CompreSSion 0.75 |l Buckling conditions for helical
act like columns and must be 07— compression springs. (Buckling
considered for possible buckling— 0.65 -
particularly for large ratios of free 0.6 — N
. L.
length to mean diameter. % 0.55 nstable |
* Figure 12.10 gives the results fortwo @ 0.5 N
o
of the end » 045 \
@ \
. = 04 [
« Curve A (end plates constrained s Lo
and parallel) represents the most & ©-3°~ .\ ]
common condition. s 03 g
£ 025 B I
 If buckling happens, the preferred e t
solution is to redesign the spring. 0-21= @ ]
0.15 Stable )
« Otherwise, the spring can be 01l B
supported by placing it elthgr inside ol 005 o
outside a cylinder that provides a 2 3 4 5 6 7 8 9 10 1
small clearance. Ratio, free length/mean diameter, Ly/D

. . A-end plates are constrained parallel
* Friction and wear on the spring may (buckling pattern as in Fig. 5.27¢)

have to be considered. B- one end plate is free to tip
(buckling pattern as in Fig. 5.275)



‘m Design Procedure for Helical Compression Springs—Static Loading

The two most basic requirements of a coil spring design are an acceptable stress
level and the desired spring rate.

To minimize weight, size, and cost, we usually design springs to the highest
stress level that will not result in significant long term “set.”

Stress is usually considered before spring rate, in designing a spring, because
stress involves D and d, but not N.

In general, the stress requirement can be satisfied by many combinations of D
and d, and the objective is to find one of these that best suits the requirements of
the particular problem.

With D and d at least tentatively selected, N is then determined on the basis of the
required spring rate.

Finally, the free length of the spring is determined by what length will give the
desired clash allowance.

If the resulting design is prone to buckling, or if the spring does not fit into the
available space, another combination of D and d may be indicated.

If the spring comes out too large or too heavy, a stronger material must be
considered.



JAVVERS SGETEIV PR DAY Helical Spring Design for Static Loading

*
L
¥
L
L
*

A helical spring with squared and ground ends is required to exert a force of 60 Ib
at a length that cannot exceed 2.5 in., and 105 Ib at a length that is 0.5 in. shorter. It
must fit inside a 1.5-in.-diameter (hole). Loading is essentially static. Determine a
satisfactory design, using oil-tempered ASTM 229 wire, without presetting.

Known: A helical compression spring exerts a force of 60 Ib at a length of 2.5 in.
or less and 105 Ib at a length that 1s 0.5 in. shorter.

ETETEAEUEIFI P FAF AR ERET (T

L
L
*
L
L

Find: Determine a satisfactory spring geometry.

AFEFEFETETET T FUF I A P PR T T RAR

Schematic and Given Data: The force and deflection data given for the spring can
: be used to construct Figure 12.11.
i Decisions:

1. Asrecommended in Section 12.4, choose a clash allowance which is 10 percent
of maximum working deflection.

2. To avoid possible interference, provide the commonly recommended diametral
clearance of about 0.1D between the spring and the 1.5-in. specified diameter.



Assumptions:

1. There are no unfavorable residual stresses.

2. Both end plates are in contact with nearly a full turn of wire.

3. The end plate loads coincide with the spring axis.

D+d 60 Ib
< 15in.
ry 105 Ib
\ Clash F.
X 1. allowance
] Imn. * 1
Sprine | ;| (sprng f + T
with < 2.5in. (Spring
min. load) with (Spring | [
max. load) solid)

Ficure 12.11

Helpful representation of information given in Sample Problem 12.1.



Design Analysis:

1. Figure 12.11 gives a convenient representation of the given information con-
cerning spring geometry and loading. The required spring rate is

_F_AF_ 45
5 AS 05in. H

2. With a clash allowance which is 10 percent of maximum working deflection,

Clash all _ 010 s,
ds allowance — . 9{] ]b.f[n = 12 110,

3. The force when solid (1.e., maximum force that must be resisted without “set™)
1s therefore

Foug = 105 + 90(0.12) = 116 1b



4.

We now proceed to determine a desirable combination of D and d that will sat-
isfy the stress requirement (Eq. 12.6). In this problem the requirement that the
spring fit inside a 1.5-in. hole permits a reasonable initial estimate of D—per-
haps D = 1.25 in. As decided, D + d must be less than 1.5 in. by a diametral
clearance of about 0.1D. Note that reasonable clearance is required because the
outside diameter increases slightly as the spring is compressed. Since a small
wire size should suffice for the loads mmvolved, D would be expected to come out
in the range of 1 to 1.25 in.

In order to solve Eq. 12.6 for d, we must also determine preliminary values of Kj
and T4g)4. both of which are functions of d. Fortunately, neither quantity varies
greatly over the ranges involved, so we should not be far off by estimating.

a. K; = 1.05. (Figure 12.4 shows little variation in K; over the normal range
of C between 6 and 12.)

b. T4 1d = 101 ksi. [For a “ballpark guess” of d = 0.1 in., Figure 12.7 shows
S, to be about 225 ksi. The corresponding maximum acceptable value of
Tsolid (Eq. 12.9) 1s 0.455,,. or 101 ksi.]

7y = 0.455, (ferrous—without presetting)



18‘ | | I | I | I 18
i K.=1 +'C"5 (shear correction onl |
s=i 0 Bt
17— use for static loading) 116
| K, = 4C-1, 0615 (shear and curvature
AC-4 L corrections, use for
fatigue loading) /]
le— s 14
7
— / p—
1.5— —12
—_—
L — n o)
ot —_— :g
T 14 — —(10¢
IT!I:g (.._J
a - 4
1.3— — 8
N\
1.2 —6
hY
1.1 /. TS s Pretered range, 4
/ e RHs—zrannd
Ve 1_41___L,,-__
- T — —_——L
- ~—— Preféwed range endsnotground ——  — T
1.0 | ! | L | L | L | 2
2 4 6 8 10 12 14
Spring index, C = D/d
FIGURE 12.4

Stress correction factors for helical springs.



Wire diameter (in.)

0.004 0.008 0.020 0.040 0.080 0.200 0.400 0.800
| | | | | | |
| 450
3000
| 400
— R.
= 2500 ~ = 350
= ASTM A313 TS~ ASTM A228 music Wire (cold-drawn steel)
= (302) SN~
B LT
b -‘-“- o I -
¥ 2000 PrSTrypee _:;;__h:__ = ASTM A401 (Cr-Si steel)
=] ] b [Py Sy
£ ASTM A227 BENNES \""““'éh.‘ {250
E [~ ™~ -“"“"--.._'
© ASTM A230 — —
E 1500 (oil-tempered carbon steel) ““'--..:___‘_% jm A2?|’2 e VT STEEF | 500
= [y
— -
z L T o
E ™ Inconel alloy X-750 (spring temper) ‘;a\\@mpered carbon steel)
— 1 1 1 = 15(]
= 1000 — , = ASTM A227 —+—
ASTM B159 1 ' ™. (cold-drawn carbon steel)
{(phosphor bronze) L . - 10
ASTM A313 —
(302 stainless steel)
500
— 50
0 0
1 2 3 4 56 7891 2 3 4 56 7891 2 3 4 567891
0.10 1.0 10.0 100.0
Wire diameter {(mm)
Ficure 12.7

Tensile strengths of various spring wire materials and diameters, minimum values [ 2].

Minimum ultimate tensile strength (ksi)



6. Substituting the preceding values into Eq. 12.6 gives

B L L
solid ’J'Trif3 5
S(116)(1.25
101.000 = ( )(3 }(1.{]5}
md
or
d = 0.157 1n.

7. The estimates in steps 4 and 5 were deliberately made “rough™ enough to give
an unsatisfactory solution. A wire diameter of 0.157 in. has an ultimate strength
of only about 210 ksi instead of the assumed 225 ksi. Furthermore, the preced-
ing values of d and D provide a diametral clearance in a 1.5-in. hole of only
0.093, which is less than the desired value of 0.1D. If we keep d = 0.157, and
reduce D so that the wire 1s subjected to a little less torque (hence, a little less
stress), this would also open up more diametral clearance. For a second trial,
choose d = 0.157 in. and solve for the corresponding value of D. Both 7 ;4 and
K, will have different values than before, but this time they will be “correct™ val-
ues for these quantities instead of estimates.



Wire diameter (in.)

0.004 0.008 0.020 0.040 0.080 0.200 0.400 0.800
| | | | | | |
| 450
3000
| 400
= 2500 ™~ — 250
a ]
= R TS ASTM A228 music wire (cofd-drawn steel)
= (302) P~
W |m———— -—— N
S ~k 1 300
= T
@ 2000 ST A2ze e o ASTM A401 (Cr-Si steel)
5 e iy N [~
£ ASTM A227 NS “w\-"““'éh‘ {250
= \ -..ﬁ_‘-'
8 ASTM A230 s SN N
E 1500 (oil-tempered carbon steel) “"--..% jm AE?EE {CF'UT stenall} = 500
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E < | ! ! ! ST ASTM A229
E e alloy X-750 (spring temper}l ‘;a\\@mpered carbcm steel)
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= 1000 — , = ~= " ASTM A227 ——]
ASTM B159 1 ' A (cold-drawn carbon stee))
{(phosphor bronze) | 10
ASTM A313 —
(302 stainless steel)
500
— 50
0 0
1 2 3 4 56 7891 2 3 4 56 7891 2 3 4 567891
0.10 1.0 10.0 100.0
Wire diameter {(mm)
Ficure 12.7

Tensile strengths of various spring wire materials and diameters, minimum values [ 2].

Minimum ultimate tensile strength (ksi)



8. To avoid estimating K, use the second form of Eq. 12.6:

iIT

8 Folid
SED RF S011
- Bk, = Lex, 126 Teolid = 3 CK;
8(116)
0.45(210,000) = 5 CK
7(0.157)°
CK, = 7.89

From Figure 12.4, C = 7.3, and

D = Cd = 7.3(0.157) = 1.15 in.

(d) Squared and
ground ends
L,=N,d

This combination of D and d not only conforms exactly to the desired stress criterion
but also provides a little more than the minimum desired clearance in the 1.5-in. hole.

9. From Eq. 12.8,

k_

d*G 00 — (0.157)%(11.5 % 109

from which N = 6.38.

~ 8D3N’ 8(1.15)3N

10. From Eq. 12.10, N,=N + 2 = 6.38 + 2 = 8.38. From Figure 12.8,

L, = N,d = 8.38(0.157) = 1.32 in.



1.8

1.7

1.6

1.6

1.4

K, and K,

1.3

1.2

1.1

1.0

FiGure 12.4

-=—— Preferred ra

K.=1 +{% (shear correction only,
use for static loading)
= ac—1,0.615 (shear and curvature
AC-4 L corrections, use for

fatigue loading)
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—
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=]
K“,C‘ and K_&.C
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_.‘—-“"‘-_.rL»

S

——
—
=
IL ——— e

ge, ends not ground —_bl

4

8 10
Spring index, C = D/d

Stress correction factors for helical springs.
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11. When force Fy ;4 = 116 1b is released. the spring will elongate a distance of
[16 16/(90 Ib/in.) = 1.29 in. Thus the free length of the spring, Ly, 1s
Ly + 1.29 = 1.32 + 1.29 = 2.61 . Furthermore, when loaded with 60 Ib,

the spring length will be [2.61 in. —60 Ib/(90 1b/in.)] = 1.94 in. This more than
satisfies the maximum length requirement of 2.5 in. at a 60-Ib load.

12. Buckling is checked for the worst case of deflection approaching the solid
deflection (1.e.. 6 = &; = 1.291n.).

8 129 d = 0.157 in.
Y D = 115 in.
Ly 261 N = 6.38
L= =007

D LIS L; = 2.61 in.

Reference to Figure 12.10 indicates that this spring is far outside the buckling
region, even if one end plate is free to tip.

: 13. The above solution satisfies the stress and spring rate requirements, while more
than satisfying the buckling criterion and spatial limitations. (It 1s obvious that
the requirements could also be satisfied with spring designs using a little thicker
or a little thinner wire or even a wire of a little less tensile strength.) Hence, one
apparently satisfactory answer to the problem is



0.75 | |

0.7 —
0.65— —

o
o
|
|

0.55— Unstable o

o
o
1l

0.45

0.35

i
o
|

0.25

Ratio, deflection/free length, &Ly
=
N
|

o
P
|

0.15 Stable

0.1

oosll 111
2 3 4 5 6 7 8 9 10 11

Ratio, free length/mean diameter, L¢/D

A-end plates are constrained parallel
(buckling pattern as in Fig. 5.27¢)

B- one end plate is free to tip
(buckling pattern as in Fig. 5.275b)



Comments:

1. The preceding information would permit a technician to draw or to make the spring.

2. The problem is not really finished, however, without dealing with the vital mat-
ter of tolerances. For example, small variations in d result in large variations in
stress and deflection. Imposing extremely tight tolerances can add a substantial
unnecessary cost. It i1s best to advise the spring manufacturer of any critical
dimensions; for example, in this problem it might be important to hold all
springs to 90 £+ 4 1b/in. spring rate, and to the same length, £0.002 in., when
loaded with 60 Ib. Fairly loose tolerances should be allowed on all other dimen-
sions. The manufacturer will then be able to use wire stock of slightly varying
diameter by adjusting other dimensions as necessary in order to comply with the
critical specifications.



‘m Design Procedure for Helical Compression Springs—Static Loading

» |t may be helpful to note that there are, in general, three types of problems in selecting
a satisfactory combination of D and d to satisfy the stress requirement.

1. Spatial restrictions place a limit on D, as when the spring must fit inside a hole or
over a rod. This situation was illustrated by Sample Problem 12.1.

2. The wire size is fixed, as, for example, standardizing on one size of wire for several
similar springs. This situation is also illustrated by Sample Problem 12.1, if steps 4,
5, 6, and 7 are omitted, and d = 0.157 in. is given.

3. No spatial restrictions are imposed, and any wire size may be selected. This
completely general situation can theoretically be satisfied with an almost infinite
range of D and d, but the extremes within this range would not be economical.

» Reference to Figure 12.4 suggests that good proportions generally require values of
D/d in the range of 6 to 12 (but grinding the ends is difficult if D/d exceeds about 9).

» Hence, a good procedure would be to select an appropriate value of C and then use
the second form of Eq. 12.6 to solve for d. This requires an estimate of S in order to
determine the allowable value of T

« If the resulting value of d is not consistent with the estimated value of S, a second
trial will be necessary, as was the case in the sample problem.



Design of Helical Compression Springs for Fatigue Loading

Figure 12.12 shows a generalized S—N curve, for reversed torsional loading of round
steel wire strength S, dia <10 mm, C, of 1

A corresponding constant-life fatigue diagram is plotted in Figure 12.13. Since
compression coil springs are always loaded in fluctuating compression (and tensile
coil springs in fluctuating tension), these springs do not normally experience a stress

reversal.

In the extreme case,
the load drops to
zero and is then
reapplied in the
same direction.
Thus, as shown in
Figure 12.13, the
region of interest
lies between t /1, =
Oand t /T, = 1,
where 1./t IS the
ratio of alternating
shear stress to mean
shear stress.

80 T

10 *5”52 0.72§,

60 \
- 0545, 5, SE €,CcCc
= 0.395 5, _Su (0.58)(1)(1)

' 40 2 —

s -0.295,
=
’ I

30 =

20

103 10 10° 10°
Life, N (cycles)

FIGURE 12.12
Estimated S—V eurve for round steel spring wire, d = 10 mm, Cg = 1

(shot-peened) reversed, torsional loading,.



Design of Helical Compression Springs for Fatigue Loading

[t is customary when working with coil springs to re plot the information in Figure
12.13 in the form used in Figure 12.14. This alternative form of constant-life fatigue
diagram contains only the “region of interest” shown in Figure 12.13. Note, for
example, that point P of Figure 12.13 corresponds to t,, = 0.215S, t, = 0.215S,
whereas in Figure 12.14 point P plots as 7, = 0, T,

0.7

0.8 —
7t =0 OPEPU&
+0. 2 m iz]_ ???_
0

0.6

05 Region of interest
L,‘:H
T 04
0.3
106 +=
0.2 //
0.1 ' (0.265, 0.265)
f/ﬂ:215,a215)
| | | | | |
0 0.1 0.2 03 04 05 06 07 08
7m 'IfSI!!
Ficure 12.13

Constant-life fatigue diagram corresponding to Figure 12.12. Reecall that §,,=0.8 5,

= 0.43S,,
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~10%+ ~

B

0.20 — —

Ficure 12.14
Alternative form of constant-life
fatigue diagram (replot of “region

of interest” of Figure 12.13).



Design of Helical Compression Springs for Fatigue Loading

Figure 12.14 is based on actual torsional fatigue tests, with the specimens loaded in a
zero-to-maximum fluctuation (t /T, = 1).

Figure 12.15 shows S—N curves based on 0-to-maxtress fluctuation. The top curve is
drawn to agree with the values determined in Figure 12.13. The lower curves in
Figure 12.15 are 0-to-max torsional S—N curves based on experimental data and
suggested for design. These reflect production spring wire surface finish, rather than
C, =1, as in the top curve.

1 4y (=1} 4y
Tarsional stress, Ser max (%6 .‘:“]I

80 ,{ Calculated curve (from Fig. 12.14)
70 f\\/ 65 Note: For zero-to-max torsional
stress fluctuation
60 . 53
\/
50 —
. 43
! . _ _Shot-peened wire P4
0 A e
Design curves [1] M ~—a. [T ===——
| Non-shot-peened wire =~ _ _
FIGURE 12.15 [T m—————
30— Ss. max—N curves for round
steel spring wire. Caleu-
lated versus recommended
103 maximum design values 10° 10° 107

from [1].

Life, N (cycles)



Design of Helical Compression Springs for Fatigue Loading

» Figure 12.16 is an independently obtained empirical constant-life fatigue diagram
pertaining to most grades of engine valve spring wire. It represents actual test data.
Design values should be somewhat lower.

 In the design of helical (or torsion bar) springs for fatigue loading, two previously
mentioned manufacturing operations are particularly effective: shot peening and
presetting.

» Recall that presetting always introduces surface residual stresses opposite those
caused by subsequent load applications in the same direction as the presetting load.

1000 —
300 (965, 965)
B - Infinite life with
800 shot peening

(862, 862)

Infinite life without

—_ shot peening
T 600 /
=
z ff /ﬁ\ (Static load line)
= 400 — !
/ /
FIGURE 12.16 I f%
ite-life fatio - 200 (Load line, slope 600/300
Infinite-life fatigue dia !; / for Sample Problem 12.2)

gram. Pretempered carbon -1/

or alloy steel high-duty /
J J I R T R R DR R B

spring wire, d = 5 mm 0 200 400 600 800 1000
(0.2 in.). Trmin (MPa)




Design of Helical Compression Springs for Fatigue Loading

The corresponding coil spring (or torsion bar) torsional stress fluctuations with and

without presetting are as shown in Figure 12.17.

* the theoretical maximum residual stress that can be introduced by presetting is Sg/3.

The practical maximum value is somewhat less. The fatigue improvement represented
by the fluctuation with presetting in Figure 12.17 is readily apparent when the stress
fluctuations are represented in Figures 12.13, 12.14, and 12.16.

Maximum fatigue strengthening can be obtained by using both shot peening and

presetting.

Load stress

Load stress
plus residual
stress

| Without presetting
| = = == \\ith presetting
J
;*' r_resil:l from presetting
Uy

FIGURE 12.17
Stress fluctuation in a helical (or
torsion bar) spring with and with-

out pres et tillg.



Design of Helical Compression Springs for Fatigue Loading

Springs used in high-speed machinery must have f, >> machine frequency.

a conventional engine valve spring goes through one cycle of shortening and
elongating every two engine revolutions. At 5000 engine rpm, the spring has an f of
2500 cpm, and the thirteenth harmonic 32,500 cpm, or 542 Hz.

When a helical spring is compressed and then suddenly released, it vibrates
longitudinally at its f, until the energy is dissipated by damping, this phenomenon is
called spring surge and causes local stresses approximating those for “spring solid.”
Spring surge also decreases the ability of the spring

The natural frequency of spring surge (which should be made higher than the highest
significant harmonic of the motion involved—typically about the thirteenth) is

Jn O Vkim o f, e V Glp
For steel springs f_ in Hz is 13,900d
prings 1, = - (d and D in inches) (12.11)
Spring design with high f, D
requires operating at high stresses 353.000d
fo = o (d and D in millimeters) (12.11a)

This minimizes the required mass of the spring, thereby maximizing its f,, which is
proportional to. 1/ /.
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SAMPLE LGETIVE P Helical Spring Design for Fatigue Loading

A camshaft rotates 650 rpm, causing a follower to raise and lower once per revolu-
tion (Figure 12.18). The follower is to be held against the cam by a helical com-
pression spring with a force that varies between 300 and 600 N as the spring length
varies over a range of 25 mm. Ends are to be squared and ground. The material is to
be shot-peened chrome—vanadium steel valve spring wire, ASTM A232, with fatigue
strength properties as represented in Figure 12.16. Presetting i1s to be used.
Determine a suitable combination of d, D, N, and Lf. Include 1n the solution a check
for possible buckling and spring surge.

[(TACITYENET LY

Known: A helical compression spring operates with a force that varies between

: given minimum and maximum values as the spring length varies over a known range.



Find: Determine a suitable spring geometry.

i Schematic and Given Data:

s )]
o
]
=
L
o
o
=

|—
\—

s
i

Squared and

ground ends, « - —

ASTM A232 !ﬁ(;} — 2+5

spring wire = I° _—
- — 1

Shaft

—— A+ 25 ——Fr— A —>

{ FiGURE 1218
Diagram for Sample Problem 12.2.



: Decisions:

1.

2.

To minimize possible spring surge problems, design the spring so that stresses
are as large as reasonable.

Select the smallest reasonable safety factor to minimize spring weight.
(Minimizing spring weight allows us to maximize natural frequency.)

Select a spring proportion. C = 10. (This proportion is good from the stand-
point of the Wahl factor, but costs for the spring may be higher because the ends
must be ground.)

As recommended in Section 12.4, choose a clash allowance that is 10 percent of
the maximum working deflection.

Assumptions:

1.
2.

The end plates are in contact with the spring ends.

The spring force acts along the spring axis.



i Design Analysis:

1. Since, at 650 rpm, a million stress cycles are accumulated in 26 operating hours,
infinite fatigue life 1s required. Stresses should be as high as reasonable to min-
imize possible spring surge problems. Regardless of the spring design, the ratio
Tmax! Tmin W1l be the same as the ratio of maximum and minimum loads—that
is, 600/300. A line of this slope is drawn on Figure 12.16, giving an intersection
at Tpax — 800 MPa.

2. Since Figure 12.16 represents actual test data, this value of 7, makes no
allowance for possible spring surge or a safety factor. The amplitude of possible
surge can be limited by providing a minimal clash allowance—say, 10 percent of
the maximum working deflection. Spring weight can be minimized, thus allowing
the maximum natural frequency. by selecting the smallest reasonable safety fac-
tor—say, 1.1. (The use of presetting will provide some additional safety factor.)
Thus a design value for 7,x might be chosen as 800 MPa divided by 1.1
(allowance for possible surge) and divided again by 1.1 (safety factor), or 661 MPa.




max l:M PE]I

1000

800

400

200

0

(965, 965)

Infinite life with
shot peening

(862, 862)

Infinite life without

/ shot peening
J /ﬁ\ (Static load line)
— /
/ /
L ;’\Q
- / (Load line, slope 600/300
/ / for Sample Problem 12.2)
_;/
!
AT R D R
200 400 600 800 1000

MPa)

Tmin {



SFD 8F
= —5Ky = —5CK, (12.5)

3. In the absence of any restrictions on d, for either the outer diameter or the inner
diameter, let us arbitrarily select a spring proportion of, say, C = 10. This pro-
portion 1s good from the standpoint of the Wahl factor, but the spring may cost
an extra amount because the ends must be ground. Then. from Eq. 12.5,

[$F.CK, |8(600)(10)(1.14)
d — | = |II .
N TTmax \ m(661)
4. In the absence of any reason to stay with an odd value of 4, it might be prefer-

able to round off to d = 5.0 mm. Then, going back to Eq. 12.5 and solving for
the value of C that gives a stress of 661 MPa (with load of 600 N) together with

d = 5.0 mm, we have

= 5.13 mm

K. - TTmaxd’ B ’;n-((j{iljlﬁ}2 B
" 8 Fnax 8(600)

10.82

From Figure 124, C = 94, D = Cd = 47.0 mm.

X _4C—]+ﬂ.615
Yo4C — 4 C
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Stress correction factors for helical springs.



. k= 300 N/25 mm = 12 N/mm.

. From Eq. 12.8,

dG  5(79,000
N=—3= { ~ ) — 495
8C3k  8(9.4)%(12)

. From Figure 12.8. L, = N,d = (N + 2)d = (4.95 + 2)(5) = 34.75 mm.
Lf = Ly + Fyoualk

With 10 percent clash allowance., Fyglig = 1.1Fpax = 660 N. Then,
Ly = 34.75 + 660/12 = 89.75 mm

. Check for buckling to determine if the spring contacts the rod (for extreme case

of & = o,):

Ly 89.75
- = 1.91
D 47
660 Far removed from buckling per Figure 12.10 =
o)
L i = 061 B
L. 89.5 -

I
(d) Squared and
ground ends
L,=N4d
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9. From Eq. 12.11a, the natural frequency is

~353,000d  353.000(5)

— = ~ = 161.4 Hz
ND? (4.95)(47)2

n

10. To summarize the results.

d = 5 mm

D = 47.0 mm
N = 4.95

Ly = 89.75 mm

: Comments:

1. For the spring to be in resonance with the fundamental surge frequency
fn = 161.4 Hz, the camshaft would have to rotate at (161.4)(60) = 9684 rpm. For
the thirteenth harmonic to be in resonance, the shaft must rotate 9684/13 = 745
rpm. Rotation at 650 rpm should not result in spring surge (unless the cam con-
tour 1s highly unusual, producing significant harmonics above the thirteenth).

2. No buckling or spring surge should occur (but allowance for possible repeated
transient surge was made by appropriate selection of clash allowance and
design stress).



TS SGEIRT Y PR DA Helical Spring Fatigue Design

Repeat Sample Problem 12.2, except this time design the spring to use 5-mm wire of
the same material but with the strength properties indicated in Figures 12.7 and 12.15.

4
m

-

-

-

-

¢ Known: A helical compression spring of wire diameter d = 5 mm operates with a
¢ known fluctuating force that varies the spring length through a range of 25 mm.

¢ Find: Determine a satisfactory spring geometry.

Schematic and Given Data: The schematic and given data are the same as in
: Sample Problem 12.2 except that the strength properties are those indicated in
¢ Figures 12.7 and 12.15 rather than in Figure 12.16.




Find: Determine a suitable spring geometry.

i Schematic and Given Data:
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Squared and

ground ends, « - —

ASTM A232 !ﬁ(;} — 2+5

spring wire = I° _—
- — 1

Shaft

—— A+ 25 ——Fr— A —>

{ FiGURE 1218
Diagram for Sample Problem 12.2.



. Decisions/Assumptions: Same as in Sample Problem 12.2.
: (12.9)

7, = 0.635, (ferrous—with presetting)

Design Analysis:
© 1. From Figure 12.7, S, = 1500 MPa for the given material and wire size.

2. From Figure 12.15, the maximum recommended design stress for infinite life and
zero-to-maximum stress fluctuation (shot-peened wire) is 0.36S, = 540 MPa.

3. From Eq. 12.9 the effective torsional yield strength associated with 2 percent
long-term set 1s 0.65 S, = 975 MPa. Approximating S, as 0.85, = 1200
MPa, an estimated torsional fatigue strength curve for infinite life 1s plotted in

Figure 12.19. 1200 j====——=————— = |
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4. For 7 /Tmin = 600/300, Figure 12.19 shows the limiting value of 7, to be
750 MPa. Because Figure 12.15 represents maximum recommended values, it
might be prudent to reduce this slightly. An additional “safety factor” of 1.13

would give a final design value of 7, = 661 MPa, exactly as in Sample
Problem 12.2.

5. Using this design stress makes the balance of the solution identical to that given
for Sample Problem 12.2.

: Comment: It is often desirable to use more than one approach in solving engi-
. neering problems (as in going through both Sample Problems 12.2 and 12.3), and the
. reader should be aware that the results will not always agree as well as they did in
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