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SOLUTION (8.19) 
Known: A steel bar having known Su and Sy has a fine ground surface. 
 
Find: Determine the fatigue strength for bending corresponding to (1) 106 or more 
cycles and (2) 2 ✕ 105 cycles. 
 
 
Schematic and Given Data: 

 

10 mm Su = 1200 MPa
Sy = 950 MPa

 
 
Assumptions: 
1. Actual fatigue data is not available for this material. 
2. The estimated S-N curves constructed using Table 8.1 are adequate. 
3. Fig. 8.13 can be used to estimate surface factor, Cs. 
4. The gradient factor, CG = 0.9. 
 
Analysis: 
1. Endurance limits:  (106 cycle strength) 
 Sn = Snʹ′ CLCGCsCTCR  
 For bending,  
  Snʹ′ = 0.5 Su = 0.5(1200) = 600 MPa (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs  = 0.86  (Fig. 8.13) 
  Sn = (600)(1)(0.9)(0.86)(1)(1) = 464.4 MPa ■ 
2. 103 cycle strength  
 For bending,  
  0.9Su = 0.9(1200) = 1080 MPa (Table 8.1) 
3. S-N curves  
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4. 2 ✕ 105 cycle strength  
  Bending: 565.5 MPa ■ 
 
Comments:  
1. The surface factor, Cs is not used for correcting the 103-cycle strength because for 

ductile parts the 103 strength is relatively unaffected by surface finish. 
2. For critical designs, pertinent test data should be used rather than the preceding 

rough approximation. 
3. Analytically the 200,000 cycle fatigue strength for bending may be determined by 

solving  
 
 [log (1080) - log (565.5)]/(6 - 3) = [log (S) - log (565.5)]/(6 - log (200,000)). 
 
SOLUTION (8.20) 
Known: A steel bar having known Su and Sy has a hot rolled surface finish. 
 
Find: Determine the fatigue strength at 2 ✕ 105 cycles for reversed axial loading. 
 
 
Schematic and Given Data: 

 

25 mm
Sy = 600 MPa
Su = 950 MPa

 
 
Assumptions: 
1. Actual fatigue data is not available for this material. 
2. The estimated S-N curves constructed using Table 8.1 are adequate. 
3. Fig. 8.13 can be used to estimate surface factor, Cs. 
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Analysis: 
1. Endurance limit (106 cycle strength) 
  Sn = Snʹ′CLCGCsCTCR 
  For axial, 
  Snʹ′ = 0.5Su = 0.5(950) = 475 MPa  
  CL = CT = CR = 1   
  CG = 0.8  (between 0.7 and 0.9)  
  Cs = 0.475  
  Sn = (475)(1)(0.8)(0.475)(1)(1) = 180.5 MPa ■ 
2. 103 cycle strength  
 For axial, 
  0.75Su = 0.75(950) = 712.5 MPa 
3. S-N curves  
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4. 2 ✕ 105 cycle strength  
 Axial: 248.7 MPa  ■ 
 
Comments: 
1. The surface factor, Cs is not used for correcting the 103-cycle strength because for 

ductile parts the 103 strength is relatively unaffected by surface finish. 
2. For critical designs, pertinent test data should be used rather than the preceding 

rough approximation. 
3. Analytically the 200,000 cycle strength for reverse axial loading may be 

determined by solving  
 
 [log (712.5) - log (180.5)]/(6 - 3) = [log (S) - log (180.5)]/(6 - log (200,000)). 
 

SOLUTION (8.21) 
Known: A steel bar having known Su and Sy has average machined surfaces. 
 
Find: Plot on log-log coordinates estimated S-N curves for (a) bending, (b) axial, and 
(c) torsional loading.  For each of the three types of loading, determine the fatigue 
strength corresponding to (1) 106 or more cycles and (2) 5 ✕ 104 cycles. 
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Schematic and Given Data: 

 

3.5 in. Su = 97 ksi
Sy = 68 ksi

Machined surface
 

 
Assumptions: 
1. Actual fatigue data is not available for this material. 
2. The estimated S-N curves constructed using Table 8.1 are adequate. 
3. Fig. 8.13 can be used to estimate surface factor, Cs. 
4. The gradient factor, CG = 0.9, for axial and torsional loading. 
 
Analysis: 
1. Endurance limits:  (106 cycle strength) 
 Sn = Snʹ′ CLCGCsCTCR  
 For bending,  
  Snʹ′ = 0.5 Su = 0.5(97) = 48.5 ksi (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs  = 0.76  (Fig. 8.13) 
  Sn = (48.5)(1)(0.9)(0.76)(1)(1) = 33.2 ksi ■ 
 For axial,  
  Snʹ′ = 48.5 ksi  
  CL = CT = CR = 1   
  CG = 0.8 (between 0.7 and 0.9)  
  Cs  = 0.76  
  Sn = 48.5(1)(0.8)(0.76)(1)(1) = 29.5 ksi ■ 
 For torsion,  
  Snʹ′ = 48.5 ksi  
  CL = 0.58 
  CG = 0.9 
  Cs  = 0.76  
  CT = CR = 1 
  Sn = 48.5(0.58)(0.9)(0.76)(1)(1) = 19.2 ksi ■ 
2. 103 cycle strength  
 For bending,  
  0.9Su = 0.9(97) = 87.3 ksi (Table 8.1) 
 For axial,  
  0.75Su = 0.75(97) = 72.8 ksi 
 For torsion, 
  0.9Sus = 0.9(0.8)(97) = 69.8 ksi 
 
3. S-N curves  
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4. 5 ✕ 104 cycle strength  
  Bending: 50.5 ksi ■ 
  Axial: 43.6 ksi ■ 
  Torsion: 33.6 ksi ■ 
 
Comments:  
1. The surface factor, Cs is not used for correcting the 103-cycle strength because for 

ductile parts the 103 strength which is close to the static strength, is unaffected by 
surface finish. 

2. For critical designs, pertinent test data should be used rather than the preceding 
rough approximation. 

 
SOLUTION (8.22) 
Known: A steel bar having known Brinell hardness has machined surfaces. 
 
Find: Determine the fatigue strength for bending corresponding to (1) 106 or more 
cycles and (2) 2 ✕ 105 cycles. 
 
Schematic and Given Data: 

 

0.5 in. Bhn = 375 = 187.5 ksi

Machined surface
 

 
Assumptions: 
1. Actual fatigue data is not available for this material. 
2. The estimated S-N curves constructed using Table 8.1 are adequate. 
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3. Fig. 8.13 can be used to estimate surface factor, Cs. 
4. The gradient factor, CG = 0.9. 
 
Analysis: 
1. Endurance limits:  (106 cycle strength) 
 Sn = Snʹ′ CLCGCsCTCR  
 For bending,  
  Snʹ′ = 0.25 Bhn = 0.25(375) = 93.75 ksi (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs  = 0.64  (Fig. 8.13) 
  Sn = (93.75)(1)(0.9)(0.64)(1)(1) = 54 ksi ■ 
2. 103 cycle strength  
 For bending,  
  S ≈ 0.45Bhn = 0.45(375) = 168.75 ksi (Table 8.1) 
 
 
 
 
 
 
3. S-N curves  
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4. 2 ✕ 105 cycle strength  
  Bending: 70.4 ksi ■ 
 
Comments:  
1. Cs is not used for correcting 103-cycle strength because for ductile parts this is 

close to static strength, which is unaffected by surface finish. 
2. For critical designs pertinent test data should be used rather than the preceding 

rough approximation. 
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SOLUTION (8.23) 
Known: A steel bar having known Su and Sy has machined surfaces. 
 
Find: Plot on log-log coordinates estimated S-N curves for (a) bending, (b) axial, and 
(c) torsional loading.  For each of the three types of loading, determine the fatigue 
strength corresponding to (1) 106 or more cycles and (2) 6 ✕ 104 cycles. 
 
Schematic and Given Data: 

 

Su = 110 ksi
Sy = 77 ksi1 in.

Machined surface
 

 
Assumptions: 
1. Actual fatigue data is not available for this material. 
2. The estimated S-N curves constructed using Table 8.1 are adequate. 
3. Fig. 8.13 can be used to estimate surface factor, Cs. 
 
Analysis: 
1. Endurance limits:  (106 cycle strength) 
 Sn = Snʹ′ CLCGCsCTCR  
 For bending,  
  Snʹ′ = 0.5 Su = 0.5(110) = 55 ksi (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs  = 0.74  (Fig. 8.13) 
  Sn = (55)(1)(0.9)(0.74)(1)(1) = 36.6 ksi ■ 
 For axial,  
  Snʹ′ = 55 ksi  
  CL = CT = CR = 1   
  CG = 0.8 (between 0.7 and 0.9)  
  Cs  = 0.74  
  Sn = 55(1)(0.8)(0.74)(1)(1) = 32.6 ksi ■ 
 For torsion,  
  Snʹ′ = 55 ksi  
  CL = 0.58  
  CG = 0.9  
  Cs  = 0.74 
  CT = CR = 1  
  Sn = 55(0.58)(0.9)(0.74)(1)(1) = 21.2 ksi ■ 
2. 103 cycle strength  
 For bending,  
  0.9Su = 0.9(110) = 99.0 ksi (Table 8.1) 
 For axial,  
  0.75Su = 0.75(110) = 82.5 ksi 
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 For torsion, 
  0.9Sus = 0.9(0.8)(110) = 79.2 ksi 
3. S-N curves  
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4. 6 ✕ 104 cycle strength  
  Bending: 55 ksi ■ 
  Axial: 48 ksi ■ 
  Torsion: 36 ksi ■ 
 
Comments:  
1. Cs is not used for correcting 103-cycle strength because for ductile parts this is 

close to static strength, which is unaffected by surface finish. 
2. For critical designs pertinent test data should be used rather than the preceding 

rough approximation. 
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SOLUTION (8.26) 
Known: A steel bar having known Su and Sy has (i) fine ground surfaces or (ii) 
machined surfaces. 
 
Find: Determine the fatigue strength corresponding to (1) 106 or more cycles and (2)    
6 ✕ 104 cycles for the case of zero-to-maximum (rather than completely reversed) load 
fluctuations for bending, axial, and torsional loading. 
 
Schematic and Given Data: 

 

20 mm
Su = 1100 MPa
Sy = 715 MPa

Ground surface
 

 
Assumptions: 
1. Actual fatigue data is not available for this material. 
2. The estimated S-N curves constructed using Table 8.1 are adequate. 
3. Fig. 8.13 can be used to estimate surface factor, Cs. 
 
Analysis: 
 
Fine ground surface: 
 
1. Bending   
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 For ∞ life, σmax = 630 MPa  ■ 
 For 6 ✕ 104 cycles, σmax = 715 MPa if no yielding is permitted; otherwise,        

σmax = 966 MPa ■ 
 
 
 
 



8-28 
 

 
 
2. Axial  

 

1200

200

400

0 200 400 600 800 1000

!
   

(M
Pa

)
a

!   (MPa)m

6 x 10   cycle life

4

!  = ! a m

Sy = 715

Su = 1100

532.0

392

(358.5, 358.5)

(289, 289)

600
Cannot go here due to yielding 

(357.5, 357.5)

" life

!  = 360 a

 
 
 For ∞ life, σmax = 578 MPa ■ 
 For 6 ✕ 104 cycles, σmax = 715 MPa if no yielding is permitted; otherwise,       

σmax = 720 MPa ■ 
 
3. Torsion  
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 For ∞ life, τmax = 414 MPa ■ 
 For 6 ✕ 104 cycle life, τmax = 415 MPa if no yielding is permitted; otherwise,    

τmax = 800 MPa  ■ 
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Machined surface: 
 
1. Bending   
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 For ∞ life, σmax = 520 MPa ■ 
 For 6 ✕ 104 cycles, σmax = 710 MPa ■ 
2. Axial  
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 For ∞ life, σmax = 470 MPa ■ 
 For 6 ✕ 104 cycles, σmax = 640 MPa ■ 
3. Torsion  
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 For ∞ life, τmax = 330 MPa ■ 
 For 6 ✕ 104 cycle life, τmax = 415 MPa if no yielding is permitted; otherwise,   

τmax = 626 MPa  ■ 
 
SOLUTION (8.27) 
Known: A machined shaft having a known hardness experiences completely reversed 
torsion. 
 
Find: With a safety factor of 2, estimate the value of reversed torque that can be 
applied without causing eventual fatigue failure. 
 
Schematic and Given Data: 

 

24 mm

2 mm rad.

20 mm

0.8 mm rad.

24 mm

150 Bhn
 

 
Assumption: The shaft is manufactured as specified with regard to the critical shaft 
geometry. 
 
Analysis: 
1. For steel,  
  Su = 0.5 Bhn = 0.5(150) = 75 ksi 
 

 or,   Su = 75 ksi ( )6.890 MPa
ksi  = 517 MPa 

2. Sn = Snʹ′ CLCGCsCTCR  
  Snʹ′ =  0.5Su = 0.5(517) (Fig. 8.5) 
  CL = 0.58  (Table 8.1) 
  CG = 0.9  (Table 8.1) 
  Cs = 0.78  (Fig. 8.13) 
  CT = CR = 1 (Table 8.1) 
 Sn = 0.5(517)(0.58)(0.9)(0.78)(1)(1) = 105.3 MPa ■ 
3. At the critical point (0.8 mm radius), r/d = 0.04 and D/d = 1.2 
 From Fig. 4.35(c), Kt = 1.65 
 From Fig. 8.23, q = 0.74 
 Hence, Kf = 1 + (Kt -1)q [Eq.(8.2)] 
    = 1 + (0.65)(0.74) = 1.48 
4. Therefore, the nominal value of reversed torsional stress can be τ = 105.3/1.48 = 

71.1 MPa. 
 

 But, τ = 16T
π d3

  or  T = τ π d
3

16   
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  T = (71.1 MPa)π(20 mm)
3

16   = 111,700 N•mm 
 

 with SF = 2, T = 111.7 N•m
2  = 55.8 N•m ■ 

 

SOLUTION (8.28) 
Known: An unnotched bar and a notched bar of known material have the same 
minimum cross section. 
 
Find: For each bar, estimate 
(a) the value of static tensile load P causing fracture 
(b) the value of alternating axial load ± P that would be just on the verge of producing 

eventual fatigue fracture (after perhaps 1-5 million cycles). 
 
Schematic and Given Data: 

 

30 mm

30 mm

P P
30 mm

30 mm35 mm
P P

r = 2.5 mm

Machined surface
AISI 1050 normalized steel

 
 
Assumption: The bar is manufactured as specified with regard to the critical fillet 
geometry and the bar surface finish. 
  
Analysis:  
1. For a static fracture of a ductile material, the notch has little effect.  Hence, for 

both bars,  
  P ≈ A•Su  
 where Su = 748.1 MPa (Appendix C-4a) 
 P = (30 mm)2 (748.1 MPa) = 673 ✕ 103 N 
 P = 670 kN ■ 
2. Sn = Snʹ′ CLCGCsCTCR  
 where  Snʹ′ =  0.5Su = 0.5(748.1) MPa  
   CL = CT = CR = 1, CG = 0.8 (Table 8.1) 
   Cs = 0.74   (Fig. 8.13) 
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 Sn = 0.5(748.1)(1)(0.8)(0.74)(1)(1) = 221 MPa 
 From Fig. 4.39, Kt = 2.50 
 Assuming Bhn = 217  (Appendix C-4a), using Fig. 8.24, q ≈ 0.86 
 Thus, Kf = 1 + (Kt - 1)q  [Eq. (8.2)] 
    Kf = 1 + (1.50)(0.86) = 2.29 
3. For the unnotched bar,  
 P = A•Sn = (30 mm)2 (221 MPa) 
    = 199 ✕ 103 N = 199 kN ■ 
4. For the notched bar,  
 P = A•Sn/Kf = 199 kN/2.29 = 87 kN ■ 
 
SOLUTION (8.29) 
Known: A stepped shaft having known dimensions was machined from steel having 
known tensile properties. 
 
Find: 
(a) Estimate the torque T required to produce static yielding. 
(b) Estimate the value of reversed torque, ±T required to produce eventual fatigue 

failure. 
 
Schematic and Given Data: 

 

D d

r

T T

D = 2 in.
d = 1 in.
r = 0.05 in.

Machined surfaces.

Su = 90 ksi
Sy = 75 ksi

 
 
Assumption: The shaft is manufactured as specified with regard to the critical fillet. 
 
Analysis:  
1. From Eqs. 4.3 and 4.4, for static yielding,  
 

  τ = TcJ  = 16T
π d3

 = 16T
π

  

 Equate this to shear yield, 
  Sys ≈ 0.58Sy = 0.58(75) = 43.5 ksi 
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  τ = 16Tπ  = 43,500 
 

  T = π(43,500)16  = 8540 lb in. ■ 
2. For fatigue failure, the appropriate endurance limit is: 
  Sn = Snʹ′ CLCGCsCTCR  
 where  Snʹ′ =  0.5Su = 0.5(90) 
   CL = 0.58  (Table 8.1) 
   CG = 0.9  (Table 8.1) 
   Cs = 0.77  (Fig. 8.13) 
   CT = CR = 1 (Table 8.1) 
  Sn = 0.5(90)(0.58)(0.9)(0.77)(1)(1) = 18.1 ksi ■ 
3. From Fig. 4.35, Kt = 1.72 
 From Fig. 8.24, q = 0.78 
 Thus, Kf  = 1 + (Kt - 1)q  [Eq. (8.2)] 
  = 1 + (0.72)(0.78) = 1.56 
4. For fatigue failure, 
 

 Kf 16Tπ  = 18,100; T = 18,100!1.56(16) = 2,280 lb in. ■ 
 
Comment: For static loading of a ductile material, the very first yielding at the notch-
root is not significant; hence, ignore stress concentration. 
 
SOLUTION (8.30) 
Known: A shaft rotates at high speed while the imposed loads remain static.  The shaft 
is machined from AISI 1040 steel, oil quenched and tempered at 1000 oF.  The loading 
is sufficiently great to produce a fatigue failure (after perhaps 106 cycles). 
 
Find: Determine where the failure would most likely occur. 
 
Schematic and Given Data: 

 

1 in. dia. 1 in. dia.

2 in. 1 in.
2 in.

3 in. 3 in. 
F lb

1 14 in. dia.

 F
2

 lb  F
2

 lb

 1
16 R  18 R  18 R

 
 
Assumption: The shaft is manufactured as specified. 
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Analysis: 
1. 

 

A B
C

V

M
MA

MB
MC

 
 
2. Only locations A, B, and C need to be investigated. 
 From Appendix C-5b, Su ≈ 107 ksi 
 
3. Since, σ = MZKf ∝ M

d3
Kf  

 

 therefore, failure will occur at the highest value of M
d3
Kf  

 
4.               

 q       Kf 

 Point  Relative M  d3  Kt       (Fig. 8.24)    [Eq. (8.2)]  
M
d3

 Kf
 

 
 A 1  1         Fig. 4.35a 0.82 1.70 1.70 
          1.85 
 
 B 3           (5/4)3 ≈ 2    1    –    1 1.50 
 
 
 C 2  1         Fig 4.36a 0.87 1.70 3.4   
    1.8   

 
 A fatigue failure should occur at C ■ 
 
SOLUTION (8.31) 
Known: A grooved shaft having known dimensions is machined from steel of known 
hardness and yield strength.  A commercial polish is given only to the surface of the 
groove.  The shaft is to have a safety factor of 2. 
 
Find: Estimate the maximum value of torque T that can be applied for infinite life 
when the fluctuating torsional load consists of: 
(a) completely reversed torsion, with the torque varying between +T and -T, 
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(b) a steady torque of T with superimposed alternating torque of 2T. 
 
Schematic and Given Data: 

 

D

r

d 180 Bhn

D = 1.1 in.
d = 1.0 in.
r = 0.05 in.

Sy = 65 ksi

 
 
Assumption: The shaft is manufactured as specified with regard to the critical fillet 
geometry and the shaft surface finish. 
 
Analysis: 
1. From Fig. 4.36(c), Kt = 1.63 
 From Fig. 8.24, q = 0.79 
 From Eq. (8.2), Kf = 1 + (Kt - 1)q  
   Kf = 1 + (0.63)(0.79) = 1.50 
2. Sn = Snʹ′ CLCGCsCTCR  [Eq. (8.1)] 
  Snʹ′ =  0.5Su = 0.25 Bhn ksi  (Fig. 8.5) 
  CL = 0.58, CG = 0.9  (Table 8.1) 
  Cs = 0.77 (machined) to 0.90 (commercial polish); use Cs = 0.86  (Fig. 8.13) 
  CT = CR = 1    (Table 8.1) 

Sn = 0.25(180)(0.58)(0.9)(0.86)(1)(1) = 20.2 ksi  
3. Sus = 0.8Su  where Su = 0.5 Bhn ksi 
 Sus = 0.8(0.5)(180) = 72 ksi 
 Sys = 0.58Sy = 0.58(65) = 37.7 ksi 
 

4. τa = 16T
π d3

Kf = Sn  
 

 T = Sn ! d3

16Kf
 = 
20200(π)(1)3

16(1.50)  = 2644 lb in. 
 
 With SF = 2, T = 2644/2 = 1322 lb in. 
 Thus, for completely reversed torsion,  
 T = 1320 lb in. ■ 
5.  
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6. From above figure, τm ≈ 9.0 ksi 
 

 τm = 16T
π d3

Kf = τm  
 

 T = !m" d3

16Kf
 = 
9000(π)(1)3

16(1.50)  = 1178 lb in. 
 

 With SF = 2, T = 1178/2 = 589 lb in. 
 Thus, for a steady torque of T with superimposed alternating torque of 2T,  
 T = 590 lb in.  ■ 
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SOLUTION (8.36) 
Known: A cold-drawn rectangular steel bar has known hardness value and dimensions 
and is to have infinite life with 90% reliability and a safety factor of 1.3. 
 
Find: Estimate the maximum tensile force that can be applied to the ends: 
(a) if the force is completely reversed, 
(b) if the force varies between zero and a maximum value. 
 
Schematic and Given Data: 

 

db

h

FF

140 Bhn
h = 10 mm
b = 60 mm
d = 12 mm

 
 
Assumption: The hole is symmetrically machined in the plate. 
 
Analysis:  
1. For 140 Bhn, Su ≈ 0.5(140) = 70 ksi or  
 Su = 6.890(70) = 482.3 MPa (Appendix A-1) 
2. From Eq. (3.10a), Sy ≈ 525 Bhn - 30,000  
                                  = 42,800 psi = 295 MPa 
 (May be higher for cold drawn, in any case, problem is not affected) 
3. Sn = Snʹ′ CLCGCsCTCR [Eq. (8.1)] 
  Snʹ′ =  0.5Su   (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.8   (Table 8.1) 
  Cs = 0.78   (Fig. 8.13) 
 Sn = (0.5)(482.3)(1)(0.8)(0.78)(1)(1) = 150 MPa ■ 
 But this is (conservatively) for 50% reliability.  For 90% reliability back off 1.3 

standard deviations (Fig. 6.17) of 8% or 10.4%.  Therefore, Sn  
 (90% reliability) ≈ 150(0.896) = 134 MPa. 
4. From Fig. 4.40, Kt = 2.5 
 From Fig. 8.24, q = 0.85 (by extrapolation) 
 Thus, Kf = 1 + (Kt -1)q  [Eq. (8.2)] 
         = 1 + (1.5)(0.85) = 2.28 
 

5. σ = FAKf = F
(10)(48) (2.28) = 0.00475 F 

 or F = 0.21σ 
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6. For completely reversed load, σmax = 134 MPa;  
 Fmax = 0.21 σmax  or, with a safety factor of 1.3,  
 Fmax = (0.21)(134)/1.3 = 22 kN ■ 
7.  

 
100 200 300 400 500

100

200

(105, 105)

134

! life, 90% reliability

For zero-to-max load
"m = "a

Sy # 295
Su # 482

"m (MPa)

"a
(MPa)

 
 
8. From the figure above, for zero-to-max load,  
 σmax = 105 + 105 = 210 MPa.  Therefore, with a safety factor of 1.3,  
 Fmax = (0.21)(210)/1.3 = 34 kN ■ 
 
SOLUTION (8.37) 
Known: A shaft with a transverse hole is made of cold-drawn steel having known Su 
and Sy.  Surfaces in the vicinity of the hole have a machined finish. 
 
Find: Estimate the safety factor with respect to infinite fatigue life for: 
(a) torque fluctuations between 0 and 100 N•m, 
(b) a completely reversed torque of 50 N•m, 
(c) a mean torque of 60 N•m plus a superimposed alternating torque of 40 N•m. 
 
Schematic and Given Data: 

 

T T

d

D

D = 20 mm
d = 6 mm
Su = 550 MPa
Sy = 462 MPa

 
 
Assumption: The shaft is manufactured as specified. 
 
Analysis: 
1. Sus = (0.8)(550) = 440 MPa 
 Sys = (0.58)(462) = 268 MPa 
2. Sn = Snʹ′ CLCGCsCTCR  [Eq. (8.1)] 
  Snʹ′ =  0.5Su   (Fig. 8.5) 
  CL = 0.58  (Table 8.1) 
  CG = 0.9  (Table 8.1) 
  Cs = 0.78  (Fig. 8.13) 
  CT = CR = 1  (Table 8.1) 
 Sn = 0.50(550)(0.58)(0.9)(0.78)(1)(1) = 112 MPa 
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3. From Fig. 4.37, Kt = 1.42 
 From Fig. 8.24, q = 0.85 
 From Eq. (8.2), Kf = 1 + (Kt - 1)q 
  Kf = 1 + (0.42)(0.85) = 1.36 
4. From Fig. 4.37, 
 

  τ = TKf
(!D3/16) - (dD2/6) = 

T(1.36)
(!(20)3/16) - (6(20)2/6)  

 

 For T = 100 N•m, τ = 116.2 MPa 
  T = 50 N•m, τ = 58.1 MPa 
  T = 60 N•m, τ = 69.7 MPa 
  T = 40 N•m, τ = 46.5 MPa 
5. 

 

0 100 200 300 400

100

112.4

(b) (a)
122

69.758.1

58.1
268 440

(MPa)
!a

(MPa)!m

46.5

89
89

(c)

 
 
6. Fatigue safety factors: 
 (a) For torque fluctuations between 0 and 100 N•m,  
  τm = τa = 116.2/2 = 58.1 
  SF = 89/58.1 = 1.5 ■ 
 (b) For a completely reversed torque of 50 N•m, 
  τa = 58.1, τm = 0 
  SF = 112.4/58.1 = 1.9 ■ 
       (c) For a mean torque of 60 N•m plus a superimposed alternating torque of 40  
 N•m, τm = 69.7, τa = 46.5 
  SF = 122/69.7 = 1.7 ■ 
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SOLUTION (8.38) 
Known: A shaft with a transverse hole is made of cold-drawn steel having known Su 
and Sy.  Surfaces in the vicinity of the hole have a machined finish. 
 
Find: Estimate the safety factor with respect to static yielding for: 
(a) torque fluctuations between 0 and 100 N•m,  
(b) a completely reversed torque of 50 N•m, 
(c) a mean torque of 60 N•m plus a superimposed alternating torque of 40 N•m. 
 
Schematic and Given Data: 

 

T T

d

D

D = 20 mm
d = 6 mm
Su = 550 MPa
Sy = 462 MPa

 
 
Assumption: The shaft is manufactured as specified with regard to the critical hole 
geometry and its surface finish. 
 
Analysis:  
1. Safety factor is the ratio of Sys to the nominal stress. 
 Sys = (0.58)(462) = 268 MPa 
 

 τnominal = T
(πD3/16) - (dD2/6)

  (Fig. 4.37) 
 

2. τnominal = T
(π(20)3/16) - (6(20)2/6)

  

 For T = 100 N•m,     τ = 85.4 MPa 
 For T = 50 N•m,     τ = 42.7 MPa 
 For Tmax = 60 + 40 = 100 N•m,  τ = 85.4 MPa 
3.    Safety factors: 
       (a)   For torque fluctuations between 0 and 100 N•m, SF = 268/85.4 = 3.1 ■ 
 (b) For a completely reversed torque of 50 N•m, SF = 268/42.7 = 6.3 ■ 

(c) For a mean torque of 60 N•m plus a superimposed alternating torque of 40 
N•m, SF = 268/85.4 = 3.1 ■ 

 
Comment: Stress concentration is usually neglected for static loading of a ductile 
material because the localized yielding at the notch can occur (once, or a few times) 
without harm and without significantly influencing the overall torque vs. deflection 
relationship. 
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SOLUTION (8.39) 
Known: A 1/2-in. pitch roller chain plate is made of carbon steel heat-treated to give 
known values of Su and Sy.  All surfaces are comparable to the "machined" category.  
The link is loaded in repeated axial tension by pins that go through the two holes.  The 
safety factor is 1.2. 
 
Find: Estimate the value of maximum tensile force that would give infinite fatigue life. 
 
Schematic and Given Data: 

 

0.050 in.

0.191 in. rad.

0.125 in. dia.

1
2

 in.

Su = 140 ksi
Sy = 110 ksi

 
 
Assumption: The roller chain plate is manufactured as specified with regard to the 
surface finish and critical hole geometries.  
 
Analysis: 
1. The net tensile area in a section through the hole axis is  
 (0.382 - 0.125)(0.050) = 0.0129 in.2  
2. From Fig. 4.40, with d/b = 0.33, Kt = 3.3 
 From Fig. 8.24, q = 0.87 
 From Eq. (8.2), Kf = 1 + (Kt -1)q 
  Kf = 1 + (2.3)(0.87) = 3.00 
 

3. σm = σa = F2AKf = 3.00F
2(0.0129) = 116.3 F 

4. Sn = Snʹ′ CLCGCsCTCR [Eq. (8.1)] 
  Snʹ′ =  0.5Su   (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.85  (Table 8.1) 
  Cs = 0.70   (Fig. 8.13) 
 Sn = 0.5(140)(1)(0.85)(0.70)(1)(1) = 42 ksi ■ 
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5. 

 

20 40 60 80 100 120

20

40

60

140

(32, 32)
110 140

42
!a

(ksi)

!m (ksi)

!m = !a

 
 
6. From the graph, σm = σa = 32 ksi. 
 With SF = 1.2, 
  (1.2)(116.3)F = 32,000 
 Therefore, F = 229 lb ■ 
 
SOLUTION (8.40) 
Known: A shaft is subjected to a fluctuating nominal stress.  The shaft is made of steel 
having known Su and Sy.   
 
Find: Estimate the safety factor with respect to eventual fatigue failure if: 
(a) the stresses are bending, 
(b) the stresses are torsional. 
 
Schematic and Given Data: 

 

50 mm60 mm 60 mm 50 mm

5 mm R1.5 mm R 5 mm R

-16
0

+80

N
om

in
al

   
st

re
ss

   
(M

Pa
)

Time

Su = 600 MPa, Sy = 400 MPa

 
 
Assumption: The shaft is manufactured as specified with regard to surface finish and 
critical fillet radii. 
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Analysis:  
1. For bending stresses,  
 Sn = Snʹ′ CLCGCsCTCR [Eq. (8.1)] 
  Snʹ′ =  0.5Su   (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs = 0.77   (Fig. 8.13) 
 Sn = 0.5(600)(1)(0.9)(0.77)(1)(1) = 208 MPa ■ 
2. Highest stress is at the 1.5 mm fillet where  
  D/d = 1.2 and r/d = 0.03 
 From Fig. 4.35, Kt = 2.3 
 From Fig. 8.24, q = 0.78 
 From Fig. (8.2), Kf = 1 +(Kt -1)q 
  Kf = 1 + (1.3)(0.78) = 2.01 
3. At the fillet 
 

 σm = 2.01( )80 - 16
2  = 64 MPa 

 

 σa = 2.01( )80 + 16
2  = 96 MPa 

4. Thus, for the bending stresses, 

 

0 100 200 300 400 500 600

100

200
168

Overload causing
eventual failure

208

Sy = 400

!a

(MPa)

!m (MPa)

(64, 96) Su = 600

 
 
 SF = 168/96 = 1.8 ■ 
5. For torsional stresses, 
 Sn = Snʹ′ CLCGCsCTCR    
  Snʹ′ =  0.5Su    
  CL = 0.58 
  CG = 0.9   
  Cs = 0.77  
  CT = CR = 1 
 Sn = 0.5(600)(0.58)(0.9)(0.77)(1)(1) = 121 MPa ■ 
6. From Fig. 4.35, Kt = 1.78 
 From Fig. 8.24, q = 0.81 
 Kf = 1 + (1.78 - 1)(0.81) = 1.63 
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7. At critical fillet, 
 

  τm = 1.63( )80 - 16
2  = 52 MPa 

 

  τa = 1.63( )80 + 16
2  = 78 MPa 

8. Thus, for torsional stresses,  

 

0 100 200 300 400 500

100

121

(52, 78) Sus ! 0.8 600  = 480
Sys ! 0.58 400  = 232

"m (MPa)

"a
(MPa)

105

 
 
 SF = 105/78 = 1.3 ■ 
 
SOLUTION (8.41) 
Known: A round shaft made of steel having known Su and Sy is subjected to a torque 
fluctuation.  All critical surfaces are ground. 
 
Find: Estimate the safety factor for infinite fatigue life with respect to an overload that  
(a) increases both mean and alternating torque by the same factor,  
(b) an overload that increases only the alternating torque. 
 
Schematic and Given Data: 

 

1.2 in. dia.
0.1 in R

1.0 in. dia.

0.1 in R

Time

To
rq

ue

7000 lb-in.

3000 lb-in.

1
16

 in. dia. hole

Su = 162 ksi, Sy = 138 ksi
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Assumption: The shaft is manufactured as specified with regard to critical radii, hole 
geometry, and surface finish. 
 
Analysis: 
1. Sus = 0.8(162) = 130 ksi 
 Sys = 0.58(138) = 80 ksi 
2. At the hole,  
  from Fig. 4.37, Kt = 1.75 
  from Fig. 8.24, q = 0.88 
  Kf = 1 + (Kt - 1)q [Eq. (8.2)] 
  Kf = 1 + (0.75)(0.88) = 1.66 
 (At fillet, Kt = 1.33; hence, not as critical as hole) 
3. Using the equation in Fig. 4.37,  
 

  τm = 
Tm

(πD3/16) - (dD2/6)
Kf  

 

 τm = 5000
!(1/16) - (1/16)(1/6)(1.66) = 44,600 psi 

 

 τa = 2000
π/16 - 1/96(1.66) = 17,900 psi 

4. Sn = Snʹ′ CLCGCsCTCR [Eq. (8.1)] 
  Snʹ′ =  0.5Su   (Fig. 8.5) 
  CL = 0.58   (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs = 0.89   (Fig. 8.13) 
  CT = CR = 1  (Table 8.1) 
 Sn = 0.5(162)(0.58)(0.9)(0.89)(1)(1) = 38 ksi ■ 
5. 

 

0 50 100 130

20

40
38

(a) overload
(b) overload

Normal
operation

25

22

17.9
Sys = 80

Sus = 130

!m (ksi)

!a

(ksi)

 
 
6. For an overload that increases both the mean and the alternating torque by the 

same factor, 
  SF = 22/17.9 = 1.2 ■ 
 For an overload that increases only the alternating torque,  
  SF = 25/17.9 = 1.4 ■ 
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SOLUTION (8.42) 
Known: A stepped shaft made of steel having known value of Su is finished by 
grinding the surface.  In service, it is loaded with a fluctuating zero-to-maximum 
torque. 
 
Find: Estimate the magnitude of maximum torque which would provide a safety factor 
of 1.3 with respect to a 75,000 cycle fatigue life. 
 
Schematic and Given Data: 

 

T
dD

r

T

D = 10 mm
d = 8 mm
r = 0.8 mm
S   = 1200 MPau

 
 
Assumption: The shaft is manufactured as specified with regard to the critical fillet 
geometry and shaft surface finish. 
 
Analysis: 
1. Sn = Snʹ′ CLCGCsCTCR  [Eq. (8.1)] 
  Snʹ′ =  0.5Su   (Fig. 8.5) 
  CL = 0.58   (Table 8.1) 
  CG = CT = CR = 1 (Table 8.1) 
  Cs = 0.88   (Fig. 8.13) 
 Sn = 0.5(1200)(0.58)(1)(0.88)(1)(1) = 306 MPa ■ 
2. For 103 cycle strength, from Table 8.1, S = 0.9 Sus where Sus = 0.8Su  
 Therefore, S = 0.9(0.8)(1200) = 864 MPa 
3. 

 

0

300

800
1000 864 MPa
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8-53 
 

 

0 200 400 600 800 1000

960

(310, 310)

450

200

400

75,000 life

!a, MPa

!m, MPa

Zero-to-max
fluctuation

!m = !a

 
 
4. From the τm-τa plot, a 75,000 cycle life is expected at τm = τa = 310 MPa.   
 For SF = 1.3,  
 τmax = 2(310)/1.3 = 477 MPa. 
5. From Fig. 4.35(c), Kt = 1.33 
 From Fig. 8.24, q = 0.88 
 Thus, Kf = 1 + (Kt -1)q [Eq. (8.2)] 
    Kf = 1+ (0.33)(0.88) = 1.29 
 
6. Using the equation from Fig. 8.35(c), 
 

  τmax = 16Tmax
πd3

Kf  
 

  477 MPa = 16Tmax
π(8 mm)3

(1.29) 
 
  Tmax = 37,200 N•mm = 37.2 N•m ■ 
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SOLUTION (8.43) 
Known: The critical portion of a machine part is shaped like a bar with known 
dimensions.  The material is steel of known hardness.  All surfaces are machined.  The 
part is loaded in zero-to-maximum cyclic bending to give an infinite fatigue life with 
99% reliability and a safety factor of 1. 
 
Find: Estimate the value of maximum bending moment. 
 
Schematic and Given Data: 

 

r

H h

b

M M

H = 35 mm
h = 25 mm
b = 20 mm
r = 2 mm
160 Bhn

 
 
Assumption: The machine part is manufactured as specified with regard to fillet 
geometry and surface finish. 
 
Analysis: 
1. Sn = Snʹ′ CLCGCsCTCR  [Eq. (8.1)] 
  Snʹ′ =  0.25 Bhn  (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs = 0.78   (Fig. 8.13) 
 Sn = 0.25(160)(1)(0.9)(0.78)(1)(1) = 28 ksi or 193 MPa 
2. For 99% reliability, Sn must be reduced by 2.3 standard deviations (Fig. 6.17).  

Assuming each standard deviation to be 8% (Sec. 8.3), the "reliability factor,"  
 CR = 1 - (2.3)(0.08) = 0.82.  Thus, for 99% reliability, use Sn = 193(0.82) = 158 

MPa. 
3. 

 

100

200 158

(121, 121)

0 100 200 300 400 500

! life, 99% reliability
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4. For zero-to-maximum fluctuation σa = σm = 121 MPa, or σmax = 242 MPa. 
5. From Fig. 4.38(a), H/h = 1.4, r/h = 0.08, Kt = 1.87 
 From Fig. 8.24, q = 0.78 
 Thus, Kf = 1 + (Kt -1)q [Eq. (8.2)] 
    Kf = 1 + (0.87)(0.78) = 1.68 
6. Using the equation from Fig. 4.38(a), 
 

 σmax = Mmaxc
I

Kf = 6Mmax

bh2
Kf 

 

 242 MPa = 6Mmax

(20 mm)(25 mm)2
(1.68) 

 

 Therefore, Mmax = 300,000 N•mm = 300 N•m ■ 
 
SOLUTION (8.44) 
Known: A solid round shaft has a shoulder with known D and d.  The shaft is made of 
steel having known values of Su and Sy.  All surfaces are machined.  In service the shaft 
is subjected to a fluctuating torsional load and is to have an infinite life (with safety 
factor =1).   
 
Find: Estimate the smallest fillet radius. 
 
Schematic and Given Data: 

 

T
dD

r

T

D = 1 in.
d = 0.5 in.
Su = 150 ksi
Sy = 120 ksi

T = 82 to 123 lb ft

 
 
Assumption: The shaft is manufactured as specified with regard to the critical fillet 
geometry and the shaft surface finish. 
 
Analysis: 

1. !a
!m

 = Ta
Tm

 = 
(123 - 82)/2
(123 + 82)/2 = 20.5102.5 = 0.20 

2. Sn = Snʹ′ CLCGCsCTCR [Eq. (8.1)] 
  Snʹ′ =  0.5Su   (Fig. 8.5) 
  CL = 0.58   (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs = 0.69   (Fig. 8.13) 
  CT = CR = 1  (Table 8.1) 
 Sn = 0.5(150)(0.58)(0.9)(0.69)(1)(1) = 27 ksi 
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3. Sus = 0.8Su = 0.8(150) = 120 ksi 
 Sys = 0.58Sy = 0.58(120) = 70 ksi 
4. 

 

20 40 60 80 100 120

20

27

!a = 14.5
(ksi)
!a

(ksi)!m

!a
!m

 = 0.2

Sys = 70 Sus = 120

 
 
5. From τm-τa plot, τa = 14.5 ksi 
6. Using the equation in Fig. 4.35(c), 
 

  τa = 16Ta
πd3

Kf  
 

  14,500 psi = 
16(20.5)(12)
π(0.5)3

Kf  

  Kf = 1.45 
7. From Fig. 8.24, estimate q ≈ 0.85. 
 Then, Kf = 1 + (Kt -1)q 
 

    Kt = (Kf - 1)q  + 1 
 

         = (1.45 - 1)0.85  + 1  = 1.53 
 

8. From Fig. 4.35, for D/d = 2 and Kt = 1.53,  
 r/d = 0.08 ; then, r = (0.08)(0.5) = 0.04 in.  
 for which q ≈ 0.88.  Hence, r is slightly greater than 0.04 in.   ■ 
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SOLUTION (8.45) 
Known: A steel shaft used in a spur gear reducer is subjected to a constant torque 
together with lateral forces that tend always to bend it downward in the center.  The 
stresses are known, but these values do not take into account stress concentration 
caused by a shoulder with known dimensions.  All surfaces are machined and the 
strength values and hardness of the steel are known. 
 
Find: Estimate the safety factor with respect to infinite life. 
 
Schematic and Given Data: 

 

TdD

r

T

MM

D = 36 mm
d = 30 mm
r = 3 mm
Su = 700 MPa
Sy = 550 MPa

! = 80 MPa
" = 60 MPa

 
 
Assumption: The shaft is manufactured as specified with regard to the critical fillet and 
shaft surface finish. 
 
Analysis: 
1. We use the Fig. 8.16 relationship for "general biaxial loads":   
 • Bending provides an alternating stress: 
  σa = σea = 60 Kf  MPa 
  From Fig. 4.35(a), Kt = 1.63 
  From Fig. 8.24, q = 0.84 
  From Eq. 8.2, Kf = 1 + (0.63)(0.84) = 1.53 
   σea = 60(1.53) = 91.8 MPa 
 • Torsion provides a mean stress: 
  τm = σem = 80 Kf  MPa 
 From Fig. 4.35(c), Kt = 1.33 
 From Fig. 8.24, q = 0.86 
 From Eq. 8.2, Kf = 1 + (0.33)(0.86) = 1.28 
  σem = 80(1.28) = 102.4 MPa. 
2. Sn = Snʹ′ CLCGCsCTCR [Eq. (8.1)] 
  Snʹ′ =  0.5Su   (Fig. 8.5) 
  CL = CT = CR = 1 (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs = 0.76   (Fig. 8.13) 
 Sn = 0.5(700)(1)(0.9)(0.76)(1)(1) = 239 MPa 
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3.  

 

0 200 400 600

200
175

(102.4, 91.8) 

239

! life, bending loads

Su = 700Sy = 550

(MPa)"em

(MPa)
"ea

 
 
4. SF = 175/91.8 = 1.9 ■ 
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SOLUTION (8.51) 
Known: A countershaft has helical gear (B), bevel gear (D), and two supporting 
bearings (A and C).  Loads acting on the bevel gear are known.  Forces on the helical 
gears can be determined.  Shaft dimensions are known.  All shoulder fillets have a 
radius of 5 mm.  Only bearing A takes thrust.  The shaft is made of hardened steel 
having known values of Su and Sy.  All important surfaces are finished by grinding. 
 
Find: 
(a) Draw load, shear force, and bending moment diagrams for the shaft in the xy- and 

xz- planes.  Also draw diagrams showing the intensity of the axial force and torque 
along the length of the shaft. 

(b) At points B, C, and E of the shaft, calculate the equivalent stresses in preparation 
for making a fatigue safety factor determination.  (Note: Refer to Table 8.2.) 

(c) For a reliability of 99% (and assuming σ = 0.08 Sn), estimate the safety factor of 
the shaft at points B, C, and E. 

 
Schematic and Given Data: 

 

x

A

B

C D

y

z

550
400

450

120 dia. 80 dia.Keyway

A B C D

Fz = 0.3675 Fy

Fy

Fx = 0.2625 Fy

Fx = 1.37 kN

Fz = 5.33 kN

Fy = 1.37 kN

x-z view

x-y view

Forces act at
375 mm dia.

Forces act at
500 mm dia.

A

B

C D

x

Fx = 0.2625 Fy
Fy

Fz = 0.3675 Fy

Fx = 1.37 kN

Fy = 1.37 kN

Fz = 5.33 kN

400

K   = 1.6 for bend and torsion;
1.0 for axial load at keyway.  
Use C   = 1with these values.

f

s

Su = 1069 MPa
Sy = 896 MPa

E
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Assumption: The shaft is manufactured as specified with regard to the critical shaft 
geometry and surface finish. 
 
Analysis: 
1. Load determination 
(a) Helical gear forces: 
 For ∑Mx = 0, the torque at the two gears must be equal.  Therefore, Fy (250 mm) = 

5.33(187.5 mm).  Hence,  Fy = 4.00 kN. 
 From the given data, Fx = .2625Fy = 1.05 kN; Fz = .3675 Fy = 1.47 kN. 
(b) Determine shaft loads in the xy and xz planes 

 

A B C
D

A B C D

550 450 400

2.42 1.05

4.0

1.37
1.37

AV = 2.09
CV = 0.54 CH = 6.92

AH = 3.06

1.05

1.47

5.33

1.37
E

V

M

V

M

Torque

-2.42 -1.37

Faxial

106 N•mm

xy or vertical plane xz or horizontal plane

400

2.42
E

 
 
 Vertical forces: 

 ∑MA = 0 :  Cv = 4(550) + 1.37(187.5) - 1.37(1400)1000   
     = 0.54 kN downward 
 
 ∑F = 0 :     Av = 4 - 0.54 - 1.37 = 2.09 kN downward 
 
 Horizontal forces: 

 ∑MA = 0 :  CH = 1.05(250) - 1.47(550) + 5.33(1400)1000   
           = 6.92 kN upward 
 
 ∑F = 0 :     AH = 1.47 + 6.92- 5.33  
                              = 3.06 kN downward 
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2. Stress determination: 
 
(a) At E, the loading is: 
 Compression of 1.37 kN,  Kt = 2.2,  q = .94, 
  Kf = 2.13.  Axial stress (mean or constant) = 
 

  4PKf
πd2

 = 
4(-1.37)(2.13)

π(80)2
 = -0.581 MPa 

 
 The tension stress is zero. 
       M = (2.09 ! 400)2 + (3.06 ! 400)2   
       = 1482 kN•mm 
 Kt = 1.9, q = .94.  Therefore, Kf = 1.85 
 

 Bending stress (alternating) = 32M
πd3

Kf  
 

  = 
32(1482 ! 103)

"(80)3 (1.85) = 54.5 MPa 
 From Eq. (a) and Eq. (b) in the figure caption of Fig. 8.16, σem = 0; 
  σea = 54.5 MPa 
 
(b) At B, the loading is: 
 Axial, P = -1.37 kN, Kf = 1.0, σ = -0.27 MPa 
 Torsion = (4.0)(250) = 1000 kN•mm 
 Bending : M = (2.09 ! 550)2 + (3.06 ! 550)2  = 2038 kN•mm 
 Kf = 1.6 for bending and torsion 
 

 Bending stress (alternating) = 32M
πd3

Kf  
 

           = 
32(2038 ! 103)

"(80)3 (1.6) = 64.9 MPa 
 

 Torsional stress (mean) = 16T
!d3

Kf = 16(10)
6

!(80)3
(1.6) = 15.9 MPa 

 

 σem = -0.272  + (15.9)2 + ( )-0.27
2

2
 = 15.76 MPa ;   σea = 64.9 MPa 

 
(c) At C, the loading is: 
 Bending:  
 M = (5.33 ! 400)2 + 1.37 ! (400 - 187.5) 2  = 2152 kN•mm 
 

 Bending stress (alternating) = 
32(2152) ! 103

"(80)3  = 42.8 MPa   
 σea = 42.8 MPa 
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 Torsional stress - same as (b) except no stress concentration factor; axial same as (b). 

 σem = -0.272  + ( )15.9
1.6

2
+ ( ).27

2
2

 = 9.80 MPa  
 
3. Strength and safety factor determination 
 Su = 155 ksi = 1069 MPa;    Sy = 130 ksi = 896 MPa 
 For working with equivalent bending stress, Sn is  
 

 Sn  = Snʹ′ CLCGCsCTCR = ( )1069
2 (1)(0.8)*(0.9)(1)(1)  

  = 385 MPa for Cs = 0.9 
 *(See note b, Table 8.1) 
 

 Sn  = Snʹ′ CLCGCsCTCR = ( )1069
2 (1)(0.8)(1.0)(1)(1) 

  = 428 MPa for Cs = 1.0 
 But for 99% reliability, reduce this by 2.3 standard deviations, which amounts to 

multiplying by a factor of (1 - 2.3 ✕ .08) = .816 
 Thus, for 99% reliability,  
 Sn = 385(.816) = 314 MPa (for Cs = .9) 
 Sn = 428(.816) = 349 MPa (for Cs = 1.0) 
 
4.  

 

0 200 400 600 800 1000

1069
896
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C

B (15.76, 64.9)
C (9.80, 42.8)E (0, 54.5)
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400325
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" life with C   = 1, use for keyway (point B)s

" life with C   = 0.9, use for non-keyway 
(points C and E)

s

 
 
5. Safety factors: (B) SF = 325/64.9 = 5.0 
    (C) SF = 290/42.8 = 6.8 
    (E) SF = 314/54.5 = 5.8 
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SOLUTION (8.52) 
Known: A stepped shaft having known dimensions was machined from AISI steel of 
known hardness.  The loading is one of completely reversed torsion.  During a typical 
30 seconds of operation under overload conditions the nominal (Tc/J) stress in the 1-in.-
dia. section was measured. 
 
Find: Estimate the life of the shaft when operating continuously under these conditions. 
 
Schematic and Given Data: 

 

dD

r
D = 2 in.
d = 1 in.
r = 0.1 in.
200 Bhn

 
 
Assumption: The shaft is manufactured as specified with regard to the critical fillet 
geometry and surface finish. 
 
Analysis: 
1. At the fillet,  
 from Fig. 4.35(c), Kt = 1.46 
 from Fig. 8.24, q = 0.86 
 Thus, using Eq. (8.2), Kf = 1 + (0.46)(0.86) = 1.40 
2. Sn = Snʹ′ CLCGCsCTCR [Eq. (8.1)] 
  Snʹ′ =  0.25 Bhn (Fig. 8.5) 
  CL = 0.58   (Table 8.1) 
  CG = 0.9   (Table 8.1) 
  Cs = 0.76   (Fig. 8.13) 
  CT = CR = 1  (Table 8.1) 
 Sn = 0.25(200)(0.58)(0.9)(0.76)(1)(1) = 19.8 ksi 
3. From Table 8.1,  
 103 cycle strength = 0.9Sus = 0.9(0.8)Su  
 = 0.9(0.8)(0.5)Bhn = 0.9(0.8)(0.5)(200) = 72 ksi 
4. 

 

72

49

35
28

19.8St
re

ss
, k

si 
(lo

g)

Cycles (log)
106103 104 105 107

8 
x 

10
3

4.
8 

x 
10

4

1.
6 

x 
10

5

 
 



8-70 
 

5. The 30 second test involves these stresses (in the fillet) above the endurance 
 limit (see graph): 
 1 cycles at τa = 35(1.4) = 49 ksi  
  (N = 8 ✕ 103 cycles) 
 2 cycles at τa = 25(1.4) = 35 ksi  
  (N = 4.8 ✕ 104 cycles) 
 
 4 cycles at τa = 20(1.4) = 28 ksi  
  (N = 1.5 ✕ 105 cycles) 
 Life used in 30 seconds = 1

8 ! 103
 + 2

4.8 ! 104
 + 4

1.6 ! 105
 = 1.916 ✕ 10-4  

 
 Estimated life = 1

1.916 ! 10-4
 = 5217 periods of 30 seconds 

 
 Estimated life ≈ 43 hours  ■ 
 


