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SOLUTION (17.3) 
Known:  A simply supported steel shaft is connected to an electric motor with a 
flexible coupling. 
 
Find: Determine the value of the critical speed of rotation for the shaft. 
 
Schematic and Given Data:  

 

Motor
Flexible 
Coupling 0.25 in. dia. shaft

 20 in.
 

  
Assumptions:  
1. Bearing friction is negligible. 
2. The bearings supporting the shafts are accurately aligned. 
3. The shaft remains linearly elastic. 
 
Analysis: 
1. For the simply supported uniform load case: 

wL/2 wL/2

!st

w

 
 

 
w = A! = "d2

4
!  where ! = 0.28 lb

in. 3  for steel
 

 

 w =  !(0.25)2

4  (0.28) = 0.0137 lb
in.  

 
2. From Appendix D-2, 
 

 !st = 5wL4

384EI
 for a uniform load distribution 

 
 where  E = 30 ! 106 psi (Appendix C-1) 
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 I = !d4

64
 = !(0.25)4

64
 = 1.92 " 10-4 in. 4 (Appendix B-1) 

 

 
!st = 5(0.0137)(20)4

384(30 " 106)(1.92 " 10-4)
  = 4.98 " 10-3 in.

 
 
3. Using Fig. 17.5(c), to find the shaft critical speed 
 

 
nc ! 5g

4"st
 = 

5(32.2 ft
s2)(12 in.

ft )

4(4.98 # 10-3 in. )  
 

nc ! 311 rpm ■ 
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SOLUTION (17.10) 
Known: The dimensions of a steel shaft are given.  
 
Find:  Determine the critical speed of rotation for the steel shaft. 
 
Schematic and Given Data: 

 

25 mm dia. 50 kg

 600 mm  600 mm
 

  
Assumptions: 
1. Bearing friction is negligible. 
2. The bearings supporting the shafts are accurately aligned. 
3. The shaft remains linearly elastic. 
4. The shaft is simply supported.  
5.  The mass of the shaft is negligible. 
 
Analysis:  

P/2 P/2

!st

 L

P

 L/2 

 
 
1. Using Appendix D-2, for a concentrated center load on a simply supported beam  
 

 we have !st = PL3

48EI where 
 E = 207 ! 109 Pa  (Appendix C-1) and 
 

 I = !d4

64
  (Appendix B-1) 

 

    = !(0.025)4

64  = 19.2 " 10-9 m4
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 Thus, !st = 50(9.8)(1.2)3

48(207 " 109)(19.2 "10-9)
 = 4.44 " 10-3 m

 
 
2. Using Eq. (17.1) of Fig. 17.5(a) to find nc 
 

 
nc = 30

!
g
"st

 = 30
!

9.8
4.44 # 10-3

 = 449 rpm
 ■ 

 
SOLUTION (17.11) 
Known: The dimensions of a steel shaft are given.  
 
Find:  Determine the critical speed of rotation for the steel shaft. 
 
Schematic and Given Data: 

 

25 mm dia. 50 kg

 600 mm  600 mm
 

  
Assumptions: 
1. Bearing friction is negligible. 
2. The bearings supporting the shafts are accurately aligned. 
3. The shaft remains linearly elastic. 
4. The shaft is simply supported.  
5.  The mass of the shaft is negligible. 
 
Analysis:  

P/2 P/2

!st

 L

P

 L/2 

 
 
1. Using Appendix D-2, for a concentrated center load on a simply supported beam 
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 we have !st = PL3

48EI where 
 E = 127 ! 109 Pa (Appendix C-1) and 
 

 I = !d4

64
  (Appendix B-1) 

 

    = !(0.025)4

64  = 19.2 " 10-9 m4
 

 Thus, δst = 50(9.8)(1.2)3

48(127 × 109)(19.2 ×10-9)
= 7.24 × 10-3 m

 
 
2. Using Eq. (17.1) of Fig. 17.5(a) to find nc 
 

 
nc = 30π

g
δst
= 30π

9.8
7.24 × 10-3

= 351 rpm
 ■ 
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SOLUTION (17.14) 
Known: The shaft is aluminum and the critical speed of rotation is given. 
 
Find:  Determine the diameter of the aluminum shaft. 
 
Schematic and Given Data: 

 

? mm dia. 40 kg

 500 mm  500 mm
 

  
Assumptions: 
1. Bearing friction is negligible. 
2. The bearings supporting the shafts are accurately aligned. 
3. The shaft remains linearly elastic. 
4. The shaft is simply supported.  
5.  The mass of the shaft is negligible. 
 
Analysis:  

P/2 P/2

!st

 L

P

 L/2 

 
 
 
 
1. Using Eq. (17.1) of Fig. 17.5(a) to find !st 
 

 
nc = 30π

g
δst

= 30π
9.8
δst

= 250 rpm
 

 
 !st = 0.0143 m  ■ 
 
2. Using Appendix D-2, for a concentrated center load on a simply supported beam 
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 we have !st = PL3

48EI where 

 E = 72 ! 109 Pa (Appendix C-1)  or 
 

 
I = PL3

48Eδst 
I = (40)(9.8)(1.0)3

48(72x109)(0.0143)      
I = (7.93 x 10-9) m4

  

 I = !d4

64
  (Appendix B-1) 

    
 Solving for d in the above equation, gives d = 20 mm. ■ 
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SOLUTION (17.15) 
Known: The dimensions of a steel shaft are given. 
 
Find: Determine the critical speed of rotation for the steel shaft. 
 
Schematic and Given Data: 

 

2 in. dia. shaft 120 lb

20 in. 40 in.

80 lb

30 in.  
 
Assumptions:  
1. Bearing friction is negligible. 
2. The bearings supporting the shafts are accurately aligned. 
3. The shaft remains linearly elastic. 
4. The shaft is simply supported. 
5. The mass of the shaft is negligible. 
 
Analysis: 
1.  

120 lb 80 lb

A B

!A !B

 
 
2. Using the equation for a concentrated load at any point for a simply supported 

beam (Appendix D-2) and the method of superposition, the deflections δA and δΒ  
 

 can be determined using ! = Pbx
6LEI

 (L2 - x2 - b2) for 0 " x " a 
 
 where for steel E = 30 ! 106 psi and for a round shaft I = !d4

64  = !(2)4

64  = 0.785 in. 4 
 

sedagha
Highlight



17-31 
 

!

Pb/L Pa/L

 L

P

 a  b 

x

 
 
 
 Deflection at A due to 120 lb: 
 

 
! = 120(70)(20)

6(90)(30 " 106)(0.785)
 (902 - 202 - 702) = 0.0370 in.

 
 
 Deflection at A due to 80 lb: 
 

 
! = 80(30)(20)

6(90)(30 " 106)(0.785)
 (902 - 202 - 302) = 0.0257 in.

 
  
 Total deflection at A:  !A = 0.0370 + 0.0257 = 0.0627 in.  
 
 Deflection at B due to 120 lb: 
 

 
! = 120(20)(30)

6(90)(30 " 106)(0.785)
 (902 - 302 - 202) = 0.0385 in.

 
 
 
 Deflection at B due to 80 lb: 
 

 
! = 80(30)(60)

6(90)(30 " 106)(0.785)
 (902 - 602 - 302) = 0.0408 in.

 
 
 Total deflection at B:  !B = 0.0385 + 0.0408 = 0.0793 in.  
 
 3.  Using Eq. (17.2) in Fig. 17.5(b): 
 

 
nc ! 30

"  g(wA#A + wB#B)
wA#A

2  + wB#B
2  
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nc ! 30

"  
(32.2)(12in.

ft ) (120)(0.0627)+(80)(0.0793)

120(0.0627)2 + 80(0.0793)2  
 
 = 708 rpm ■ 
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SOLUTION (17.22) 
Known:  An overhanging 2-in.-diameter steel shaft with attached 60 lbm grinding wheel is 
shown in Figure P17.22 
 
Find: Determine the critical speed of rotation for the shaft. 
 
Schematic and Given Data: 

 20 in.  12 in.

60 lb

Grinding
wheel

Pillow 
block 
bearing

Steel shaft, E = 29 E6 psi
d = 2.0 inches

 
 
Assumptions:  
1. Bearing friction is negligible. 
2. The bearings supporting the shafts are accurately aligned. 
3. The shaft remains linearly elastic. 
4. The shaft is simply supported. 
5. The mass of the shaft is negligible. 
6. The ball bearings do not prevent angular deflection. 
 
Analysis: 
1. A drawing showing an exaggerated static shaft deflection: 
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 b  a

Deflection of 
grinding wheel

 
 
 
2. The moment of inertia for a round steel shaft: 
 

         
! =

"d 4

64
=
"(2)4

64
= 0.785 in4

 
        
3. The deflection at the grinding wheel caused by the weight of the grinding wheel is 

found by: 
 

        
!st =

Pa2 (a + b)
3E"

=
60(12)2 (12 + 20)
3(29 x 106 )(.785)

= 0.004047 in
 

where ESteel = 29 x 106 psi . 
 
4. The critical speed for a shaft with a single mass is found from Eq. 17.1a: 
 

nc =
30
!

g
"st

=
30
!

386
.004047

= 2949 rpm
       ■ 
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SOLUTION (17.23) 
Known:  An overhanging steel shaft with an attached 60 lbm grinding wheel is shown in 
P17.22.  The minimum critical frequency for the shaft must be equal to or greater than 75Hz. 
(From the solution to the preceding problem we found that nc = 2949 rpm for a 2 in. 
diameter shaft). 
 
Find: Determine the diameter of the steel shaft that produces an acceptable critical 
frequency. 
 
Schematic and Given Data: 

 20 in.  12 in.

60 lb

Grinding
wheel

Pillow 
block 
bearing

Steel shaft, E = 29 E6 psi
diameter = ?

 
 
 
 
Analysis: 
1. We will determine the deflection of the grinding wheel which will produce a 

critical frequency by rearranging Eq. 17.1a and converting speed to frequency. 
 

         

nc =
30
!
"c = 60 fc

fc =
nc
60

=
1
2!

g
#st  

 
Solving the above equation for the static deflection of the guiding wheel yields: 
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!st =

g
((2)(")( fc ))

2 =
386.4

((2)(")(75))2 = .00174 in
  

 
2. With the deflection known, the beam deflection equation used previously can be       

rearranged to solve for the required moment of inertia for the steel shaft: 
  

        
! =

Pa2 (a + b)
3E"ST

=
(60)(12)2 (12 + 20)

3(29 x 106 )(.00174)
= 18264 in4

 
        
3. The moment of inertia equation for a round shaft is rearranged to solve for 

diameter: 
 

        
d = 64 I

!
4 =

64(18264)
!

4 = 2.47 in
 

 
4. Alternatively, the equation given below can be used to solve for the new shaft size 

directly. 
 

         

dnew = dold
nnew
nold

= dold
fnew
fold

= (2 in) 75Hz
2949

60
rpm

s/min

= 2.47 in

 
 
Comment: A shaft that is 2.47 inches in diameter is probably not commercially 
available which makes using a size, such as, 2.50 inches more attractive. From the 
analysis, we can tell that it would tend to increase the critical frequency which still 
allows us to meet the design constraint in the problem statement.     ■ 
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SOLUTION (17.24) 
Known: Six shafts are used in six specified applications. 
 
Find: Determine the shaft loadings (bending, axial and torsion) involved in each 
application and give a short explanation of the cause of each loading. 
 
 
Schematic and Given Data:  

 

(a)T

T

(b)
T

T

T
F

F
T

(c)

F

(d)
! !

(e)

T

T

F1 F2
!!

(f)

F1 F2

 
 
 
Assumptions: 
1. The shafts are shown in the physical arrangement of the application (with the 

gravitation force on the turbine in case (c) being significant and vertically 
downward). 

2. Bearing friction is negligible. 
3. The weights of the shafts are negligible and connected elements are separately 

supported. 
4. The bearings supporting the shafts are accurately aligned. 
5. The gears are all spur gears of the same pressure angle and mounted to mesh 

properly with each other. 
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Analysis: 
(a) Static torsion only.  Shaft weight would normally be negligible. 
(b) Same as (a).  (Note that gear tooth forces balance to produce pure torque). 
(c) Static torsion and static axial load. 
(d) Alternating bending only (forces remain fixed while shaft rotates--as in Fig. 8.3). 
(e) Static torsion plus alternating bending (forces are fixed while shaft rotates).  

Possible static axial load if gears are helical. 
(f) Static bending only.  (Bearings can apply only radial loads to the shaft.) 
 
Comments: 
(1) Minor misalignments of the bearings, improper mounting and meshing of gears 

and large shaft weights can cause significant additional shaft bending. 
(2) Dynamic loads can cause substantially higher stresses in the shaft than static or 

low cycle loads. 
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SOLUTION (17.25) 
Known: A helical gear mounted on a shaft is simply supported by bearing A and 
bearing B and has specified load components acting on it.  The left end of the shaft is 
free, the right end, near the bearing B, is attached to a flexible coupling to transmit 
torque.  Bearing B takes thrust.  Shaft material, its ultimate and yield strength, and 
stress concentration factors are given. 
 
Find: 
(a) Determine load, shear force and bending moment diagrams for the shaft in the 

vertical and horizontal planes and also diagrams for torsional and axial loading. 
(b) Determine the radial and thrust loads on the bearings. 
(c) Identify the critical cross section of the loaded shaft and for this location determine 

the cross sectional diameter required for infinite design life. 
 
Schematic and Given Data: 

 

Bearing B

Bearing A F   = 400 lba

5 in.

2 in.

3 in. rad.

F   = 800 lbt

F   = 450 lbr

!!!!!!Shaft:
!!!!!!!Machined steel
!!!!!!!S     = 150 ksi
!!!!!!!S     = 120 ksi
!!!!!!!K    = 2.0!(bending)
!!!!!!!K     = 1.5!(torsion)
!!!!!!!K     = 2.0!(axial)

u
y

f
f
f
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Bending
Moment

-1142 in. lb

Bending
Moment

-215 in. lb

+986

+2400 in. lb

-400 lb

Torque
Axial
Force

229
400

800

571

400
A B

Shear

-229 lb

+571

Load

43

400 450

493

400
A B

Shear

-493

Load

HORIZONTAL VERTICAL

-43

 
 
Assumptions: 
1. The bearing widths are small relative to the length of the shaft so that they can be 

idealized as point supports. 
2. Bearing friction is negligible. 
3. Shaft deflection is small so that locations and directions of loads are constant with 

respect to the shaft. 
4. The gear is rigidly connected to the shaft. 
5. The weights of the shaft and gear can be neglected. 
6. Axial stresses are negligible compared to torsion stresses (to be verified). 
7. The diameter required at the critical section is between 0.4 in. and 2 in. so that the 

gradient factor, CG = 0.9  according to Table 8.1. 
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Analysis:  
1. From the free body diagrams in the horizontal and vertical planes,  
 ∑MA = 0; 800(5) = BH (7)  
 hence, BH = 571 lb 
 ∑MA = 0; 450(5) + 400(3) = Bv (7) 
 hence, Bv = 493 lb 
 Therefore, the loads on the bearings A and B are: 
 Ar = 2292 + 432 :  Ar = 233 lb 
 Br = 5712 + 4932:  Br = 754.4 lb  Bt = 400 lb (thrust) 
 
2. The most critical section is just to right of the gear. 
 For the most critical section: 
 
 τm = 16T

πd3
 Kf = 16(2400)

πd3
 (1.5) = 18,335

d3
  

 
 σa,m (axial mean stress) = PA Kf = - 400(4)

πd2
 (2) = - 1019

d2
  

 

 σb,a (bending alt. stress) = 32M
πd3

 Kf = 32 11422 + 9862

πd3
 (2) 

 
 σb,a = 30,736

d3
  

3. Applying the Fig. 8.16 procedure: 
 
  σe,a = σb, a

2 + 0  = σb,a = 30,736
d3

  

 
 Assume σam is negligible, then σem = 0 + τam

2 + 0  = τm = 18,335
d3

  

 The slope of the load line is σea/σem = 30,736/18,335. 
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4. We now construct a Goodman diagram: 

 

50

50 100 1500

0

100

Yield Line

37.5

Slope = 30,736/18,335

= 37,500 = 30736/d3
!a

S  = S ' C  C  CL G Sn n
= (150/2)(1)(0.9)(0.69) = 46.6 

Hence, d = 0.936 in.

!em

!ea

   
 
5. From the Goodman diagram, d = 0.936 in. ■ 
6. Note: for d ≈ 0.94, σam = 1019/0.942 < 1.2 ksi 
 and is therefore negligible, and CG = 0.9. 
 Hence earlier assumptions are appropriate. 
 
Comments: 
(1) Consideration of the weight of the gear and the shaft will produce additional radial 

and/or thrust loads on the bearing depending on the orientation of the shaft axis in 
the application. 

(2) If the bearing friction forces are high enough to warrant consideration, they will 
change the torque diagram and will reduce the maximum torque value at the 
critical section by the friction torque of the left bearing. 

(3) Although the axial load is of the same order of magnitude as the radial load the 
axial stress is very much smaller than the bending stress in this case because the 
bending moment is fairly large.  For short shafts the same axial load can cause 
stresses comparable in magnitude to the bending stresses since the maximum 
loading moment will be smaller for a shorter shaft. 
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SOLUTION (17.27) 
Known: A bevel pinion mounted on a shaft is simply supported by bearing A and 
bearing B, and has specified load components acting on it.  The left end of the shaft, 
closer to bearing A, is coupled to an electric motor while the right end is free.  Bearing 
A takes thrust.  Shaft diameter, stress concentration factors, material strengths and 
surface finish are specified. 
 
Find: Estimate the factor of safety for the shaft. 
 
 
 
Schematic and Given Data: 

 

!!!!!!Shaft:
!!!!!!!Machined steel, ground finish
!!!!!!!S    = 900 MPa
!!!!!!!S    = 700 MPa
!!!!!!!K   = 1.3 (bending)
!!!!!!!K   = 1.2!(torsion)
       K   = 1.3 (axial)
       d = 33 mm

u
y

f
f
f

F  = 2.4 kNr

Bearing B

Bearing A
F   = 4.0 kNt

F   = 1.5 kNa

50 mm

125 mm

Note:  Gear forces act at a 75 mm radius
from the shaft axis.
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1.5

1.07

1.5 kN

A B

Shear

1.33 kN

Load

1.5

4.0 kN

1.5 

2.86

A B

Shear -2.86

Load

Bending
Moment Bending

Moment

-1.5 kNTorque

Axial Force

HORIZONTALVERTICAL
2.4

1.33 1.14

-1.07

1.14 kN

166.2 N•m

53.5

142.5 N•m

300 N•m
40(75) =

 
 
Assumptions: 
1. The bearing widths are small relative to the length of the shaft so that they can be 

idealized as point supports. 
2. Bearing friction is negligible. 
3. Shaft deflection is small so that locations and directions of loads are constant with 

respect to the shaft. 
4. The gear is rigidly connected to the shaft. 
5. The weights of the shaft and gear can be neglected. 
 
Analysis: 
1. From the free body diagrams in the horizontal and vertical planes,  
 ∑MA = 0; 2.4(125) - 1.5(75) = Bv(175) 
 ∑MA = 0; 4.0(125) = BH(175) 
 Bv = 1.07 kN;  BH = 2.86 kN 
 Therefore, the loads on the bearings A and B are: 
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 Ar = 1.332 + 1.142:  Ar = 1.75 kN, At = 1.5 kN (thrust) 
 Br = 1.072 + 2.862:  Br = 3.05 kN   
2. The most critical section is just to the left of the gear.  For the most critical section: 
 

 τm = 16T
πd3

 Kf = 
16(300)
π(33)3

 (1.2) = 0.0510 GPa = 51.0 MPa  

 
 σa,m (axial mean stress) = PA Kf = -1.5(4)

!(33)2
 (1.3) = -0.00228 GPa = -2.28 MPa 

 

 σb,a (bending alt. stress) = 32M
πd3

 Kf = 32 166.22 + 142.52

!(33)3
 (1.3) 

 = 0.0807 GPa = 80.7 MPa 
3. Applying the Fig. 8.16 procedure: 
 
 σe,a = !b,a2 + 0  = σb,a = 80.7 MPa 
 

 σem = 
!m
2  + τm

2 + ( )σm
2

2

 = - 2.282  
+ 51.02 + -2.28

2
2  = 49.9 MPa 

 

 SF ≈ 29080.7 = 3.59, say SF ≈ 3.6 
 

200

200 400 6000

0

400

Yield Line

290
Slope = 80.7/49.9

S  = S ' C  C  CL G Sn n
= (900/2)(1)(0.9)(0.9)

!em

800

600

(49.9,80.7)

700

700 900

= 364.5 MPa
!ea
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Comments: 
(1) In this problem, the (mean) axial stresses are small compared to the (mean) torsion 

stresses but are still included in the analysis (σem changes by about 2% when axial 
stresses are considered). 

(2) It is important to estimate the stress concentration factors accurately since they 
inversely affect the safety factor. 

(3) The maximum bending moment can be reduced by decreasing the length of the 
shaft and/or placing the gear closer to one of the support bearings.  Placing the 
gear closer to a bearing, however, has the undesirable side-effect of producing 
higher loads on the bearing. 
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SOLUTION (17.28D) 
Known: Two alternative approaches to supporting an overhung chain idler sprocket (or 
spur gear or belt sheave) are given. 
 
Find: Determine the fundamental differences between the two approaches with respect 
to shaft loading and bearing loading.  Also, determine how this comparison would 
change if a bevel gear were substituted for the chain sprocket. 
 
Schematic and Given Data: 

 

(a) (b)

 
 
Assumptions:  
1. The chain sprocket (or spur gear or belt sheave) does not experience any 

significant axial load at its periphery. 
2. The bevel gear substituted for the chain sprocket has a substantial cone angle so as 

to produce a significant axial load. 
 
Analysis: 
1. In (a) the bearings each take a radial load equal to half the total chain tension, and 

the shaft bending load is static.  In (b) the bearing next to the sprocket takes a 
radial load of about 1.5 times the total chain tension, and the shaft bending load is 
alternating (as in Fig. 8.3). 

2. With a bevel gear, a thrust load and a cocking moment would be added to the shaft 
due to an axial load on the gear tooth.  Since the distance between bearings is 
much closer in (a), the added bearing radial loads needed to resist the cocking 
moment would be much greater in (a) than in (b). 

 
Comment:  It is clear from the solution of this problem that the geometric arrangement 
of the shafts and bearings must be chosen carefully after consideration of the types and 
magnitudes of loadings that are applied to the shaft through other elements connected to 
the shaft. 
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SOLUTION (17.33) 
Known: A countershaft has helical gear (B), bevel gear (D), and two supporting 
bearings (A and C) as shown in FIGURE P17.33 of the textbook.  Loads acting on the 
bevel gear are known.  Forces on the helical gears can be determined.  Shaft dimensions 
are known. All shoulder fillets have a radius of 5 mm.  Only bearing (A) takes thrust.  
The shaft is made of hardened steel having known values of Su = 1069 MPa and Sy = 
896 MPa. Important surfaces are finished by grinding. 
 
Find: 
(a) Draw load, shear force, and bending moment diagrams for the shaft in the xy- and 

xz- planes.  Also draw diagrams showing the intensity of the axial force and torque 
along the length of the shaft. 

 
(b) At points B, C, and E of the shaft, calculate the equivalent stresses in preparation 

for making a fatigue safety factor determination. (Note: Refer to Figure 8.16 and 
Table 8.2 of the textbook.) 

 
(c) For a reliability of 99% (and assuming σ = 0.08 Sn), estimate the safety factor of 

the shaft at points B, C, and E. 
 
Schematic and Given Data: 

sedagha
Highlight



17-78 
 

 

x

A

B

C D

y

z

550
400

450

120 dia. 80 dia.Keyway

A B C D

Fz = 0.3675 Fy

Fy

Fx = 0.2625 Fy

Fx = 1.37 kN

Fz = 5.33 kN

Fy = 1.37 kN

x-z view

x-y view

Forces act at
375 mm dia.

Forces act at
500 mm dia.

A

B

C D

x

Fx = 0.2625 Fy
Fy

Fz = 0.3675 Fy

Fx = 1.37 kN

Fy = 1.37 kN

Fz = 5.33 kN

400

K   = 1.6 for bend and torsion;
1.0 for axial load at keyway.  
Use C   = 1with these values.

f

s

Su = 1069 MPa
Sy = 896 MPa

E

 
 
Assumption: The shaft is manufactured as specified with regard to the critical shaft 
geometry and surface finish. 
 
Analysis: 
1. Load determination 
(a) Helical gear forces: 
 For ∑Mx = 0, the torque at the two gears must be equal.  Therefore, Fy (250 mm) = 

5.33(187.5 mm).  Hence,  Fy = 4.00 kN. 
 From the given data, Fx = .2625Fy = 1.05 kN; Fz = .3675 Fy = 1.47 kN. 
(b) Determine shaft loads in the xy and xz planes 
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A B C
D

A B C D

550 450 400

2.42 1.05

4.0

1.37
1.37

AV = 2.09
CV = 0.54 CH = 6.92

AH = 3.06

1.05

1.47

5.33

1.37
E

V

M

V

M

Torque

-2.42 -1.37

Faxial

106 N•mm

xy or vertical plane xz or horizontal plane

400

2.42
E

 
 
 Vertical forces: 

 ∑MA = 0 :  Cv = 4(550) + 1.37(187.5) - 1.37(1400)1000   
     = 0.54 kN downward 
 
 ∑F = 0 :     Av = 4 - 0.54 - 1.37 = 2.09 kN downward 
 
 Horizontal forces: 

 ∑MA = 0 :  CH = 1.05(250) - 1.47(550) + 5.33(1400)1000   
           = 6.92 kN upward 
 
 ∑F = 0 :     AH = 1.47 + 6.92- 5.33  
                              = 3.06 kN downward 
 
 
2. Stress determination 
(a) At E, the loading is: 
 Compression of 1.37 kN,  Kt = 2.2,  q = .94, 
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  Kf = 2.13.  Axial stress (mean or constant) = 
 

  
4PKf
πd2

 = 
4(-1.37)(2.13)

π(80)2
 = -0.581 MPa 

 
 The tension stress is zero. 
 
       M = (2.09 ! 400)2 + (3.06 ! 400)2   
       = 1482 kN•mm 
 Kt = 1.9, q = .94.  Therefore, Kf = 1.85 
 

 Bending stress (alternating) = 32M
πd3

Kf  
 

  = 
32(1482 ! 103)

"(80)3 (1.85) = 54.5 MPa 
 
 From Eq. (a) and Eq. (b) in the figure caption of Fig. 8.16, σem = 0; 
  σea = 54.5 MPa 
 
(b) At B, the loading is: 
 
 Axial, P = -1.37 kN, Kf = 1.0, σ = -0.27 MPa 
 Torsion = (4.0)(250) = 1000 kN•mm 
 Bending : M = (2.09 ! 550)2 + (3.06 ! 550)2  = 2038 kN•mm 
 Kf = 1.6 for bending and torsion 
 

 Bending stress (alternating) = 32M
πd3

Kf  

 

           = 
32(2038 ! 103)

"(80)3 (1.6) = 64.9 MPa 
 

 Torsional stress (mean) = 16T
!d3

Kf = 16(10)
6

!(80)3
(1.6) = 15.9 MPa 

 

 σem = -0.272  + (15.9)2 + ( )-0.27
2

2

 = 15.76 MPa ;   σea = 64.9 MPa 
 
(c) At C, the loading is: 
  

Bending:  
 M = (5.33 ! 400)2 + 1.37 ! (400 - 187.5) 2  = 2152 kN•mm 
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 Bending stress (alternating) = 
32(2152) ! 103

"(80)3  = 42.8 MPa   

 σea = 42.8 MPa 
 
 Torsional stress - same as (b) except no stress concentration factor; axial same as (b). 

 σem = -0.272  + ( )15.9
1.6

2
+ ( ).27

2
2

 = 9.80 MPa  
 
3. Strength and safety factor determination 
  

Su = 155 ksi = 1069 MPa;    Sy = 130 ksi = 896 MPa 
 For working with equivalent bending stress, Sn is  
 

 Sn  = Snʹ′ CLCGCsCTCR = ( )1069
2 (1)(0.8)*(0.9)(1)(1)  

 
  = 385 MPa for Cs = 0.9 
 
 *(See note b, Table 8.1) 
 

 Sn  = Snʹ′ CLCGCsCTCR = ( )1069
2 (1)(0.8)(1.0)(1)(1) 

  = 428 MPa for Cs = 1.0 
  

But for 99% reliability, reduce this by 2.3 standard deviations, which amounts to 
multiplying by a factor of (1 - 2.3 ✕ .08) = .816 

 Thus, for 99% reliability,  
 Sn = 385(.816) = 314 MPa (for Cs = .9) 
 Sn = 428(.816) = 349 MPa (for Cs = 1.0) 
4.  
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5. Safety factors: (B) SF = 325/64.9 = 5.0          ■ 
    (C) SF = 290/42.8 = 6.8          ■ 
    (E) SF = 314/54.5 = 5.8          ■ 
 
Comment:  This problem is the same as one in Chapter 8 but probably still appropriate 
for the student to work in this chapter. 
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SOLUTION (17.35D) 
Known: A flat key is to be used with a round shaft to transmit a torque equal to the 
elastic torque capacity of the shaft.  Key and shaft material are made of the same ductile 
material and the key in tightly fitted at its top and bottom. 
 
Find: Estimate the length of flat key required.  Also, compare the estimate with the 
length of square key required and suggest a possible reason why a flat key might be 
preferred in some cases. 
 
Schematic and Given Data: 

 

h h/2

 d

 w

w/2

 d

 w

w = d/4;  h = 3w/4
Flat Key

w = d/4
Square Key

w

 
 
Decisions:  
1. The flat and square keys to be considered are of standard proportions. 
2. The key and shaft materials are identical ductile steels (given). 
3. Key clearances with the shaft and hub are small. 
 
Assumptions: 
1. Forces on the key sides are uniformly distributed. 
2. The loading on the shaft is steady (no shock or fatigue). 
 
Design Analysis: 
1. From Eq. (4.4), with τ = Sys = 0.58Sy, shaft torque capacity is: 
 

 T = !d
3

16  (0.58Sy) ----(a) 
2. For a standard proportioned flat key, key torque capacity limited by compression is 

(see Fig. 17.1b): (limiting stress)(contact area)(radius), 
 

 hence, T = (Sy)( )L • 3d
32  ( )d2  = 0.047Sy Ld2  ----(b) 

3. For the flat key, key torque capacity limited by key shear is  
 T = 0.58Sy Ld2/8 ----(c) 

sedagha
Highlight
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 This torque capacity is the same for a square key. 
 
4. Equating (a) and (b): 
 

 !d3
16  (0.58Sy) = 0.047Sy Ld2  

 

 0.58π
16  d = 0.047L.  Hence, L = 2.4d ■ 

 Equating (a) and (c) gives L = 1.57d 
5. The flat key weakens the shaft less than does the square key since a shallower seat 

is required for the flat key. 
 
Comment:  The torque capacity with respect to shearing of the key is the same whether 
a square key or a flat key of the same length (and of standard proportions) is used 
because their widths are both equal to d/4.  The torque capacity with respect to 
compressive failure is, however, higher for a square key than a flat key since the height 
of a square key is greater.  But, both the standard proportioned square key and flat key 
have the same torque capacity here because shear failure limits torque capacity. 
 
SOLUTION (17.36D) 
Known: Web site addresses are given as http://www.pddnet.com and 
http://www.powertransmission.com. 
 
Find: Identify and discuss methods of coupling rotating shafts. 
 
Analysis: 
1. The web site search is left as an exercise for the student. 
2. The book, Mechanical Details for Product Design, edited by Douglas C. 

Greenwood, McGraw-Hill, Inc., 1964, p. 288-291, illustrates typical methods of 
coupling rotating shafts.  Methods of coupling rotating shafts vary from simple 
bolted flange constructions to complex spring and synthetic rubber mechanisms.  
Some types incorporating chain belts, splines, bands, and rollers are described and 
illustrated.  Shaft couplings that utilize internal and external gears, balls, pins, and 
nonmetallic parts to transmit torque are also shown. 

 
 


