MECH 423 Casting, Welding, Heat Treating and NDT

Time__W_F 14:45 - 16:00

Credits: 3.5 Session: Fall

Phase Diagrams

Lecture 5

Lecture 5

1

Casting Alloy Systems

- Most metals originally cast from liquid to form ingots. Many go through subsequent hot/cold working;
 - homogenization of composition
 - healing of defects, pores/cracks
 - recrystallisation, annealing.
- For Final castings (i.e. to finished or semi-finished shape) the alloy selection is more specific:
 - high fluidity
 - lower melting points (eutectic compositions)
 - short freezing ranges
 - low shrinkage
 - strength that doesn't rely on cold working
 - eutectic
 - solid solution strengthening
 - precipitation hardening
 - fine grain size

What is a Phase?

- Sand and Salt How many phases in each?
- Coffee and Sugar
- Water and Alcohol
- A phase is a homogenous, physically distinct and mechanically separable portion of the material with a given chemical composition and structure.
- For solids: Chemically and structurally distinct
- For liquids: Miscibility
- For gases: Always 1 phase

Lecture 5

"Let's face it - our relationship is doomed."

Equilibrium Phase Diagram

- Graphic mapping of material under different conditions assuming equilibrium has been attained
- Simplest P-T diagram for fixed composition mat'l
- 4.1 gives the P-T diagram of water
- **@1 atm**: water is solid < 0° and gas > 100°
- At normal pressure find a temperature at which water is liquid
- Reduce the temperature until it becomes solid
- At that temperature reduce pressure and at one point, the solid directly goes to gas, without going to liquid phase – sublimation (process is called as freeze drying)
- If we have phase diagram, we can calculate the conditions required Lecture 5

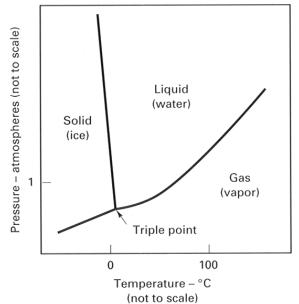
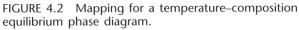
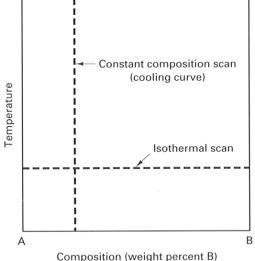


FIGURE 4.1 Pressure-temperature diagram for water.

Here's how freeze drying works. 2. About 98% of the food's moisture is Fresh or cooked foods are flash frozen, then placed drawn off by evaporating the ice, at in a vacuum chamber. temperatures as low as -50° F. FROLE When the water is replaced, the food regains its original fresh flavor, aroma, texture, and 4. appearance. The freeze-dried food is sealed in moisture-and-oxygen proof packaging, to

Lecture 5


ensure freshness


until opened.

Lecture 5

Temperature Composition Diagram

- Generally engineering processes are done at constant pressure (mostly atmospheric)
- Variations will be in temperature and composition
- 4.2 gives the temperature composition diagram
- A and B at the ends are pure metals
- In between is the composition percentage of B in A

- Constant composition at various temperatures give the cooling curve
- Constant temperature at various compositions give isothermal scan
- Cooling curves are the ones that we will be interested in for various alloy compositions
- Example, salt added to water, reduces the freezing point, and used commonly in winter

Solubility

- If we move away from pure metals, we have one metal dispersed over the other
- If it is partially soluble Tin and Lead shown in 4-5
- Three single phase regions (α solid solution of Tin in Lead matrix, β = solid solution of Pb in Sn marix, L - liquid)
- Three two-phase regions (α + L, β +L, α + β)
- Solvus line separates one solid solution from a mixture of solid solutions.
- The Solvus line shows limit of solubility
- 4-6 shows copper nickel diagram, which is completely soluble

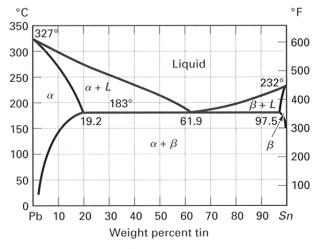


FIGURE 4.5 Lead-tin equilibrium diagram.

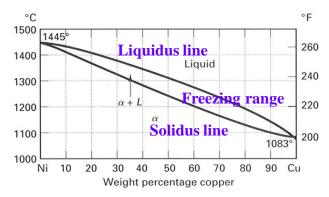
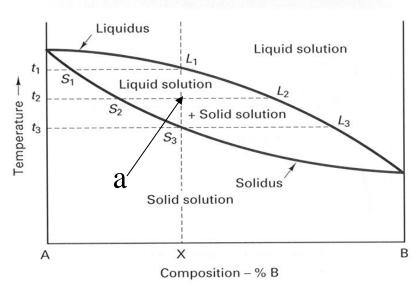



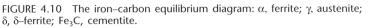
FIGURE 4.6 Copper–nickel equilibrium diagram, showing complete solubility in both liquid and solid states.

Solidification

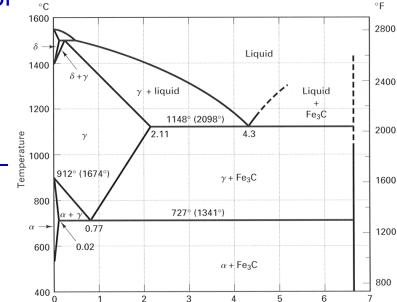
FIGURE 4.8 Equilibrium diagram showing the changes that occur during the cooling of alloy X.

- Each temperature and composition gives 3 different pieces of info
- For composition X we have above L₁, below S₃ and in between
- For temperature t₂, we have below S₂ above L₂ and in between

- At point a, the tie line runs from S_2 to L_2 and the solid at this 2 phase mixture will have composition of S_2 and the liquid will have that of L_2
- For alloy X, t_1 is the temperature at which first amount solid starts forming with chemistry of S_1
- As t reduces, more solid forms and chemistries follow the tie line point
- At t₃, the alloy is completely solidified to give a single phase alloy X Lecture 5

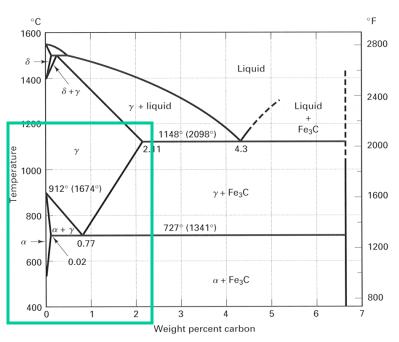

Intermetallic Compounds

- Suffix *ic* tells one of the phase is liquid and *oid* tells all phases are solid
- Eutectic reaction transition between liquid and two solid phases mixture at eutectic concentration – e.g. L ↔ α + β
- A peritectic reaction solid and liquid phase will form a second solid phase at particular t & c - e.g. L + α ↔ β
- A Monotectic reaction liquid phase will form a second liquid and solid phase at particular t & c - e.g. L₁ ↔ L₂ + α


FIGURE 4.9 Schematic summary of three-phase reactions and intermetallic compounds.

L $L + \beta$ $L + \alpha$ $\alpha + \beta$ $\alpha + \beta$ $\beta + L$ Eutectic Peritectic $(L \rightarrow S_1 + S_2)$ $(L + S_1 \rightarrow S_2)$ L_2 L_1 $L_1 + L_2$ $L_1 + L_2$ L_2 $\alpha + L_2$ Syntectic Monotectic $(L_1 + L_2 \rightarrow S_1)$ $(L_1 \rightarrow S_1 + L_2)$ Y Y $\gamma + \beta$ $\alpha + \gamma$ $\alpha + \beta$ $\alpha + \beta$ $\beta + \gamma$ Eutectoid Peritectoid $(S_1 \rightarrow S_2 + S_3)$ $(S_1 + S_2 \rightarrow S_3)$ Stoichiometric Non-stoichiometric intermetallic compound intermetallic compound

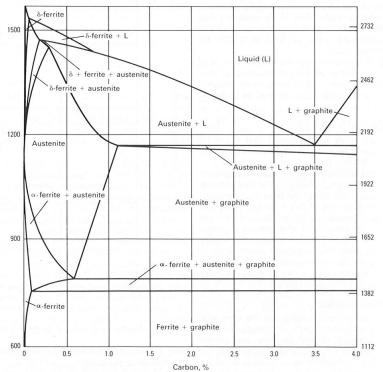
Iron-Carbon Diagrams


- Steel is an iron carbon compound and of great engineering importance
- Fe_3C is used which caps C at 6.67 %
- Pure iron forms delta ferrite at 1394° upon cooling which has BCC structure – not much engineering importance
- 1394-912° FCC structure, austenite good formability & good solubility of C
- Austenite is used for hot forming because it is highly ductile
- Below 912° ferrite or alpha-ferrite is formed (more stable BCC). But cannot take more than .02% of C without forming 2 phase structure
- Below 770° (curie point) changes from non-magnetic to magnetic. No phase change, so not seen

Iron-Carbon Diagrams

- 4th single phase is Fe₃C iron carbide
- Also called as cementite quite hard and brittle
- Exact mp of Fe₃C is unknown and hence the liquidus line is not clear at high c %
- 3 distinct phase reactions @ 1495° peritectic reaction for low C alloys
- High temperature and single phase austenite below it, no significance

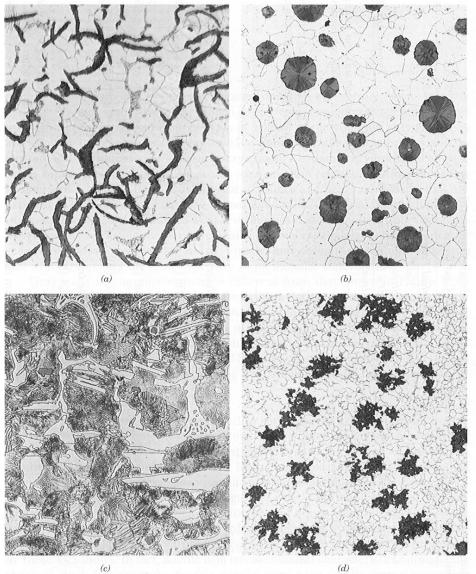
FIGURE 4.10 The iron–carbon equilibrium diagram: α , ferrite; γ , austenite; δ , δ –ferrite; Fe₃C, cementite.



- @ 1148° Eutectic reaction with 4.3% carbon. All alloys having more than 2.11% C go thro eutectic reaction and are called Cast Iron
- @ 727° we have the eutectoid reaction of 0.77%C. all alloys with less than 2.11%C go though 2 phase mixture upon cooling (AKA steels)

Cast Iron

emperature,


- Iron with more than 2.11% C is cast Iron, excellent fluidity, inexpensive and easy to cast. Lot of applications
- Generally contain significant silicon%
- Typical values are 2-4% C, 0.5 3% Si less than 1% mn, less than 0.2% S
- Adding Si promotes graphite formation and 2 distinct stages of eutectics
- Ferrite + Austenite & Ferrite + Graphite
- Different cast irons (various composition)
 - Gray Cast Iron
 - White Cast Iron
 - Ductile Iron
 - Malleable Iron

Total carbon,	
%	Silicon, %
3.40-3.60	2.30-2.50
3.10-3.30	2.10-2.30
2.95-3.15	1.70-2.00
2.70-3.00	1.70-2.00
2.50-2.85	1.90-2.10

Cast Iron

- Optical micrographs of various cast irons.
- (a) Gray iron: the dark graphite flakes are embedded in an α -ferrite matrix. 500x.
- (b) Nodular (ductile) iron: the dark graphite nodules are surrounded by an α -ferrite matrix. 200x.
- (c) White iron: the light cementite regions are surrounded by pearlite, which has the ferritecementite layered structure. 400x.
- (d) Malleable iron: dark graphite rosettes (temper carbon) in an α ferrite matrix. 150x.

Grey Cast Iron

- 2.5 4% C; 1 3% Si; 0.4 1% mn; Least expensive and promote graphite formation. Large 3d graphite flakes
- Common in high carbon equivalent irons and heavy-section castings
- Desirable properties such as damping capacity, dimensional stability, resistance to thermal shock, and ease of machining.
- Higher tensile strength and modulus of elasticity values
- Smooth machined surfaces are obtainable with irons having small flakes which are promoted by low carbon equivalents and faster cooling rates
- Sold in class (increasing strength)

	Tensile	strength		ional trength		ressive ngth	ben	ersed ding e limit	Transve on tes	Hardness	
Class	MPa	ksi	MPa	ksi	MPa	ksi	MPa	ksi	kgf	lbf	HB
20	152	22	179	26	572	83	69	10	839	1850	156
25		26	220	32	669	97	79	11.5	987	2175	174
30		31	276	40	752	109	97	14	1145	2525	210
35		36.5	334	48.5	855	124	110	16	1293	2850	212
40		42.5	393	57	965	140	128	18.5	1440	3175	235
50		52.5	503	73	1130	164	148	21.5	1633	3600	262
60		62.5	610	88.5	1293	187.5	169	24.5	1678	3700	302

Grey Cast Iron

Table 6 Typical pouring temperatures for some classes of gray iron

	Appro	ximate	[- Pouring to	emperature -			
		idus		Small o	astings			Large	astings	
		rature	¹ Thin s	ections	Thick s	sections	' Thin s	ections	Thick s	sections
Class	°C	°F	°C	°F	°C	°F	°C	°F	°C	°F
30	1150	2100	1400	2550	1370	2500	1345	2450	1315	2400
35		2150	1425	2600	1400	2550	1370	2500	1345	2450
40		2190	1450	2640	1420	2590	1395	2540	1365	2490
45		2230	1470	2680	1445	2630	1415	2580	1390	2530

- Refinement and stabilization of structures result in an increase in hardness, tensile strength, and wear resistance.
- In addition to composition (particularly carbon equivalent) and section size, factors such as alloy additions, heat treatment, thermal properties of the mold, and casting geometry affect the microstructure and therefore the properties of the iron.

Grey Cast Iron

Table 9 Typical applications for gray iron castings

30, 35 good machinability, and close dimensional tolerances 30, 35 General machinery, municipal and waterworks, light 40, 45 Machine tools, medium-duty gear blanks, heavy compresses ASTM A 159, SAE J431 G1800 ASTM A 159, SAE J431 G1800 G2500 Small cylinder blocks and heads, air-cooled cylinders, piston clutch plates, oil pump bodies, transmission cases, gear boxes, light-duty brake drums G2500a Brake drums and clutch plates for moderate service where high carbon is desirable to minimize heat checking G3000 Cylinder blocks and heads, heavy flywheels, differen carriers G3500b Brake drums and clutch plates for heavy-duty service that require heat resistance and high strength Truck cylinder blocks and heads, heavy flywheels, differen carriers G3500c Extraheav-duty brake drums G4000d Alloyed automotive engine camshafts G4000d G4500 Diesel engine castings, liners, cylinder blocks and heads, heavy flywheels, pistons, clutch plates for heavy-duty service that require heat resistance and high strength G4000 Truck cylinder blocks, and plates, differential carriers, heavy ge boxes G3500c Extraheav-duty parts for general industry ASTM A 278 40, 50, ASTM A 436 1 Valve bodies,	Specification	Grade or class	Typical applications
30, 35 General machinery, municipal and waterworks, light compressors, automotive applications 40, 45 Machine tools, medium-duty gear blanks, heavy-duty machine tool parts, large gears, press frames ASTM A 159, SAE J431 G1800 G2500 Small cylinder blocks and heads, air-cooled cylinders, pists clutch plates, oil pump bodies, transmission cases, gear boxes, light-duty brake drums G2500 Brake drums and clutch plates for moderate service where high carbon is desirable to minimize heat checking G3000 G3000 Cylinder blocks, heads, liners, flywheels, pistons, clutch plates G35000 Brake drums and clutch plates for moderate service where high carbon is desirable to minimize heat checking clatter velocks and heads, heavy flywheels, different carriers G35000 Brake drums and clutch plates for heavy-duty service that require heat resistance and high strength G4000 Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxes G3500c Extraheavy-duty brake drums G40000 Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxes G3500c Extraheavy-duty brake drums G40000 Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxes G35000c Extraheavy-duty parts for general in	ASTM A 48	2012 NEEDO 1 0.11	Small or thin-sectioned castings requiring good appearance, good machinability, and close dimensional tolerances
40, 45 Machine tools, medium-duty gear blanks, heavy compresse heavy motor blocks 50, 55, 60 Dies, crankshafts, high-pressure cylinders, heavy-duty machine tool parts, large gears, press frames ASTM A 159, SAE J431 G1800 G2500 Small cylinder blocks and heads, air-cooled cylinders, pist clutch plates, oil pump bodies, transmission cases, gear boxes, light-duty brake drums G2500a Brake drums and clutch plates for moderate service where high carbon is desirable to minimize heat checking G3000 Cylinder blocks, heads, liners, flywheels, pistons, clutch plates G3500b Brake drums and clutch plates for heavy-duty service that require heat receistance and high strength G40000 Truck cylinder blocks and heads, heavy flywheels, differential carriers G3500b Brake drums and clutch plates for heavy-duty service that require heat receistance and high strength G40000 Truck cylinder blocks and heads, heavy flywheels, bistons; heavy-duty parts for general industry ASTM A 278 40, 50, ASTM A 319 I, II, IIII STM A 436 1 Valve guides, insecticide pumps, flood gates, piston ring bands 1b Seawater valve and pump bodies, pump section belts 2 Fertilizer applicator parts, grupp and liners, stove tops, stean piston valve rings, caustic pump sand liners, stove tops, stean piston valve ring		30, 35	General machinery, municipal and waterworks, light
ASTM A 159, SAE J431 G1800 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G2500 G3000 G2500 G3000 G2500 G3000 Cylinder blocks and heads, air-cooled cylinders, pist clutch plates, or moderate service where high carbon is desirable to minimize heat checking G3000 Cylinder blocks, heads, liners, flywheels, pistons, clutch plates G3500b Brake drums and clutch plates for moderate service where high carbon is desirable to minimize heat checking G3000 Cylinder blocks and heads, heavy flywheels, different carriers G3500b Brake drums and clutch plates for heavy-duty service that require heat resistance and high strength G4000 Truck and tractor cylinder blocks and heads, heavy flywheels, different carriers G3500b Brake drums and clutch plates for heavy-duty service that require heat resistance and high strength G4000d Alloyed automotive engine canshafts G4000d Alloyed automotive engine castings, liners, cylinders, and pistons; heavy-duty parts for general industry havy-duty parts for general industry havy-duty parts for general industry NSTM A 278 ASTM A 319 ASTM A 436 A 436		40, 45	Machine tools, medium-duty gear blanks, heavy compressors
 ASTM A 159, SAE J431		50, 55, 60	Dies, crankshafts, high-pressure cylinders, heavy-duty machine tool parts, large gears, press frames
G2500Small cylinder blocks and heads, air-cooled cylinders, pisto clutch plates, oil pump bodies, transmission cases, gear boxes, light-duty brake drumsG2500aBrake drums and clutch plates for moderate service where high carbon is desirable to minimize heat checking G3000G3000Cylinder blocks and heads, heavy flywheels, differen carriersG3500Truck cylinder blocks and heads, heavy flywheels, differen carriersG3500Brake drums and clutch plates for heavy-duty service that require heat resistance and high strength Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxesG3500bBrake drums and clutch plates for heavy-duty service that require heat resistance and high strength Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxesMSTM A 27840, 50, 60, 70, 80NSTM A 319I, II, IIIStoker and firebox parts, grate bars, process furnace parts, ingot molds, glass molds, caustic pots, metal melting pot Automobile, truck, appliance, and machinery castings in quantityNSTM A 4361Valve guides, insecticide pumps, flood gates, piston ring bands2Fertilizer applicator parts, pump impellers 23Turbocharger housings, pumps and liners, stove tops, stean piston valve rings, caustic pumps and valves4Range tops5Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots	ASTM A 159, SAE J431	. G1800	Miscellaneous soft iron castings in which strength is the
G2500aBrake drums and clutch plates for moderate service where high carbon is desirable to minimize heat checking G3000G3000Cylinder blocks, heads, liners, flywheels, pistons, clutch platesG3500Truck cylinder blocks, heads, liners, flywheels, differen carriersG3500bBrake drums and clutch plates for heavy-duty service that require heat resistance and high strengthG4000Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxesG3500bBrake drums and clutch plates for heavy-duty service that require heat resistance and high strengthG40000Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxesG3500cExtraheavy-duty brake drums G4000d Alloyed automotive engine castings, liners, cylinders, and pistons; heavy-duty parts for general industryASTM A 27840, 50, (Valve bodies, paper mill dryer rollers, chemical process equipment, pressure vessel castingsASTM A 3191, II, IIIStoker and firebox parts, grate bars, process furnace parts, ingot molds, glass molds, caustic pots, metal melting pot andsASTM A 4361Valve guides, insecticide pumps, flood gates, piston ring bands1bSeawater valve and pump bodies, pump section belts 22Fertilizer applicator parts, pump impellers, 33Turbocharger housings, numps and liners, stove tops, stean piston valve rings, caustic pumps and valves 34Range tops5Glass rolls and molds, machine tools, gages, optical parts requiring		G2500	Small cylinder blocks and heads, air-cooled cylinders, pistons clutch plates, oil pump bodies, transmission cases, gear
G3000Cylinder blocks, heads, liners, flywheels, pistons, clutch platesG3500Truck cylinder blocks and heads, heavy flywheels, differen carriersG3500bBrake drums and clutch plates for heavy-duty service that require heat resistance and high strengthG4000Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxesG3500cExtraheavy-duty brake drums G4000dG4000dAlloyed automotive engine canshafts G4500G4000dDiesel engine castings, liners, cylinders, and pistons; heavy-duty parts for general industryASTM A 27840, 50, (Valve bodies, paper mill dryer rollers, chemical process equipment, pressure vessel castingsASTM A 319I, II, IIIStoker and firebox parts, grate bars, process furnace parts, ingot molds, glass molds, caustic pots, metal melting pot bandsASTM A 4361Valve guides, insecticide pumps, flood gates, piston ring bands1bSeawater valve and pump bodies, pump section belts 22bCaustic pump casings, valves, pump impellers 33Turbocharger housings, pumps and liners, stove tops, stean piston valve rings, caustic pumps and valves4Range tops5Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots		G2500a	Brake drums and clutch plates for moderate service where
G3500Truck cylinder blocks and heads, heavy flywheels, different carriersG3500bBrake drums and clutch plates for heavy-duty service that require heat resistance and high strengthG4000Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxesG3500cExtraheavy-duty brake drums G4000dG4000dAlloyed automotive engine camshafts G4500G4500Diesel engine castings, liners, cylinders, and pistons; heavy-duty parts for general industry Valve bodies, paper mill dryer rollers, chemical process equipment, pressure vessel castingsASTM A 27840, 50, 60, 70, 80 ASTM A 319Valve bodies, paper mill dryer rollers, chemical process equipment, pressure vessel castingsASTM A 8231Stoker and firebox parts, grate bars, process furnace parts, ingot molds, glass molds, caustic pots, metal melting pot Automobile, truck, appliance, and machinery castings in quantityASTM A 4361Valve guides, insecticide pumps, flood gates, piston ring bands2Fertilizer applicator parts, pump ispellers 33Turbocharger housings, valves, pump impellers 54Range tops 55Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots		G3000	Cylinder blocks, heads, liners, flywheels, pistons, clutch
G4000require heat resistance and high strength Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxesG3500cG3500cG4000dAlloyed automotive engine camshafts G4500G4500Diesel engine castings, liners, cylinders, and pistons; heavy-duty parts for general industryASTM A 27840, 50, 60, 70, 80ASTM A 319I, II, IIIStoker and firebox parts, ingot molds, glass molds, caustic pots, metal melting pot bandsASTM A 4361Valve guides, insecticide pumps, flood gates, piston ring bands1bSeawater valve and pump bodies, pump isction belts 22bCaustic pump casings, valves, pump impellers 32bCaustic pump casings, valves, pump impellers 344Range tops 55Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots		G3500	Truck cylinder blocks and heads, heavy flywheels, differentia
G4000Truck and tractor cylinder blocks and heads, heavy flywhe tractor transmission cases, differential carriers, heavy ge boxesG3500cG3500cG4000dAlloyed automotive engine camshaftsG4500Diesel engine castings, liners, cylinders, and pistons; heavy-duty parts for general industryASTM A 27840, 50, 60, 70, 80ASTM A 319I, II, IIIASTM A 319I, II, IIIStoker and firebox parts, grate bars, process furnace parts, ingot molds, glass molds, caustic pots, metal melting pot Automobile, truck, appliance, and machinery castings in quantityASTM A 4361Valve guides, insecticide pumps, flood gates, piston ring bands1bSeawater valve and pump bodies, pump section belts 22bCaustic pump casings, valves, pump impellers 33Turbocharger housings, pumps and liners, stove tops, stean piston valve rings, caustic pumps and valves4Range tops5Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots		G3500b	Brake drums and clutch plates for heavy-duty service that require heat resistance and high strength
G4000d G4500Alloyed automotive engine camshafts Diesel engine castings, liners, cylinders, and pistons; heavy-duty parts for general industry Valve bodies, paper mill dryer rollers, chemical process equipment, pressure vessel castingsASTM A 27840, 50, 60, 70, 80Valve bodies, paper mill dryer rollers, chemical process equipment, pressure vessel castingsASTM A 319I, II, IIIStoker and firebox parts, grate bars, process furnace parts, ingot molds, glass molds, caustic pots, metal melting pot Automobile, truck, appliance, and machinery castings in quantityASTM A 4361Valve guides, insecticide pumps, flood gates, piston ring bandsIbSeawater valve and pump bodies, pump section belts 22bCaustic pump casings, valves, plug valves3Turbocharger housings, pumps and liners, stove tops, stean piston valve rings, caustic pumps and valves4Range tops5Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots		G4000	Truck and tractor cylinder blocks and heads, heavy flywheels tractor transmission cases, differential carriers, heavy gear
G4000d G4500Alloyed automotive engine camshafts Diesel engine castings, liners, cylinders, and pistons; heavy-duty parts for general industry Valve bodies, paper mill dryer rollers, chemical process equipment, pressure vessel castingsASTM A 27840, 50, 60, 70, 80Valve bodies, paper mill dryer rollers, chemical process equipment, pressure vessel castingsASTM A 319I, II, IIIStoker and firebox parts, grate bars, process furnace parts, ingot molds, glass molds, caustic pots, metal melting pot Automobile, truck, appliance, and machinery castings in quantityASTM A 4361Valve guides, insecticide pumps, flood gates, piston ring bandsIbSeawater valve and pump bodies, pump section belts 22bCaustic pump casings, valves, plug valves3Turbocharger housings, pumps and liners, stove tops, stean piston valve rings, caustic pumps and valves4Range tops5Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots			Extraheavy-duty brake drums
ASTM A 278		G4000d	
 ASTM A 278		G4500	Diesel engine castings, liners, cylinders, and pistons; heavy-duty parts for general industry
 ASTM A 319		,	Valve bodies, paper mill dryer rollers, chemical process
ASTM A 823 Automobile, truck, appliance, and machinery castings in quantity ASTM A 436	ASTM A 319	I, II, III	Stoker and firebox parts, grate bars, process furnace parts,
bands1bSeawater valve and pump bodies, pump section belts2Fertilizer applicator parts, pump impellers, pump casings, plug valves2bCaustic pump casings, valves, pump impellers3Turbocharger housings, pumps and liners, stove tops, stean piston valve rings, caustic pumps and valves4Range tops5Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots	ASTM A 823		Automobile, truck, appliance, and machinery castings in
 Fertilizer applicator parts, pump impellers, pump casings, plug valves Caustic pump casings, valves, pump impellers Turbocharger housings, pumps and liners, stove tops, stean piston valve rings, caustic pumps and valves Range tops Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots 	ASTM A 436	1	Valve guides, insecticide pumps, flood gates, piston ring bands
 Fertilizer applicator parts, pump impellers, pump casings, plug valves Caustic pump casings, valves, pump impellers Turbocharger housings, pumps and liners, stove tops, stean piston valve rings, caustic pumps and valves Range tops Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots 			Seawater valve and pump bodies, pump section belts
 Turbocharger housings, pumps and liners, stove tops, steam piston valve rings, caustic pumps and valves Range tops Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots 		2	Fertilizer applicator parts, pump impellers, pump casings, plug valves
 Turbocharger housings, pumps and liners, stove tops, steam piston valve rings, caustic pumps and valves Range tops Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots 			Caustic pump casings, valves, pump impellers
4 Range tops 5 Glass rolls and molds, machine tools, gages, optical parts requiring minimal expansion and good damping qualities, solder rails and pots		Stadio In An	Turbocharger housings, pumps and liners, stove tops, steam piston valve rings, caustic pumps and valves
requiring minimal expansion and good damping qualities, solder rails and pots			Range tops
		5	requiring minimal expansion and good damping qualities,
v vaives		6	Valves

White Cast Iron

- 1.8 3.6% C; 0.5 1.9% Si; 0.25 0.8% mn; Carbon content is from Fe₃C. Promotes cementite instead of graphite and rapid cooling
- Hard and brittle, used in application where abrasion resistance is needed

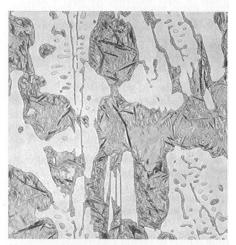

Composition С Class Туре Designation Mn Si Ni Cr Mo Ni-Cr-HC Ι....Α 3.0-3.6 1.3 max 0.8 max 3.3-5.0 1.4-4.0 1.0 max(a) Ι....Β Ni-Cr-LC 2.5 - 3.01.3 max 0.8 max 3.3 - 5.01.4-4.0 1.0 max(a) I C Ni-Cr-GB 2.9 - 3.71.3 max 0.8 max 2.7 - 4.01.1 - 1.5 $1.0 \max(a)$ I D Ni-Hi Cr 2.5 - 3.61.3 max 1.0 - 2.25.0-7.0 7.0-11.0 1.0 max(b) Π....Α 12% Cr 2.4-2.8 0.5 - 1.51.0 max 0.5 max 11.0 - 14.00.5 - 1.0(c)15% Cr-Mo-LC 2.4 - 2.80.5 - 1.51.0 max 0.5 max 14.0-18.0 1.0-3.0(c)15% Cr-Mo-HC 2.8 - 3.60.5 - 1.51.0 max 0.5 max 14.0-18.0 2.3 - 3.5(c)20% Cr-Mo-LC 2.0 - 2.60.5 - 1.51.0 max 1.5 max 18.0-23.0 $1.5 \max(c)$ Π....Ε 20% Cr-Mo-HC 2.6 - 3.20.5 - 1.51.0 max 1.5 max 18.0-23.0 1.0-2.0(c)III..... A 25% Cr 2.3 - 3.00.5 - 1.51.0 max 1.5 max 23.0-28.0 $1.5 \max(c)$

Table 1 Composition and mechanical requirements of abrasion-resistant cast irons per ASTM A 532

					Mechan	ical requirements —		
				Hardne	ss, HB			1
Class	Туре	Designation	Sand cast, min	Chill cast, min	Hardened, min	Softened, max	Typical section in.	n thickness, max mm
I	A	Ni-Cr-HC	550	600			8	200
Ι	B	Ni-Cr-LC	550	600			8	200
Ι	C	Ni-Cr-GB	550	600			3 diam ball	75 diam ball
Ι	D	Ni-Hi Cr	550	500	600	400	12	300
II	A	12% Cr	550		600	400	1 diam ball	25 diam ball
II	B	15% Cr-Mo-LC	450		600	400	4	100
II	C	15% Cr-Mo-HC	550		600	400	3	75
II	D	20% Cr-Mo-LC	450		600	400	8	200
II	E	20% Cr-Mo-HC	450		600	400	12	300
III	A	25% Cr	450		600	400	8	200
(a) Maximum: 0.	.30% P, 0.15% S.	(b) Maximum: 0.10% P, 0.	15% S. (c) Maxim	um: 0.10% P, 0.06	% S, 1.2% Cu			

Ni-Cr White Cast Iron

- Low cost, Ni-Cr white irons are consumed in large tonnages in mining operations as grinding balls.
- Class I type A castings are used in applications requiring maximum abrasion resistance, such as ash pipes, slurry pumps, roll heads, muller tires, augers, coke-crusher segments, classifier shoes, brick molds, pipe elbows carrying abrasive slurries.
- Type B is recommended for applications requiring more strength and exerting moderate impact, such as crusher plates, crusher concaves, and pulverizer pegs.

ig. 1 Typical microstructure of class I type A nickel-chromium white cast iron. $340\times$

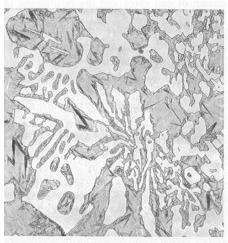
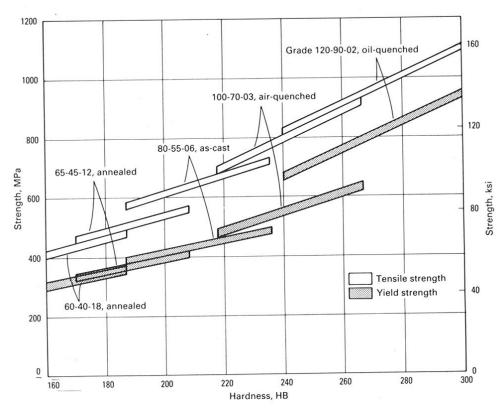


Fig. 2 Typical microstructure of class I type D nickel-chromium white cast iron. $340 \times$

Ni-Cr White Cast Iron

- Class I type D, (Ni-Hard type 4), has a higher level of strength and toughness and is therefore used for the more severe applications that justify its added alloy costs. It is commonly used for pump volutes handling abrasive slurries and coal pulverizer table segments and tires.
- The class I type C alloy (Ni-Hard 3) is specifically designed for the production of grinding balls. This grade is both sand cast and chill cast. Chill casting has the advantage of lower alloy cost, and, more important, provides a 15 to 30% improvement in life. All grinding balls require tempering for 8 h at 260 to 315°C (500 to 600°F) to develop adequate impact toughness.


High Cr White Cast Iron

- Applications of High Cr White Cast Irons
- The high-chromium white irons are superior in abrasion resistance and are used effectively in impellers and volutes in slurry pumps, classifier wear shoes, brick molds, impeller blades and liners for shot blasting equipment, and refiner disks in pulp refiners.
- In many applications they withstand heavy impact loading, such as from impact hammers, roller segments and ring segments in coal-grinding mills, feed-end lifter bars and mill liners in ball mills for hard- rock mining, pulverizer rolls, and rolling mill rolls.

Ductile Iron

- Ductile iron replace gray iron because of its superior properties
- Examples crankshafts, piston rings, exhaust manifolds, and cylinder liners.
- ductile iron provides increased strength and reduces weight
- In agricultural and earth-moving applications, brackets, couplings, rollers, hydraulic valves, sprocket wheels, and track components of improved strength and toughness are made of ductile iron.

			- Compositio	on ———	
Grade	C C	Si	Mn	Р	S
3.1	3.5-4.6	<3.0	< 0.1	< 0.08	0.03 max
3.2	3.5-4.6	$<\!\!4.0$	<0.1-0.4	< 0.08	0.03 max

Ductile Iron

- General engineering applications include hydraulic cylinders, mandrels, machine frames, switch gear, rolling mill rolls, tunnel segments, low-cost rolls, bar stock, rubber molds, street furniture such as covers and frames, and railway rail- clip supports. For these applications, ductile iron has provided increased performance or weight savings.
- Ductile iron gears have performed well in noncritical engineering and agricultural applications, but austempered (heat treatment) ductile iron offers a combination of strength, fatigue properties, and wear resistance that makes it of great interest for heavy engineering and automotive gears-applications
- However, many new engineering components are likely to be amenable to design with ductile iron

Ductile Iron

Table 5 Some mechanical properties expected in ductile iron grades covered by UK standard B52789

						Yie streng	gth in														
	Tensile strength		Yield strength		Elongation,	compres- sion		Shear strength			Torsional strength		ulus of city (E)		ulus of ity (G)	Poisson's	Hardness.	Note		limit(a) Unnot	
Grade M	1Pa	ksi	MPa	ksi	%	MPa	ksi	MPa	ksi	MPa	ksi	GPa	10 ⁶ psi	GPa	10 ⁶ psi	ratio, v	Hardness, HB	MPa	ksi	MPa	
Ferritic grades																					
350/22; 350/22L403	350	51	215	31	22	229	33	315	46	315	46	169	24.5	65.9	9.6	0.275	107-130	114	17	180	26
400/18; 400/18L204	400	58	259	38	18	273	40	360	52	360	52	169	24.5	65.9	9.6	0.275	120-140	122	18	195	28
420/12	420	61	278	40	12	292	42	378	55	378	55	169	24.5	65.9	9.6	0.275	140-155	124	18	201	29
Intermediate grades																					
450/10	450	65	305	44	10	319	46	405	59	405	59	169	24.5	65.9	9.6	0.275	150-172	128	19	210	30
500/75		73	339	49	7	351	57	450	65	450	65	169	24.5	65.9	9.6	0.275	172-216	134	20	224	32
600/36	500	87	372	54	3	382	55	540	78	540	78	174	25.2	67.9	9.8	0.275	216-247	149	22	248	36
Pearlitic as-cast and norma	alized	I																			
700/2	700	102	416	60	2	425	62	630	91	630	91	176	25.5	68.6	9.9	0.275	247-265	168	41	280	41
	300	116	471	68	2	480	70	720	104	720	104	176	25.5	68.6	9.9	0.275	>265	182	44	304	44
900/2	900	131	526	76	2	535	78	810	117	810	117	176	25.5	68.6	9.9	0.275	>265	190	46	317	46
Hardened-and-tempered g	rades																				
700/2	700	102	550	80	2	559	81	630	91	630	91	172	24.9	67.1	9.7	0.275	232-259	168	41	280	41
	300	116	630	91	2	639	93	720	104	720	104	172	24.9	67.1	9.7	0.275	>259	182	44	304	44
900/2	900	131	710	103	2	719	104	810	117	810	117	172	24.9	67.1	9.7	0.275	>259	190	46	317	46

(a) Wöhler specimen 10.6 mm (0.42 in.) in diameter unnotched; 10.6 mm (0.042 in.) in diameter at root of notch in notched tests. Circumferential 45° V-notch with 25 mm (1 in.) root radius and notch depth of 3.6 mm (0.14 in.). Source: Ref 9

 Malleable Iron is a cast metal produced as white cast iron and heat treated to convert the carbon-containing phase from Fe₃C to a nodular form of graphite called temper carbon.

Table 1Chemical composition ofmalleable iron

Element	Composition, %
Carbon	2.16–2.90
Silicon	0.90-1.90
Manganese	0.15-1.25
Sulfur	0.02–0.20
Phosphorus	0.02–0.15

- There are two types of ferritic malleable iron: blackheart and whiteheart. Only the blackheart type is produced in the United States. This material has a matrix of ferrite with interspersed nodules of temper carbon.
- Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and lowcarbon metallic matrix. Because of the way in which graphite is formed in malleable iron, however, the nodules are not truly spherical as they are in ductile iron but are irregularly shaped aggregates.

- Malleable iron and ductile iron are used for some of the same applications in which ductility and toughness are important. In many cases, the choice between malleable and ductile iron is based on economy or availability rather than on properties. In certain applications, however, malleable iron has a distinct advantage. It is preferred for thinsection castings; for parts that are to be pierced, coined, or cold formed; for parts requiring maximum machinability; for parts that must retain good impact resistance at low temperatures; and for some parts requiring wear resistance (martensitic malleable iron only).
- Ductile iron has a clear advantage where low solidification shrinkage is needed to avoid hot tears or where the section is too thick to permit solidification as white iron. (Solidification as white iron throughout a section is essential to the production of malleable iron.) Malleable iron castings are produced in section thicknesses ranging from about 1.5 to 100 mm and in weights from less than 0.03 to 180 kg or more.

Table 3 Properties of malleable iron castings

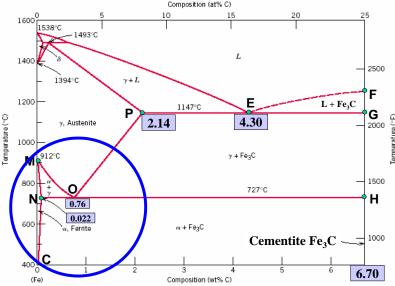
Microstructures and typical applications are given in Table 2.

Cla	ass or	Ten		Yie stren		Hardness,	Elongation(a)
Specification No. gr	grade	MPa	ksi	MPa	ksi	HB	%
Ferritic							
ASTM A47 and A338, ANSI							
G48.1, FED QQ-I-666c 32	2510	345	50	224	32	156 max	10
	5018	365	53	241	35	156 max	18
ASTM A197 ·	• •	276	40	207	30	156 max	5
Pearlitic and martensitic							
ASTM A220, ANSI G48.2,							
	010	414	60	276	40	149-197	10
	5008	448	65	310	45	156-197	8
45	5006	448	65	310	45	156-207	6
50	0005	483	70	345	50	179-229	5
60	0004	552	80	414	60	197-241	4
70	0003	586	85	483	70	217-269	3
80	0002	655	95	552	80	241-285	2
90	0001	724	105	621	90	269-321	1
Automotive							
ASTM A602, SAE J158 M32	210(b)	345	50	224	32	156 max	10
	504(c)	448	65	310	45	163-217	4
M50	003(c)	517	75	345	50	187-241	3
M55	503(d)	517	75	379	55	187-241	3
M70	002(d)	621	90	483	70	229-269	2
M85	501(d)	724	105	586	85	269-302	1

(a) Minimum in 50 mm (2 in.). (b) Annealed. (c) Air quenched and tempered. (d) Liquid quenched and tempered

- The requirement that any iron produced for conversion to malleable iron must solidify white places definite section thickness limitations on the malleable iron industry.
- High-production foundries are usually reluctant to produce castings more than about 40 mm thick. Some foundries, however, routinely produce castings as thick as 100 mm (4 in.).
- Automotive and associated applications of ferritic and pearlitic malleable irons include many essential parts in vehicle power trains, frames, suspensions, and wheels.
- Ferritic and pearlitic malleable irons are also used in the railroad industry and in agricultural equipment.

Maleable Iron Table 2 Applications of malleable iron castings


- Malleable iron castings are often selected because the material has excellent machinability in addition to significant ductility.
- In other applications, malleable iron is chosen because it combines castability with good toughness and machinability.
- Malleable iron is often chosen because of shock resistance alone.

Mechanical properties are given in Table 3.

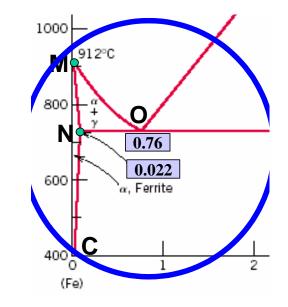
Specification No.	Class or grade	Microstructure	Typical applications
Ferritic			
ASTM A47, ANSI G48.1, FED QQ-1-666c	32510 35018	Temper carbon and ferrite	General engineering service at normal and elevated temperatures for good machinability and excellent shock resistance
ASTM A338	32510 35018	Temper carbon and ferrite	Flanges, pipe fittings, and valve parts for railroad, marine, and other heavy-duty service to 345 °C (650 °F)
ASTM A197, ANSI G49.1	•••	Free of primary graphite	Pipe fittings and valve parts for pressure service
Pearlitic and martensitic			
ASTM A220, ANSI G48.2,			
MIL-I-11444B	40010 45008 45006 50005 60004 70003 80002 90001	Temper carbon in necessary matrix without primary cementite or graphite	General engineering service at normal and elevated temperatures. Dimensional tolerance range for castings is stipulated
Automotive			
ASTM A602, SAE J158	M3210	Ferritic	For low-stress parts requiring good machinability: steering-gear housings, carriers, and mounting brackets
	M4504	Ferrite and tempered pearlite(a)	Compressor crankshafts and hubs
	M5003	Ferrite and tempered pearlite(a)	For selective hardening: planet carriers, transmission gears, and differential cases
	M5503	Tempered martensite	For machinability and improved response to induction hardening
	M7002	Tempered martensite	For high-strength parts: connecting rods and universal-joint yokes
	M8501	Tempered martensite	For high strength plus good wear resistance: certain gears

(a) May be all tempered martensite for some applications

Plain Carbon SteelsLow carbon ($\leq 0.20\%$ C)($\leq 1\%$ Mn)Medium Carbon (0.2 - 0.5%C)High Carbon ($\geq 0.5\%$ C)

Two methods of identifying grades of cast steels are extensively used in the United States. AISI designations for wrought steels are examples of the first method -first two digits indicate the alloy type, and the second two digits represent the carbon content. For example, a 1010 steel represents a carbon steel with 0.10% C, while a 1320 steel represents a manganese steel with 0.20% C. This system does not include mechanical properties or heat treatment. Accordingly, a cast 1040 steel (0.40% C) can exhibit a yield strength of 330 MPa (48 ksi) or of 496 MPa (72 ksi), depending on the choice of heat treatment.

Plain Carbon Steels Low carbon ($\leq 0.20\%$ C)


(≤ 1%Mn) Medium Carbon (0.2 - 0.5%C) High Carbon (≥ 0.5%C)

In the second method, letters and numbers are arbitrarily assigned to • steels with well-defined compositions, which index the heat treatment as well as the mechanical properties. There are usually many steel grade designations that represent a single type of steel. For example, there are four ASTM specifications that together include 16 grades of chromium-molybdenum steels. These 16 grades, however, are made up of only three different steels. Although such a system may appear confusing because of the redundancy of designations, the system does offer the advantage of characterizing the cast steel end product as thoroughly as is needed for its end use.

- Low-carbon cast steels (less than 0.20% C) are mainly produced for electrical and magnetic equipment and are normally given a full anneal heat treatment.
- Some castings for the railroad industry are produced from low-carbon cast steel. Castings for the automotive industry are also produced from this class of steel, as are annealing boxes and hot metal ladles.
- Steel castings in this class are also produced for case carburizing, by which process the castings are given a hard wear-resistant exterior and a tough, ductile core.
- The magnetic properties of cast low-carbon steels make them useful in the manufacture of electrical equipment.

•

The medium-carbon cast steels (0.20 to 0.50%C) represents bulk of steel casting production. Mostly heat treated by normalizing, which consists of cooling the castings in air from approximately 50°C above the upper critical temperature. A stress-relief treatment can be used to relieve stresses set up in the casting by cooling conditions or welding operations and to soften the HAZ resulting from welding.

used in a wide variety of ways, including applications in the railroad and other transportation industries, machinery and tools, equipment for rolling mills, mining and construction equipment, and many other miscellaneous applications.

- High-Carbon Cast Steels. (more than 0.50% C) Because of their high carbon contents, these grades are the most hardenable of the plain carbon cast steels. They are therefore used in applications that require relatively high strength levels.
- In addition to Plain carbon steels, there are steels with alloying elements
- Low Alloy Steels (< 8% alloying elements)

Cast steel designation	Nearest wrought equivalent	Alloying elements
1300	1300	Manganese
8000, 8400	8000, 8400	Manganese, molybdenum
80B00	80B00	Manganese, molybdenum, boron
2300	2300	Nickel
8600, 4300	8600, 4300	Nickel, chromium, molybdenum
9500	9500	Manganese, nickel, chromium, molybdenum
4100	4100	Chromium, molybdenum

- High–Alloy Steel Castings (including stainless steel castings)
- Widely used for corrosion resistance, and for high temperature service in hot gases, liquids.
 Lecture 5

	Heat	Tensile	strength	gth Yield stre		Reduction	Elongation,	Hardness,	Fati endur lin	ance	Ratio of endurance limit
Class(a)	treatment(b)	MPa	ksi	MPa	ksi	in area, %	%	HB HB	MPa	ksi	to tensile strengt
Carbon steels											
60	A	434	63	241	35	54	30	131	207	30	0.48
65		469	68	262	38	48	28	131	207	30	0.44
70	N	517	75	290	42	45	27	143	241	35	0.47
80	NT	565	82	331	48	40	23	163	255	37	0.45
85	NT	621	90	379	55	38	20	179	269	39	0.43
100	QT	724	205	517	75	41	19	212	310	45	0.45
Low-alloy steels(c)											
65	NT	469	68	262	38	55	32	137	221	32	0.47
70	NT	510	74	303	44	50	28	143	241	35	0.47
80	NT	593	86	372	54	46	24	170	269	39	0.45
90	NT	655	95	441	64	44	20	192	290	42	0.44
105	NT	758	110	627	91	48	21	217	365	53	0.48
120	QT	883	128	772	112	38	16	262	427	62	0.48
150	QT	1089	158	979	142	30	13	311	510	74	0.40
175	QT	1234	179	1103	160	25	11	352	579	84	0.47
200	QT	1413	205	1172	170	21	8	401	607	88	0.43

Table 1 Properties of various classes of cast carbon and low-alloy steels

(a) Class of steel based on tensile strength (ksi). (b) A, annealed; N, normalized; NT, normalized and tempered; QT, quenched and tempered. (c) Below 8% total alloy content

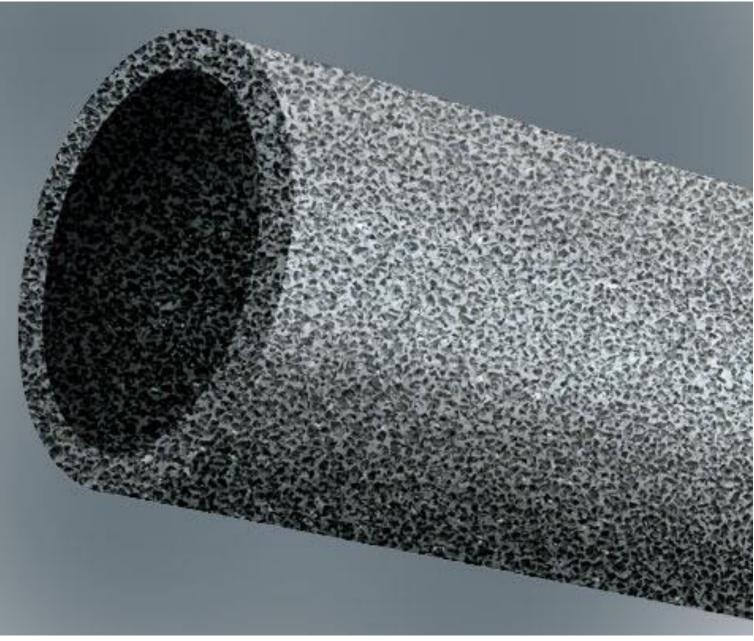
and the second	Wrought		Composition, %(b)						1 miles		
Alloy	alloy type(a)	Most common end-use microstructure	Cr	Ni	Мо	Si	Mn	Р	S	С	Others
Chromium	steels	formed to as high-alloy sig									
CA-15	410	Martensite	11.5-14.0	1.00	0.50	1.50	1.00	0.04	0.04	0.15	
CA-15M		Martensite	11.5-14.0	1.00	0.15-1.0	0.65	1.00	0.04	0.04	0.15	
CA-40		Martensite	11.5-14.0	1.00	0.5	1.50	1.00	0.04	0.04	0.20 -0.40	
	431,442	Ferrite + carbides	18.0-21.0	2.00		1.50	1.00	0.04	0.04	0.30	
CC-50		Ferrite + carbides	26.0-30.0	4.00		1.50	1.00	0.04	0.04	0.50	•••
Chromium	-nickel steels	Similators Shools									
CA CNIM		Martensite	11.5-14.0	3.5-4.5	0.40-1.0	1.00	1.00	0.04	0.03	0.06	
	17-4PH	Martensite-age hardenable	15.5-17.0	3.6-4.6		1.50	1.00	0.04	0.04	0.07	2.3–3.3 Cu
		Austenite in ferrite-age	25.0-26.5	4.75-6.0	1.75-2.25	1.00	1.00	0.04	0.04	0.04	2.75-3.25 Cu
CD-4MCu		hardenable	25.0-20.5		1.75 2.25						
CE-30		Ferrite in austenite	26.0-30.0	8.0-11.0		2.00	1.50	0.04	0.04	0.30	
	304L	Ferrite in austenite	17.0-21.0	8.0-12.0		2.00	1.50	0.04	0.04	0.03	
CF-8		Ferrite in austenite	18.0-21.0	8.0-11.0		2.00	1.50	0.04	0.04	0.08	interiore and the state and the
CF-20		Austenite	18.0-21.0	8.0-11.0		2.00	1.50	0.04	0.04	0.20	
		Ferrite in austenite	17.0-21.0	9.0-13.0	2.0-3.0	1.50	1.50	0.04	0.04	0.03	
CF-8M		Ferrite in austenite	18.0-21.0	9.0-12.0	2.0-3.0	1.50	1.50	0.04	0.04	0.08	• • •
		Ferrite in austenite or austenite	18.0-21.0	9.0–12.0	2.0-3.0	2.00	1.50	0.04	0.04	0.12	stadijev godrežan
00.00	247	Ferrite in austenite	18.0-21.0	9.0-12.0	ey 1989e	2.00	1.50	0.04	0.04	0.08	$Nb = 8 \times C, 1.0 ma$
CF-8C		Austenite	18.0-21.0	9.0-12.0	1.50	2.00	1.50	0.17	0.04	0.16	0.20-0.35 Se
CF-16F .			18.0-21.0	9.0-13.0	3.0-4.0	1.50	1.50	0.04	0.04	0.08	ine delareste • • to bits
CG-8M		Ferrite in austenite		12.0-15.0		2.00	1.50	0.04	0.04	0.20	a set in the
CH-20		Austenite	22.0-26.0	19.0-22.0	A& 是一个时间和244	1.75	1.50	0.04	0.04	0.20	
CK-20		Austenite	23.0-27.0	19.0-22.0	alum alda	1.75	1.50	0.04	0.04	0.20	
Nickel-chr	omium steel						10000	- laides).	1.20	D. (mart), De	
CN-7M		Austenite	19.0-22.0	27.5-30.5	2.0-3.0	1.50	1.50	0.04	0.04	0.07	3.0–4.0 Cu

Table 1 Compositions and microstructures of corrosion-resistant high-alloy cast steels

(a) Wrought alloy type numbers are AISI designations for grades most closely corresponding to casting alloys. Wrought alloy type numbers are given only as a guide for determining corresponding cast and wrought grades. Buyers should use cast alloy designations when specifying castings. (b) Maximum unless range is given. All compositions contain balance of iron.

Aluminum and Aluminum Alloys

- 1xx.x: Controlled unalloyed compositions
- 2xx.x: Al alloys containing copper as the major alloying element
- 3xx.x: AI-Si alloys also containing magnesium and/or copper
- 4xx.x: Binary Al-Si alloys .
- 5xx.x: Al alloys containing magnesium as major alloying element
- 6xx.x: Currently unused
- 7xx.x: Al alloys containing zinc as the major alloying element, usually also containing additions of either copper, magnesium, chromium, manganese, or combinations of these elements
- 8xx.x: Al alloys containing tin as the major alloying element
- 9xx.x: Currently unused


Aluminum and Aluminum Alloys Table 1 Compositions of registered aluminum casting alloys used to cast shapes

Compositions of alloys used to cast primary ingots are not shown.

		Products(a) Si Fe Cu Mn Mg Cr Ni Zn Sn Ti										0.1	
lloy	Products(a)	Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Sn	Ti	Othe Each	ers Tota
01.1	S	0.10	0.15	4.0-5.2	0.20-0.50	0.15-0.55					0.15-0.35	0.05(c)	0.10
	S	0.05	0.10	4.0-5.0	0.20-0.40	0.15-0.35					0.15-0.35	0.03(c)	0.10
	S	0.05	0.05	4.5-5.0	0.20-0.50	0.25-0.35					0.15-0.35	0.05(d)	0.15
	S	0.10	0.15	4.0-5.2	0.20-0.8	0.15-0.55	0.20-0.6				0.15-0.35	0.05(c)	0.10
	S	0.30	0.50	4.5-5.5	0.20-0.30	0.10		1.3-1.7	0.10		0.15-0.25(e)	0.05(c)	0.2
	S, P	0.20	0.35	4.2-5.0	0.10	0.15-0.35		0.05	0.10	0.05	0.15-0.30	0.05	0.1
	S, P	0.10	0.15	4.2-5.0	0.20-0.50	0.15-0.35		0.05	0.10	0.05	0.15-0.30	0.05	0.1
	S, P	0.05	0.10	4.2-5.0	0.20-0.50	0.15-0.35		0.05	0.10	0.05	0.15-0.30	0.05	0.1
	S, P	2.5-3.5	1.2	3.5-4.5	0.50	0.10		0.35	1.0		0.25		0.5
	S, P	1.0-3.0	1.2	6.0-8.0	0.6	0.10		0.35	2.5		0.25		0.5
	S, P	2.0	1.5	9.2-10.7	0.50	0.15-0.35		0.50	0.8		0.25		0.3
	S, P	0.06	0.10	4.5-5.5	0.20-0.50						0.35	0.03(g)	0.1
		3.5-4.5	1.5	9.0-11.0	0.20-0.50	0.15-0.35		1.0	1.5		0.25	0.03(g)	0.1
	S	0.50	0.50	7.0–9.0	0.30-0.7	5.5-6.5		0.30-0.7	0.10		0.20	0.05	0.5
	S, P	0.50	1.0	3.5-4.5	0.35	1.2-1.8	0.25	1.7-2.3	0.35		0.25	0.05	
		0.6	0.8	3.7-4.5	0.35	1.2-1.7	0.15-0.25	1.7-2.3	0.35		0.23	0.05	0.1
	S	0.35	0.40	3.5-4.5	0.15-0.45	1.8-2.3	0.13-0.23	1.9-2.3	0.05				
					0.15-0.45		0.20-0.40	1.9-2.3			0.06-0.20	0.05(h)	0.1
		0.05 0.7–1.5	0.10	3.8-4.6 4.0-5.0		0.25-0.50			2.5-3.5		0.02-0.35	0.03	0.1
	S		1.0		0.35	0.03			0.35		0.25	0.05	0.1
	P	2.0-3.0	1.2	4.0-5.0	0.35	0.05		0.35	0.50		0.25		0.3
	S, P	4.5-5.5	0.6	1.0-1.5	0.50	0.10	0.25		0.35		0.25	0.05	0.1
	S, P	4.5-5.5	0.20	1.0-1.5	0.10	0.10			0.10		0.20	0.05	0.1
	S, P	5.0-6.0	1.0	4.0-5.0	0.50	0.10			1.0		0.25		0.5
	S, P	5.5-6.5	1.0	3.0-4.0	0.50	0.10		0.35	1.0		0.25		0.5
	S, P	5.5-6.5	1.0	3.0-4.0	0.50	0.10		0.35	3.0		0.25		0.5
	S, P	5.5-6.5	1.2	3.0-4.0	0.8	0.10-0.50		0.50	1.0		0.25		0.5
	S, P	5.0-8.0	1.2	2.0-4.0	0.8	0.05-0.6		0.35	3.0		0.25		0.5
	Р	7.0-8.0	1.2	0.40-0.6	0.50	0.40-0.7		0.30	1.0		0.20	0.15	0.2
	S	7.5-8.5	1.0	1.0-2.0	0.20-0.6	0.20-0.6	0.35	0.25	1.5		0.25		0.5
	P	8.5-10.5	1.2	2.0-4.0	0.50	0.50-1.5		0.50	1.0		0.25		0.5
	Р	8.0 - 10.0	1.0	3.0-4.0	0.50	0.05-0.50		0.50	1.0		0.25		0.5
	Р	8.0 - 10.0	1.0	3.0-4.0	0.50	0.05-0.50		0.50	3.0		0.25		0.5
	Р	11.0-13.0	1.2	0.50-1.5	0.35	0.7-1.3		2.0-3.0	0.35		0.25	0.05	• •
	Р	11.0-13.0	1.2	1.5 - 3.0	0.50	0.50-1.5		0.50-1.5	1.0		0.25		0.5
	D	6.7-7.7	1.2	0.50-0.9	0.50	0.10	0.10		1.2 - 2.0	0.50		0.10	0.3
	Р	8.6-9.4	0.20	1.6-2.0	0.10	0.40-0.6			0.10		0.20	0.05	0.1
	S, P	4.5-5.5	0.6(i)	1.0-1.5	0.50(i)	0.40-0.6	0.25		0.35		0.25	0.05	0.1
\$355.0	S, P	4.5-5.5	0.09	1.0-1.5	0.05	0.45-0.6			0.05		0.04-0.20	0.05	0.1
	S, P	4.5-5.5	0.20	1.0-1.5	0.10	0.40-0.6			0.10		0.20	0.05	0.1
56.0	S, P	6.5-7.5	0.6(i)	0.25	0.35(i)	0.20-0.45		• • •	0.35		0.25	0.05	0.1
356.0	S, P	6.5-7.5	0.20	0.20	0.10	0.25-0.45			0.10		0.20	0.05	0.1
356.0	S, P	6.5-7.5	0.09	0.05	0.05	0.25-0.45			0.05		0.04-0.20	0.05	0.1
356.0	S, P	6.5-7.5	0.07	0.05	0.05	0.25-0.45			0.05		0.04-0.20	0.05	0.1
356.0	S, P	6.5-7.5	0.20	0.20	0.10	0.17-0.25			0.10		0.04-0.20	0.05	0.1
57.0	S, P	6.5-7.5	0.15	0.05	0.03	0.45-0.6			0.05		0.20	0.05	0.1
357.0	S, P	6.5-7.5	0.20	0.20	0.10	0.40-0.7			0.10		0.04-0.20	0.05(j)	0.1
	S, P	6.5-7.5	0.09	0.05	0.05	0.40-0.6			0.05		0.04-0.20	0.05	0.1
	S, P	6.5-7.5	0.09	0.05	0.05	0.45-0.7			0.05		0.04-0.20	0.05(j)	0.1
	S	6.5-7.5	0.20		0.10	0.55-0.6					0.10-0.20	0.05(j)	0.1
	S, P	7.6-8.6	0.30	0.20	0.20	0.40-0.6	0.20		0.20		0.10-0.20	0.05(k)	0.1
	S, P	8.5-9.5	0.20	0.20	0.10	0.50-0.7			0.10		0.20	0.05(K)	0.1
	D	9.0-10.0	2.0	0.6	0.35	0.40-0.6		0.50	0.50	0.15	0.20		0.1
00.0	····· D	9.0-10.0	2.0	0.0	0.55	0.40-0.0		0.50	0.50	0.15			0

(continued)

(a) D, die casting; P, permanent mold; S, sand. Other products may pertain to the composition but are not listed. (b) Weight percent; maximum unless range is given or otherwise indicated. All compositions contain balance of aluminum. (c) 0.40–1.0 Ag. (d) 0.50–1.0 Ag. (e) 0.50 max Ti + Zr. (f) 0.20–0.30 Sb. 0.20–0.30 Co. 0.10–0.30 Zr. (g) 0.05–0.15 V, 0.10–0.25 Zr. (h) 0.06–0.20 V. (i) If iron exceeds 0.45%, manganese content shall not be less than one-half of iron content. (j) 0.04–0.07 Be. (k) 0.10–0.30 Be. (l) 0.8 max Mn + Cr. (m) 0.25 max Pb. (n) 0.02–0.04 Be. (o) 0.08–0.15 V. (p) 0.10 max Pb. (q) 0.003–0.007 Be, 0.005 max B. Source: Ref I

Aluminum and Aluminum Alloys

							- Composition	n. %(b) ———					
Alloy	Products(a)	۱ ۲	Г.	0			-	., (,				Oth	ners
		Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Sn	Ti	Each	Total
	D	9.0-10.0		0.6	0.35	0.40-0.6		0.50	0.50	0.15			0.25
361.0		9.5-10.5		0.50	0.25	0.40-0.6	0.20-0.30	0.20-0.30	0.50	0.10	0.20	0.05	0.15
	S, P	4.5-6.0	1.1	2.5-3.5	(1)	0.15-0.40	(1)	0.25	3.0-4.5	0.25	0.20	(m)	0.30
364.0		7.5-9.5	1.5	0.20	0.10	0.20-0.40	0.25-0.50	0.15	0.15	0.15		0.05(n)	0.15
369.0		11.0-12.0		0.50	0.35	0.25-0.45	0.30-0.40	0.05	1.0	0.10		0.05	0.15
380.0		7.5-9.5	2.0	3.0-4.0	0.50	0.10		0.50	3.0	0.35			0.15
A380.0		7.5-9.5	1.3	3.0-4.0	0.50	0.10		0.50	3.0	0.35			0.50
B380.0		7.5-9.5	1.3	3.0-4.0	0.50	0.10		0.50	1.0	0.35			0.50
383.0		9.5-11.5	1.3	2.0-3.0	0.50	0.10		0.30	3.0	0.15			
384.0		10.5-12.0	1.3	3.0-4.5	0.50	0.10		0.50	3.0	0.35			0.50
A384.0		10.5-12.0	1.3	3.0-4.5	0.50	0.10		0.50	1.0	0.35			0.50
385.0		11.0-13.0	2.0	2.0-4.0	0.50	0.30		0.50	3.0			• • •	0.50
390.0	D	16.0-18.0	1.3	4.0-5.0	0.10	0.45-0.65			0.10	0.30			0.50
A390.0	S, P	16.0-18.0	0.50	4.0-5.0	0.10	0.45-0.65			0.10		0.20	0.10	0.20
B390.0	D	16.0-18.0	1.3	4.0-5.0	0.50	0.45-0.65		0.10			0.20	0.10	0.20
392.0		18.0-20.0	1.5	0.40-0.8	0.20-0.6	0.8-1.2			1.5		0.20	0.10	0.20
	S, P, D	21.0-23.0	1.3	0.7-1.1	0.10	0.3-1.2		0.50	0.50	0.30	0.20	0.15	0.50
413.0		11.0-13.0	2.0	1.0	0.35		• • •	2.0-2.5	0.10		0.10-0.20	0.05(o)	0.15
A413.0		11.0-13.0	1.3	1.0		0.10		0.50	0.50	0.15			0.25
	S, P	11.0-13.0	0.50	0.10	0.35	0.10		0.50	0.50	0.15			0.25
	S. P	4.5-6.0	0.50		0.35	0.05		0.05	0.10		0.25	0.05	0.20
A443.0		4.5-6.0		0.6	0.50	0.05	0.25		0.50		0.25		0.35
B443.0			0.8	0.30	0.50	0.05	0.25		0.50	••••	0.25		0.35
C443.0		4.5-6.0	0.8	0.15	0.35	0.05			0.35		0.25	0.05	0.15
		4.5-6.0	2.0	0.6	0.35	0.10		0.50	0.50	0.15			0.25
	S, P	6.5-7.5	0.6	0.25	0.35	0.10			0.35		0.25	0.05	0.15
A444.0		6.5-7.5	0.20	0.10	0.10	0.05			0.10		0.20	0.05	0.15
511.0		0.30-0.7	0.50	0.15	0.35	3.5-4.5			0.15		0.25	0.05	0.15
512.0		1.4-2.2	0.6	0.35	0.8	3.5-4.5	0.25		0.35		0.25	0.05	0.15
513.0		0.30	0.40	0.10	0.30	3.5-4.5			1.4-2.2		0.20	0.05	
514.0		0.35	0.50	0.15	0.35	3.5-4.5			0.15		0.25		0.15
515.0		0.50-1.0	1.3	0.20	0.40-0.6	2.5-4.0			0.10		0.25	0.05	0.15
516.0		0.30-1.5	0.35-1.0	0.30	0.15-0.40	2.5-4.5		0.25-0.04	0.20	0.10		0.05	0.15
518.0		0.35	1.8	0.25	0.35	7.5-8.5		0.15	0.15	0.15	0.10-0.20	0.05(p)	
520.0		0.25	0.30	0.25	0.15	9.5-10.6			0.15	0.15			0.25
535.0		0.15	0.15	0.05	0.10-0.25	6.2-7.5			0.15		0.25	0.05	0.15
A535.0	S	0.20	0.20	0.10	0.10-0.25	6.5-7.5					0.10-0.25	0.05(q)	0.15
B535.0		0.15	0.15	0.10	0.05	6.5-7.5					0.25	0.05	0.15
705.0	S, P	0.20	0.8	0.20	0.40-0.6	1.4-1.8					0.10-0.25	0.05	0.15
707.0		0.20	0.8	0.20	0.40-0.6		0.20-0.40		2.7-3.3		0.25	0.05	0.15
710.0		0.15	0.50	0.35-0.65	0.40-0.0	1.8-2.4	0.20-0.40		4.0-4.5		0.25	0.05	0.15
711.0		0.30	0.7-1.4	0.35-0.65		0.6-0.8			6.0-7.0		0.25	0.05	0.15
712.0		0.30	0.7-1.4	0.33-0.65	0.05	0.25-0.45			6.0-7.0		0.20	0.05	0.15
713.0		0.30	1.1		0.10	0.50-0.65	0.40-0.6		5.0-6.5		0.15-0.25	0.05	0.20
771.0		0.25		0.40-1.0	0.6	0.20-0.50	0.35	0.15	7.0-8.0		0.25	0.10	0.25
772.0	S		0.15	0.10	0.10	0.8-1.0	0.06-0.20		6.5-7.5		0.10-0.20	0.05	0.15
350.0		0.15	0.15	0.10	0.10	0.6-0.8	0.06-0.20		6.0-7.0		0.10-0.20	0.05	0.15
351.0		0.7	0.7	0.7-1.3	0.10	0.10		0.7-1.3		5.5-7.0	0.20		0.30
		2.0-3.0	0.7	0.7-1.3	0.10	0.10		0.30-0.7		5.5-7.0	0.20		0.30
352.0		0.40	0.7	1.7-2.3	0.10	0.6-0.9		0.9-1.5		5.5-7.0	0.20		0.30
853.0	S, P	5.5-6.5	0.7	3.0-4.0	0.50					5.5-7.0	0.20		0.30
a) D. die castin	g. P. permanent mold									212 710	0.20		0.50

(a) D, die casting; P, permanent mold; S, sand. Other products may pertain to the composition but are not listed. (b) Weight percent; maximum unless range is given or otherwise indicated. All compositions contain balance of aluminum. (c) 0.40–1.0 Ag. (d) 0.50–1.0 Ag. (e) 0.50 max Ti + Zr. (f) 0.20–0.30 Sb. 0.20–0.30 Co, 0.10–0.30 Zr. (g) 0.05–0.15 V, 0.10–0.25 Zr. (h) 0.06–0.20 V. (i) If iron exceeds 0.45%, Be, 0.005 max B. Source: Ref 1

Aluminum and Aluminum Alloys Table 8 Representative applications for aluminum casting alloys

00.0	
00.0	Electrical rotors larger than 152 mm (6 in.) in diameter
01.0	Structural members; cylinder heads and pistons; gear, pump, and aerospace housings
08.0	General-purpose castings; valve bodies, manifolds, and other pressure-tight parts
22.0	Bushings; meter parts; bearings; bearing caps; automotive pistons; cylinder heads
38.0	Sole plates for electric hand irons
42.0	Heavy-duty pistons; air-cooled cylinder heads; aircraft generator housings
	Diesel and aircraft pistons; air-cooled cylinder heads; aircraft generator housings
3295.0	Gear housings; aircraft fittings; compressor connecting rods; railway car seat frames
08.0	General-purpose permanent mold castings; ornamental grilles and reflectors
19.0	Engine crankcases; gasoline and oil tanks; oil pans; typewriter frames; engine parts
32.0	Automotive and heavy-duty pistons; pulleys, sheaves
33.0	Gas meter and regulator parts; gear blocks; pistons; general automotive castings
54.0	Premium-strength castings for the aerospace industry
55.0	Sand: air compressor pistons; printing press bedplates; water jackets; crankcases. Permanent:
	impellers; aircraft fittings; timing gears; jet engine compressor cases
56.0	Sand: flywheel castings; automotive transmission cases; oil pans; pump bodies.
	Permanent: machine tool parts; aircraft wheels; airframe castings; bridge railings
356.0	Structural parts requiring high strength; machine parts; truck chassis parts
57.0	Corrosion-resistant and pressure-tight applications
59.0	High-strength castings for the aerospace industry
60.0	Outboard motor parts; instrument cases; cover plates; marine and aircraft castings
.360.0	Cover plates; instrument cases; irrigation system parts; outboard motor parts; hinges
80.0	Housings for lawn mowers and radio transmitters; air brake castings; gear cases
380.0	Applications requiring strength at elevated temperature
84.0	Pistons and other severe service applications; automatic transmissions
90.0	Internal combustion engine pistons, blocks, manifolds, and cylinder heads
13.0	Architectural, ornamental, marine, and food and dairy equipment applications
413.0	Outboard motor pistons; dental equipment; typewriter frames; street lamp housings
43.0	Cookware; pipe fittings; marine fittings; tire molds; carburetor bodies
14.0	Fittings for chemical and sewage use; dairy and food handling equipment; tire molds
514.0	Permanent mold casting of architectural fittings and ornamental hardware
18.0	Architectural and ornamental castings; conveyor parts; aircraft and marine castings
20.0	Aircraft fittings; railway passenger car frames; truck and bus frame sections
35.0	Instrument parts and other applications where dimensional stability is important
712.0	General-purpose castings that require subsequent brazing
13.0	Automotive parts; pumps; trailer parts; mining equipment
50.0	Bushings and journal bearings for railroads
850.0	Rolling mill bearings and similar applications

Source: Compiled from Aluminum Casting Technology, American Foundrymen's Society, 1986

Aluminum and Aluminum Alloys

		Ultin		0.2%	offset	Elongation				Ultir ten		0.2%	offset	Elongation	
		stren		yield s	trength	in 50 mm	Hardness,			stre	ngth	yield s	trength	in 50 mm	Hardnes
Alloy	Temper	MPa	ksi	MPa	ksi	(2 in.), %	HB(a)	Alloy	Temper	MPa	ksi	MPa	ksi	(2 in.), %	HB(a)
Sand casting alloys								A206.0	. T4	431	62	264	38	17.0	
									T7	436	63	347	50	11.7	
201.0		414	60	255	37	17.0		213.0	. F	207	30	165	24	1.5	85
	T6	448	65	379	55	8.0	130	222.0	. T52	241	35	214	31	1.0	100
	T7	467	68	414	60	5.5			T551	255	37	241	35	< 0.5	115
4206.0		354	51	250	36	7.0			T65	331	48	248	36	< 0.5	140
208.0	F	145	21	97	14	2.5	55	238.0	. F	207	30	165	24	1.5	100
	F	165	24	103	15	1.5	70	242.0		276	40	234	34	1.0	105
222.0	0	186	27	138	20	1.0	80		T61	324	47	290	42	0.5	110
	T61	283	41	276	40	< 0.5	115	249.0		476	69	414	60	6.0	
	T62	421	61	331	48	4.0		2	T7	278	62	359	52	9.0	
224.0		380	55	276	40	10.0	123	296.0		255	37	131	19	9.0	75
240.0		235	34	200	28	1.0	90	270.0	T6	276	40	179	26	5.0	90
242.0		214	31	217	30	0.5			T7	270	39	138	20	4.5	80
	ò	186	27	124	18	1.0	70	308.0		193	28	110	16	2.0	70
	T571	221	32	207	30	0.5	85				34		19	2.5	85
	T77	207	30	159	23	2.0	75	319.0	. г Тб	234		131			
1242.0		214	- 31	1.59		2.0		224.0		276	40	186	27	3.0	95
A242.0								324.0		207	30	110	16	4.0	70
295.0		221	32	110	16	8.5	60 75		T5	248	36	179	26	3.0	90
	T6	250	36	165	24	5.0	75		T62	310	45	269	39	3.0	105
	T62	283	41	221	32	2.0	90	332.0		248	36	193	28	1.0	105
319.0		186	27	124	18	2.0	70	333.0		234	34	131	19	2.0	90
	T5	207	30	179	26	1.5	80		T5	234	34	172	25	1.0	100
	T6	250	36	164	24	2.0	80		T6	290	42	207	30	1.5	105
355.0		159	23	83	12	3.0			T7	255	37	193	28	2.0	90
	T51	193	28	159	23	1.5	65	336.0	. T551	248	36	193	28	0.5	105
	T6	241	35	172	25	3.0	80		T65	324	47	296	43	0.5	125
	T61	269	39	241	35	1.0	90	356.0		179	26	124	18	5.0	
	T7	264	38	250	26	0.5	85	5501011111111111	T51	186	27	138	20	2.0	
	T71	241	35	200	29	1.5	75		T6	262	38	186	20	5.0	80
2355.0		269	39	200	29	5.0	85		T7	221	32	165	24	6.0	70
356.0		164	24	124	18	6.0		A356.0		283	41	207	30	10.0	90
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T51	172	25	138	20	2.0	60			193		103	15	6.0	
	T6	228	33	164	24	3.5	70	357.0			28 29				
	T7		34	207	30	2.0	75		T51	200		145	21	4.0	
		234							T6	359	52	296	43	5.0	100
	T71	193	28	145	21	3.5	60	A357.0		359	52	290	42	5.0	100
A356.0		159	23	83	12	6.0		359.0		345	50	290	42	5.5	
	T51	179	26	124	18	3.0		A390.0	. F	200	29	200	29	<1.0	110
	T6	278	40	207	30	6.0	75		T5	200	29	200	29	< 1.0	110
	T71	207	30	138	20	3.0			T6	310	45	310	45	<1.0	145
357.0		172	25	90	13	5.0			T7	262	38	262	38	< 1.0	120
	T51	179	26	117	17	3.0		443.0	. F	159	23	62	9	10.0	45
	T6	345	50	296	43	2.0	90	A444.0		165	24	76	11	13.0	44
	T7	278	40	234	34	3.0	60		T4	159	23	69	10	21.0	45
A357.0	T6	317	46	248	36	3.0	85	513.0		186	27	110	16	7.0	60
A390.0		179	26	179	26	<1.0	100	711.0		241	35	124	18	8.0	70
	T5	179	26	179	26	<1.0	100	850.0		159	23	76	11	12.0	45
	T6	278	40	278	40	<1.0	140			139	20	76	11	5.0	43
	T7	250	36	250	36	<1.0	115	851.0		221	32	159	23	5.0	43
443.0		131	19	55	8	8.0	40	852.0	. 15	221	32	139	23	5.0	/0
**5.0	. г Е	145	21	62	9	9.0	40								
A444.0	. Г Т4				9			Die casting alloys							
	T4	159	23	62		12.0									
511.0	. F	145	21	83	12	3.0	50	240.0							
512.0	. F	138	20	90	13	2.0	50	360.0		324	47	172	25	3.0	75
514.0	. F	172	25	83	12	9.0	` 50	A360.0		317	46	165	24	5.0	75
520.0		331	48	179	26	16.0	75	364.0		296	43	159	23	7.5	
4535.0		250	36	124	18	9.0	65	380.0		331	48	165	24	3.0	80
10.0	. F	241	35	172	25	5.0	75	A380.0		324	47	159	23	4.0	75
/12.0(h)		241	35	172	25	5.0	75	384.0		324	47	172	25	1.0	
713.0(h)		241	35	172	25	5.0	74	390.0		279	40.5	241	35	1.0	120
350.0		138	20	76	11	8.0	45		T5	296	43	265	38.5	1.0	
851.0		138	20	76	11	5.0	45	392.0		290	42	262	38	< 0.5	
852.0		138	27	152	22	2.0	65	413.0		290	42	145	21	2.5	80
0.52.0	. 15	100	21	152	22	2.0	05			290	35	143	16	3.5	80
Permanent mold ca	asting all	oys						A413.0							
		•				17.0		443.0		228	33	110	16	9.0	50
201.0		414	60	255	37	17.0		513.0		276	40	152	22	10.0	
	T6	448	65	379	55	8.0	130	515.0		283	41			10.0	
	T7	469	68	414	60	5.0		518.0		310	45	186	27	8.0	80

41

Aluminum and Aluminum Alloys

Table 6 Ratings of castability, corrosion resistance, machinability, and weldability for aluminum casting alloys

1, best; 5, worst. Individual alloys may have different ratings for other casting processes.

Alloy	Resistance to hot cracking(a)	Pressure tightness	Fluidity(b)	Shrinkage tendency	Corrosion resistance(c)	Machin- ability(d)	Weld- ability(e)		esistance to hot acking(a)	Pressure tightness	Fluidity(b)	Shrinkage tendency	Corrosion resistance(c)	Machin- ability(d)	Weld- ability(e)
Sand cas	ting alloys							222.0	4	4	3	4	4	1	3
201.0	4	3	3	4	4	1	2	238.0 240.0		3	2	2	4	23	3
	2	2	2	2	4	3	3	296.0		3	3	4	4	2	4
	3	3	2	3	4	2	2	308.0		2	2	2	4	3	2
	4	4	3	4	4	1	3	319.0		2	2	2	4	3	2
	4	4	3	4	4	3	4	332.0		2	2	2	3	3	2
	4	3	4	4	4	2	3	333.0		1	2	2	2	4	2
	4	1	3	4	4	$\frac{2}{2}$	3	336.0		. 1	2	2	3	3	2
	4	4	3	3	3	$\frac{2}{2}$	2	354.0		2	2	3	3	4	2
	2	2	2	2	2	$\frac{2}{3}$	2	355.0		1	1	1	3	3	2
354.0		1	1	2	2	3	2	C355.0		1	1	2	3	3	2
355.0	1	1	1	1	3	3	2			1	1	2	3	3	2
		1	1	1	3	5	2	356.0		1	1	1	2	3	2
A356.0.		1	1	1	2	3	2	A356.0		1	1	1	2	3	2
357.0		1	1	1	2	3	2	357.0		1	1	1	2	3	2
359.0		1	1	1	2	3	1	A357.0		1	1	1	2	3	2
	3	3	3	3	2	4	2	359.0		1	1	1	2	3	1
	1	1	1	1	2	4	4	A390.0		2	2	3	2	4	2
444.0		1	1	1	2	4	1	443.0		1	2	1	2	5	1
	4	. 5	4	5	1	1	4	A444.0		1	1	1	2	3	1
512.0	3	4	4	4	1	2	4	512.0	3	4	4	4	1	2	4
514.0	4	5	4	5	1	1	4	513.0	4	5	4	4	1	1	5
520.0	2	5	4	5	1	1	5	711.0	5	4	5	4	3	1	3
535.0	4	5	4	5	1	1	3	771.0	4	4	3	3	2	1	
A535.0.	4	5	4	4	1	1	4	772.0		4	3	3	2	1	
	4	5	4	4	1	1	4	850.0		4	4	4	3	i	4
	5	4	4	4	2	1	4	851.0		4	4	4	3	i	4
	5	4	4	4	$\overline{2}$	i	4	852.0		4	4	4	3	1	4
	5	3	4	4	$\tilde{2}$	i	4			7	4	4	5	1	
	5	4	5	4	3	1	3	Die casting	alloys						
712.0		4	3	3	3	1	3	360.0	1	· 1	2	2	2	4	
	4	4	3	3	2	1	3	A360.0		1	2	2	3	4	
771.0		4	2	3	2	1		364.0		2	2	23	3	4	
772.0		4	2	2	2	1				2	1	3	4	3	
		4	3	3	2	1		380.0		1	2	2	3	4	
350.0		4	4	4	3	1	4	A380.0		2	2	4	3	4	
851.0		4	4	4	3	1	4	384.0		2	1 .	3	3	4	
852.0	4	4	4	4	3	1	4	390.0		2	2	2	4	2	
Permane	nt mold castir	g allovs						413.0		2	1	2	4	4	
							_	C443.0		3	3	2	5	4	
	4	3	3	4	4	1	2	515.0		5	5	1	2	4	
213.0	3	3	2	3	4	2	2	518.0	5	5	5	1	1	4	

- Group I alloys that have a narrow freezing range of 50°C
- Group II alloys that have intermediate freezing range of 50 110°C between the liquidus and the solidus.
- Group III alloys –that have wide freezing range over 110°C up to 170°C.

	UNS		1			- Comp	osition, '	%				Yield stre	ngth(a), 0.5%	Tensi	e strength(a)	Elongation(a),
Alloy type	No.	'Cu	Sn	Pb	Zn	Ni	Fe	Al	Mn	Si	Other	MPa	ksi	MPa	ksi	%
Copper	C81100	100										28	4	124	18	40
Chrome copper	C81500	99		• • •							1.0 Cr	276	40 (HT)	34	5 (HT)	17 (HT)
Yellow brass	C85200	72	1	3	24							90	13	262	38	35
	C85400	67	1	3	29							83	12	234	34	35
	C85700	61	1	1	37							124	18	345	50	40
	C85800	62	1	1	36							207	30	379	55	15
	C87900	65			34					1		241	35	483	70	25
Manganese bronze	C86200	63			27		3	4	3			331	48	654	95	20
-	C86300	61			27		3	6	3			476	69	793	115	15
	C86400	58	1	1	38		1	5	5			172	25	448	65	20
	C86500	58	•••	`	39		1	1	1			207	30	489	71	30
	C86700	58	1	1	34		2	2	2			290	42	586	85	20
	C86800	55			36	3	2	1	3			262	38	565	82	22
Aluminum bronze	C95200	88					3	9				186	27	552	80	35
	C95300	89					1	10				186-290	27-42 (HT)	517-586	75-85 (HT)	25-18 (HT)
	C95400	86					4	10				241-317	35-46 (HT)	586-758	85-110 (HT)	20-12 (HT)
	C95410	84				2	4	10				248-400	36-58 (HT)	662-800	96-116 (HT)	15-10 (HT)
	C95500	81				4	4	11				303-496	44-72 (HT)	717-827	104-120 (HT)	12-6 (HT)
	C95600	91						7		2		234	34	517	75	18
	C95700	75				2	3	8	12			310	45	655	95	26
	C95800	81				4.5	4	9	1.5			262	38	655	95	25
Nickel bronze	C97300	57	2	9	20	12						117	17	241	35	30
	C97600	64	4	4	8	20						165	24	310	45	20
	C97800	66	5	2	2	25						207	30	379	55	15
White brass	C99700	58		2	22	5		1	12			172	25	379	55	25
	C99750	58		1	20			1	20			221	32	448	65	30
(a) HT, heat treated																

 Table 1 Nominal chemical composition and typical mechanical properties for group I alloys

Table 2 Nominal chemical composition and typical mechanical properties for group II alloys

					 Compo 	sition, %				Yield stren	gth(b)(c), 0.5%	Tensile	strength(b)	
Alloy type U	UNS No.	' Cu	Zn	Ni	Fe	Mn	Si	Nb	Other ¹	MPa	ksi	MPa	ksi	Elongation(b), %
Beryllium copper Ca	81400	99.1							0.6 Be	248	36 (HT)	365	53 (HT)	11 (HT)
									0.8 Cr		• • •			
C	82000	97		$\cdot \cdot \cdot$					0.5 Be	121	17.6	243	35.2	20
									2.5 Co	517	75 (HT)	689	100 (HT)	3 (HT)
C	82200	98		1.5					0.5 Be	145	21.1	276	40.1	20
										517	75 (HT)	654	95 (HT)	8 (HT)
C	82400	97.8		• • •				• • •	1.7 Be	179	26.0	349	50.6	20
									0.5 Co	965	140 (HT)	1035	150 (HT)	1 (HT)
C	82500	97.2			• • •		0.3		2.0 Be	218	31.6	387	56.2	20
									0.5 Co			1105	160 (HT)	1 (HT)
C	82600	96.8	• • •				0.3		2.4 Be	228	33.0	397	57.6	20
									0.5 Co	1070	155 (HT)	1140	165 (HT)	1 (HT)
C	82800	96.6	• • •		• • •		0.3		2.6 Be	267	38.7	470	68.2	20
0.11									0.5 Co	1000	145 (HT)	1140	165 (HT)	1 (HT)
	87500	82	14		• • •		4		30	462	67	145	21	
	87300	9.5	• • •		• • •	1	4		25	400	58	241	35	
	87600	91	5	• • •	• • •		4		32	455	66	138	20	
	87610	92	4	• • •			4		25	400	58	207	30	
	87800(a)	82	14				4		50	586	85	172	25	
	96200	87	• • •	10	1.5	1		1	27	345	50	152	22	
C9	96400	66		30.5	0.5	1		1	27	100	10	102	20	

Table 3 Nominal chemical composition and typical mechanical properties for group III alloys

Alloy type	UNS	Cu Sn Pb Z					Yie strength		Ten: strength		
Alloy type	No.	'Cu	Sn	Pb	Zn	Ni	MPa	ksi	MPa	ksi	Elongation, %
Leaded red brass	C83450	88	2.5	2	6.5	1	103	15	255	37	34
	C83600	85	5	5	5		110	16	248	36	32
	C83800	83	4	6	7		110	16	241	35	28
Leaded semired brass	C84400	81	3	7	9		96	14	234	34	28
	C84800	76	2.5	6.5	15		103	15	255	37	29
Tin bronze	C90300	88	8	• • • •	4		138	20	310	45	30
	C90500	88	10		2		152	22	317	46	30
	C90700	89	11	• • • •			152	22	303	44	20
	C91100	84	16				172	25	241	35	2
	C91300	81	19	• • •			241	35	207	30	0.5
Leaded tin bronze	C92200	86	6	1.5	4.5		110	16	283	41	45
	C92300	87	8	1	4		138	20	290	42	32
	C92600	87	10	1	2		138	20	303	44	30
	C92700	88	10	2			142	21	300	42	20
High-leaded tin bronze	C92900	84	10	2.5		3.5	179	26	324	47	20
	C93200	83	7	7	3		117	17	262	38	30
	C93400	84	8	8			110	16	248	36	25
	C93500	85	5	9	1		110	16	221	32	20
	C93700	80	10	10			124	18	276	40	30
	C93800	78	7	15			110	16	221	32	20
	C94300	70	5	25			110	16	207	30	18

- Plumbing hardware, pump parts, and valves and fittings usually red and semi-red brasses. C83300 to C84800.
- Bearings and bushings Usually phosphor bronzes, Copper-tinlead, Manganese, silicon, and aluminum bronzes.
- Gears Tin bronzes, nickel-tin bronzes. C90700, C90800, C91600, C91700, C92900.
- Marine castings Copper-nickels (high strength) C96200, C96400; Bronzes.
- Electrical components Pure copper, beryllium-copper, leaded red brasses, bronzes.
- Architectural and ornamental parts Bronze C87200, Yellow, and leaded yellow brasses.

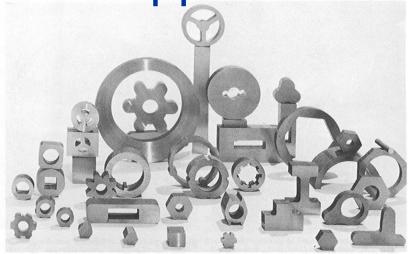


Fig. 22 Variety of intricate shapes and sizes obtained by using continuous casting methods to produce brass and bronze alloy parts. Courtesy of ASARCO, Inc.

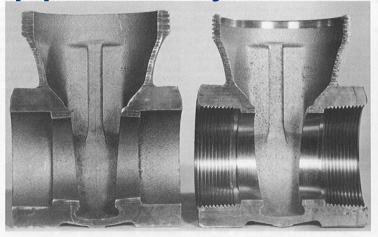


Fig. 23 Cutaway views of an as-cast and finish machined/threaded body of a 50 mm (2 in.) gate valve-union bonnet assembly rated at 1.0 MPa (150 psi). The body section was sand cast of C83600 alloy (Cu-55n-5Pb-5Zn composition) and weighs 2.4 kg (5.2 lb). Courtesy of Crane Company

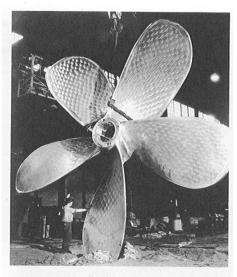


Fig. 26 Propeller for a 114 000 ton tanker measures 7.5 m (24.7 ft) in diameter and weighs 37.52 Mg (82 725 lb). Part was machined and polished from a single 53.75 Mg (118 500 lb) nickelaluminum bronze casting. Courtesy of Baldwin-Lima-Hamilton Corporation

Fig. 27 Vertical centrifugally cast ship propeller hub for controllable-pitch propeller blades is made of nickel-aluminum bronze, weighs 8.44 Mg (18 600 lb), and measures 1575 mm (62 in.) in diameter and 1270 mm (50 in.) in length. Courtesy of Wisconsin Centrifugal, Inc.

Zinc and Zinc Alloys

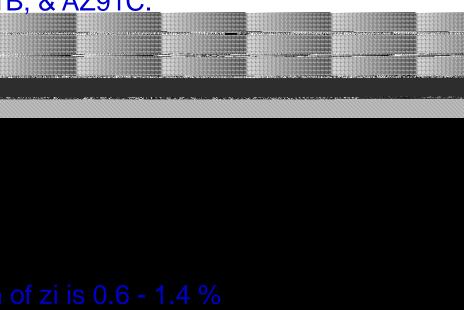
Table 1 Compositions of zinc casting alloys

	Applicable				Compos	sition, %(a) —				
Alloy	standards	AI	Cu	Mg	Fe	Pb	Cd	Sn	Ni	Zn
No. 3 (UNS Z33521)	ASTM B 86	3.5-4.3	0.25	0.02-0.05	0.100 0.100	0.005	0.004	0.003		rem
No. 5 (UNS Z35531)	ASTM B 86	3.5-4.3	0.75-1.25	0.03-0.08	0.075	0.005	0.004	0.003		rem
No. 7 (UNS Z33522)	ASTM B 86	3.5-4.3	0.25	0.005-0.02	0.10	0.003	0.002	0.001	0.005-0.02	rem
ZA-8 (UNS Z25630)		8.0-8.8	0.8-1.3	0.015-0.03	0.075	0.004	0.003	0.002	• • • •	rem
ZA-12 (UNS Z35630)		10.5-11.5	0.5-1.25	0.015-0.03	0.10	0.004	0.003	0.002		rem
ZA-27 (UNS Z35840)		25.0-28.0	2.0-2.5	0.01-0.02		0.004	0.003	0.002	· · ·	rem

(a) Maximum unless range is given or otherwise indicated.

Table 2 Comparison of typical mechanical properties of casting alloys

Alloy and	Ultimate t strengt		0.2% offset yield strength		Elongation, % in 50	Hardness,	Impact s	strength	Fatigue s	trength	Young	's modulus
	1Pa	ksi	MPa	ksi	mm (2 in.)	HB	J	ft · lbf	MPa	ksi	GPa	ksi × 10 ³
Zinc alloys	CI20000 CI20000	r contan	Isunce Rach	n, nee ve care								
No. 3 (D) 2	283	41			10	82	58(c)	43	47.6	6.9		
No. 5 (D) 3		48			7	91	65(c)	48	56.5	8.2		
No. 7 (D) 2		41			13	80	58(c)	43				
ZA-8 (S) 248		36-40	200	29	1-2	80-90	20(c)	15			85.5	12.4
ZA-8 (P) 221		32-37	207	30	1-2	85-90			51.8	7.5	85.5	12.4
ZA-8 (D) 3		54	290	42	6-10	95-110	42(c)	31				
ZA-12 (S) 276		40-46	207	30	1-3	90-105	25(c)	19	103.5	15	83.0	12.0
ZA-12 (P) 310		45-50	207	30	1-3	90-105	ad and m				83.0	12.0
ZA-12 (D) 4		58	317	46	4-7	95-115	28(c)	21			S00	100
ZA-27 (S)(b) 400		58-64	365	53	3-6	110-120	47(c)	35	172.5	25	75.2	10.9
ZA-27 (P) 421		61-62	365	53	1	110-120		1. · · · · · · · · · · · · · · · · · · ·			75.2	10.9
ZA-27 (D) 4		61	365	53	1–3	105-125					••••	
Aluminum alloys												
319 (S) 1	185	27	124	18	2	70	5(c)	4	69	10	74.0	10.7
356-T6 (P) 2		38	185	27	5	80	11(c)	8	90	13	72.4	10.5
380 (D)		47	159	23	3.5	80-85	4(c)	3	138	20	71.0	10.3
Copper alloys												


Zinc and Zinc Alloys

- Applications for Zinc Die Castings
- The automotive industry is the largest user of zinc die castings: carburetor bodies, bodies for fuel pumps, windshield wiper parts, control panels, grilles, horns, and parts for hydraulic brakes. Structural and decorative zinc alloy castings include grilles for radios and radiators, lamp and instrument bezels, steering wheel hubs, interior and exterior hardware, instrument panels, and body moldings.
- Also: electrical, electronic, and appliance industries, business machines and other light machines of all types (including beverage vending machines, and tools. Building hardware, padlocks, and toys and novelties are major areas of application for zinc die castings.

Zinc and Zinc Alloys

- Other Casting Processes for Zinc Alloys
- Sand Casting. The ZA alloys, especially ZA-12 and ZA-27, are being increasingly used in gravity sand casting operations. The use of chills or patterns that promote directional solidification is recommended.
- Permanent mold casting is done using both metallic and machined graphite molds. Cast iron or steel is most commonly used for metallic permanent molds. The use of graphite molds permits as-cast tolerances similar to those obtained in die casting. Machining time is reduced or eliminated, making the graphite process attractive for intermediate production volumes (500 to 20 000 parts per year).
- Squeeze casting employed to cast MMCs with ZA alloy matrices and SiC or alumina fibres.

- Consider the 3 alloys AZ91A, AZ91B, & AZ91C.
- A represents AI, the greatest alloying element present
- Z represents Zi, second greatest alloying element
- 9 indicates that the rounded mean of al is 8.6 - 9.4 %
- 1 indicates that the rounded mean of zi is 0.6 1.4 %
- Final letter A in the first example indicates that this is the first alloy whose composition qualified assignment of the designation AZ91
- B and C in other examples signify alloys subsequently developed whose specified compositions differ slightly from the first and from one another but do not differ sufficiently to effect a change in the basic designation.

ſ				Composition, %			
Alloy	Al	Zn	Mn	Rare earths	Th	Y	Zr
AM100A	10.0		0.1 min				
AZ63A	6.0	3.0	0.15	• • •			
AZ81A	8.0	0.7	0.13				
AZ91C	9.0	0.7	0.13				
AZ91E	9.0	2.0	0.10				
	9.0	2.0	0.10				
EZ33A		2.7		3.3			0.60
TTTTAL 1					3.3		0.70
11/2004		2.1		• • • •	3.3		0.70
QE22A(a)				2.0			0.60
EQ21A(a,b)				2.0			0.60
ZE41A		4.2		1.2			0.70
		5.7		2.5			0.70
		5.7			1.8		0.70
ZK51A		4.6					0.70
ZK61A		6.0					0.70
WE54A				3.50(c)		5.25	0.50

 Table 2 Nominal compositions of magnesium casting alloys for sand, investment, and permanent mold castings

(a) These alloys also contain silver, that is, 2.5% in QE22A and 1.5% in EQ21A. (b) EQ21A also contains 0.10% Cu. (c) Comprising 1.75% other heavy rare earths in addition to the 1.75% Nd present

Table 3 Nominal compositions of magnesium casting alloys for die castings

	Alloying element —									
Alloy	'Mg	Al	Mn	Si	Zn					
AM60A	rem	6.0	0.13 min							
AS41A		4.25	0.35	1.0						
AZ91A		9.0	0.13 min		0.7					
AZ91B	rem	9.0	0.13 min		0.7					
AZ91D (HP)(b)	rem	9.0	(a)		0.7					

(a) Manganese content to be dependent upon iron content. (b) The proposed alloy to have very low limits for iron, nickel, and copper. HP, high purity

- General Applications
- The most important feature of magnesium castings is their light weight.
- Magnesium castings have found considerable use since World War II in aircraft and aerospace applications
- Due to general requirement for lighter weight automobiles to conserve energy, there has been a growing use of magnesium as die castings
- Magnesium has other important casting advantages over other metals:
 - It is an abundantly available metal
 - It is easier to machine than aluminum.
 - It can be machined much faster than aluminum, preferably dry

- In die casting, MG can be cast up to four times faster than aluminum.
 Die lives are considerably longer
- Modern casting methods and the application of protective coatings currently available ensure long life for well-designed components.
- Able to produce complex parts having thin-wall sections. The end product has a high degree of stability as well as being light in weight.
- Mg castings of all types have found use in many applications, where their lightness and rigidity are required, such as for chain saw bodies, computer components, camera bodies, and certain portable tools.
 Magnesium alloy sand castings are used extensively for aerospace components.

Titanium and Titanium Alloys

- The term castings considered inferior to wrought products.
- This is not true with titanium cast parts.
- They are comparable to wrought products in all respects and superior
- · crack propagation and creep resistance can be superior
- So, titanium castings can reliably replace forged/machined parts
 - Allotropic phase transformation at 705 to 1040°C, which is well below the solidification temperature of the alloys.
 - As a result, the cast dendritic structure is wiped out during the solid state cooling stage

	Estimated relative usage of	Nominal composition, wt %											
Alloy	castings	0	Ν	н	Al	Fe	V	Cr	Sn	Mo	Zr	Special properties(a)	
Гі-6АІ-4V		0.18	0.015	0.006	6	0.13	4					General purpose	
Гі-6Al-4V ELI	2%	0.11	0.010	0.006	6	0.10	4					Cryogenic toughness	
Commercially pure titanium Gra		0.25	0.015	0.006		0.15						Corrosion resistance	
Гі-6Al-2Sn-4Zr-2Mo		0.10	0.010	0.006	6	0.15			2	2	4	Elevated-temperature creep	
fi-6Al-2Sn-4Zr-6Mo		0.10	0.010	0.006	6	0.15			2	6	4	Elevated-temperature streng	
Si-5Al-2.5Sn	<1%	0.16	0.015	0.006	5	0.2			2.5			Cryogenic toughness	
fi-3Al-8V-6Cr-4Zr-4Mo	<1%	0.10	0.015	0.006	3.5	0.2	8.5	6		4	4	Strength	
Ti-15V-3Al-3Cr-3Sn	<1%	0.11	0.015	0.006	3	0.2	15	3	3			Strength	

Table 2 Comparison of cast titanium alloys

Total..... 100%

(a) Superior, relative to Ti-6Al-4V

Titanium and Titanium Alloys

Table 3 Typical room-temperature tensile properties of titanium alloycastings (bars machined from castings)

	Yield strength			strength	Elongation,	Reduction of
Alloy(a)	MPa	ksi	MPa	ksi	%	area, %
Commercially pure (Grade 2)	448	65	552	80	18	32
Ti-6Al-4V, annealed		124	930	135	12	20
Ti-6Al-4V-ELI		110	827	120	13	22
Ti-6Al-2Sn-4Zr-2Mo, annealed		132	1006	146	10	21
Ti-6Al-2Sn-4Zr-6Mo, STA 1		184	1345	195	1	1
Ti-3Al-8V-6Cr-4Zr-4Mo, STA		180	1330	193	7	12
Ti-15V-3Al-3Cr-3Sn, STA		174	1275	185	6	12

Specification minimums are less than these typical properties.

(a) Solution-treated and aged (STA) heat treatments may be varied to produce alternate properties.

Product Applications

- since 1960s, used in corrosion-resistant service in pump and valve parts
- Aerospace use of castings in the early 1970s for aircraft brake torque tubes, missile wings, and hot gas nozzles.
- As the more precise investment casting technology developed and the commercial use of HIP became a reality in the mid-1970s, titanium casting applications quickly expanded into critical airframe and gas turbine engine components.

Titanium and Titanium Alloys

- Today, titanium cast parts are routinely produced for critical structural applications such as space shuttle attachment fittings, complex airframe structures, engine mounts, compressor cases and frames of many types, missile bodies and wings, and hydraulic housings.
- Titanium castings are used for framework for very sensitive optical equipment due to their stiffness and the compatibility of the coefficient of thermal expansion of titanium with that of glass.
- Applications evolving for engine airfoil shapes include individual vanes and integral vane rings for stators, as well as a few rotating parts that would otherwise be made from wrought product.
- Growth will continue as users seek to take advantage of the flexibility of design inherent in the investment casting process and the improvement in economics of net and near-net shapes.