February 20, 2021
Addenda and Errata for: Applied Frequency-Domain Electromagnetics Author: R. Paknys. Publisher: Wiley, 2016.

## 1 Software, Appendix H

The software on the book website might not be up to date. Here is the most recent revision; download at
https://users.encs.concordia.ca/~paknys/paknys_programs.zip

## 2 Errata

p. 4 replace disk by disc.
p. 9 should read

$$
\begin{equation*}
\left(\mathbf{E}_{1}-\mathbf{E}_{2}\right) \times \hat{\mathbf{n}}=\mathbf{M}_{s} \tag{1.53}
\end{equation*}
$$

p. 11 term in square brackets
p. 23 need a minus sign

$$
\mathbf{J}_{s}=-\hat{\mathbf{x}} \frac{2 E_{0}}{\eta}
$$

p. 23 need a minus sign

$$
\mathcal{J}_{s}(t)=-\hat{\mathbf{x}} \frac{2 E_{0}}{\eta} \cos \omega t
$$

p. 24 footnote has $\alpha=\operatorname{Im} k$ and $\beta=\operatorname{Re} k$
p. 29 rays lie in the $x-z$ plane.
p. 38

$$
\begin{equation*}
Z_{s} \hat{\mathbf{z}} \times \hat{\mathbf{z}} \times\left[\left.\mathbf{H}^{t}\right|_{z=0^{+}}-\left.\left(\mathbf{H}^{i}+\mathbf{H}^{r}\right)\right|_{z=0^{-}}\right]=\hat{\mathbf{z}} \times\left.\mathbf{E}^{t}\right|_{z=0^{+}} \tag{2.96}
\end{equation*}
$$

p. 53 replace scapacitance by capacitance.
p. 67 Prob. 2.19: ...two 31 mil substrates.
p. 69 Prob. 2.24 replace Use a TEN model ... by Also use a TEN model
p. 74 between (3.22) and (3.23) insert $H_{x m n}=-E_{y m n} / Z_{m n}$.
p. 75 need + sign before the 2 nd $\beta z$ term

$$
\begin{equation*}
E_{y}=A_{10} \frac{-\pi k \eta}{2 a k_{c}^{2}}\left(e^{j(\pi x / a-\beta z)}-e^{-j(\pi x / a+\beta z)}\right) \tag{3.34}
\end{equation*}
$$

p. 76 line 3 replace $\frac{\lambda_{z}}{\lambda_{0}}$ by $u_{0} \frac{\lambda_{z}}{\lambda_{0}}$.
p. 77 in the 2nd and 3rd equations, replace $J_{y}$ by $J_{s y}$.
p. 77 Example 3.3: ...by a current sheet at $z=0$ that is given by...
p. 77 Example 3.3: ...the fields for $z>0$ are...
p. 91 need a period after: ...for $-d \leq x \leq 0$.
p. 93 Add at bottom of page: Similar to (2.174), $Z_{0}$ looking in the $+x$ direction is
p. 95 is identical to the result (3.110) from the wave equation
p. 107 applied to the tangential electric fields (3.166)-(3.168)
p. 112 not a new paragraph: From (3.193) the Q ...From (3.195) the Q
p. 115 not italic: $582.7 \mathrm{rad} / \mathrm{m}$
p. 121 . . in Collin (1991, Chapter 8).
p. 122 Problem 3.5: modes $m n=10,01,11,20,02,12,21$.
p. 124 Problem 3.13: $\mathbf{J}_{s}=\hat{\mathbf{y}} \sin (m \pi x / a)$ at $z=c$ that produces a field

$$
\mathbf{E}^{A}=-\hat{\mathbf{y}} \frac{k \eta}{2 \beta_{m 0}} \sin \frac{m \pi x}{a} e^{-j \beta_{m 0}|z-c|}
$$

p. 127 In Figure 3.33 the fonts for (a) (b) (c) are inconsistent with other figures.
p. 138 However, other TEM $\phi$-dependent modes potentials are possible. These modes can be found...
p. 139 line 12 change $\mathrm{TM}_{x, 10}$ to $\mathrm{TM}_{y, 10}$
p. 141 2nd line from bottom, $\vec{Z}=j\left(k_{y 0} / \omega \epsilon_{0}\right) \tan k_{y 0}(b-d)$.
p. 160 The integration point is at $\rho^{\prime}=\hat{\mathbf{x}} x^{\prime}$. The current element...
p. 166 Problem 4.13: Find $\phi$-dependent field potential solutions. Hint: consider (3.44) when $\nu=0$.
p. 171 In (5.9) change $J_{n}$ to $J_{n}^{\prime}$.
p. 175

$$
\begin{equation*}
\nabla^{2} \psi+k^{2} \psi=0 \tag{5.28}
\end{equation*}
$$

p. 184 in two places, replace $\frac{d}{d \Theta}$ by $\frac{d}{d \theta}$
p. 195 Problem 5.15 ...at what angle $\phi^{\prime}$ would $\left|E_{z}\right|$ be maximum?
p. 204 In three places replace $\gamma$ by $\gamma_{0}$.
p. 206 misaligned prime, replace $\boldsymbol{\rho}^{\prime}$ by $\boldsymbol{\rho}^{\prime}$
p. 206 The $J$ part is $E_{x}=-j \omega A_{x}$ or with $A_{x}$ from (4.99) so that
p. 207 line 9 , in $\pi Y_{1}(x)$ replace $\frac{6}{32} x^{3}$ by $\frac{3}{16} x^{3}$
p. 207

$$
\begin{equation*}
Z_{m m}=\frac{\eta k \Delta}{4}\left\{1-\frac{j 2}{\pi} \ln \left(\frac{\gamma_{0} k \Delta}{4 e}\right)\right\}-\frac{\eta}{2} H_{1}^{(2)}(k \Delta / 2) . \tag{6.55}
\end{equation*}
$$

however (6.55) as used in PROGRAM mmtestrip is correct.
p. 215 Table 6.1 th row $(m=1)$, replace 1.5 by 2.5 and replace 1.118 by 2.291
p. 219 In Fig. 6.9(c) the internal fields are $\mathbf{E}^{\prime}, \mathbf{H}^{\prime}$ not $\mathbf{E}, \mathbf{H}$.

3rd paragraph: ...external fields are zero and the internal fields are $\mathbf{E}^{\prime}, \mathbf{H}^{\prime}$.
p. $220 \ldots$ the same $\mathbf{E}^{\prime}, \mathbf{H}^{\prime}$ inside $S$ that we had before.
$\ldots J_{z}$ still gives the correct fields everywhere outside.
Delete: The interior field comes from $-J_{z}$.
p. $224 \ldots \mathbf{J}_{s}$ and $\mathbf{M}_{s}$ turn out to be the same as in case (b) except for a minus sign.
p. 229 footnote, replace $\mathbf{J}_{s, p o}$ by $\mathbf{J}_{s, g o}$.
p. $247 \ldots$ terms with $x, x^{2}, y, y^{2}, x y$, and constant terms.
p. 279 Figure 8.7a replace $Q_{e}$ by $Q_{E}$. In the caption replace edge-fixed by ray-fixed.
p. 281 outside the $x-z$ and $y-z$ planes
p. 285 This is a special case of the ray tube, whereby $\mathbf{E}^{i}\left(Q_{E}\right) \cdot \overline{\mathbf{D}}=$ $\mathbf{E}\left(\sigma_{0}\right) \sqrt{\rho_{1}}$ and $\mathbf{E}^{d}(s)=\mathbf{E}(\sigma)$.
p. 285 ... $\overline{\mathbf{D}}$ is defined in such a way that

$$
\lim _{\rho_{1} \rightarrow 0} \sqrt{\rho_{1}} \mathbf{E}^{d}\left(Q_{E}\right)=\mathbf{E}^{i}\left(Q_{E}\right) \cdot \overline{\mathbf{D}}
$$

remains finite.
p. $294 \mathbf{E}^{i}=\hat{\boldsymbol{\beta}}_{0}^{\prime} E_{0} e^{j k\left(x \sin \theta^{\prime} \cos \phi^{\prime}+y \sin \theta^{\prime} \sin \phi^{\prime}+z \cos \theta^{\prime}\right)}$.
p. 338 line 15: ...Green's second identity (B.43)
p. 357 line 9: replace In other words, by For example,
p. 359 The form of (11.11) ensures that the three required properties for $G$ are satisfied, and the boundary conditions (11.12) ensure that (11.10) is satisfied.
p. 360 in Example 11.1

$$
W(T, U)=-k \cos k\left(b-x^{\prime}\right) \sin k x^{\prime}-k \cos k x^{\prime} \sin k\left(b-x^{\prime}\right)=-k \sin k b
$$

p. 372

$$
\begin{equation*}
G_{y}\left(y, y^{\prime} ; \lambda_{y} X\right)=\sum_{m} \frac{\psi_{m}^{*}\left(y^{\prime}\right) \psi_{m}(y)}{\lambda_{m}-\lambda_{y}} \tag{11.81}
\end{equation*}
$$

p. 375 Vectors are bold

$$
\begin{array}{r}
G_{2 D}\left(\rho, \rho^{\prime} ; k_{t}\right)=\frac{j}{2 \pi} \oint_{C_{y}} G_{x}\left(x, x^{\prime} ; k_{t}^{2}-\lambda_{y}\right) G_{y}\left(y, y^{\prime} ; \lambda_{y}\right) d \lambda_{y} \\
G_{3 D}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{j}{2 \pi} \oint_{C_{z}} G_{2 D}\left(\rho, \rho^{\prime} ; k_{t}=\sqrt{k^{2}-\lambda_{z}}\right) \frac{e^{-j \sqrt{\lambda_{z}}\left|z-z^{\prime}\right|}}{j 2 \sqrt{\lambda_{z}}} d \lambda_{z} . \tag{11.86}
\end{array}
$$

p. 382 In (12.9) replace $\left|y-y^{\prime}\right|$ by $\left(y+y^{\prime}\right)$.
p. 391 From the SDP equation, at $\left(x_{s}, y_{s}\right)$ we obtain $d y / d x=\tan \phi_{s}=1$ and hence $\phi_{s}=\pi / 4$ or $-3 \pi / 4$.
pp.399-403 Eqs. (12.55) (12.57) (12.59) (12.68) replace $k \rho$ by $k_{1} \rho$.
p. 400 Figure 12.19 the unshaded and shaded regions should be interchanged.
p. $403 \ldots$ proper sheet of the $\nu$ plane, having $\operatorname{Im} \kappa_{1} \leq 0$ and (b) leaky-wave poles on the improper sheet, having $\operatorname{Im} \kappa_{1}>0$.
p. 403 replace $u\left(\alpha-\alpha_{p}\right)$ by $U\left(\alpha-\alpha_{p}\right)$
p. 439 Figure B. 1 the unit vectors $\hat{\boldsymbol{\phi}}$ should be bold.
p. 446 (C.10) replace $\frac{6}{32} x^{3}$ by $\frac{3}{16} x^{3}$
p. 469 2nd line from bottom, delete: *.o
p. 474

$$
\begin{align*}
\int_{a}^{b} f(x) d x=\frac{h}{2}\{f(a)+ & 2 f(a+h)+2 f(a+2 h) \\
& +\cdots+2 f(N h)+f(b)\}-\frac{(b-a)}{12} h^{2} f^{\prime \prime}(\xi) \tag{G.4}
\end{align*}
$$

p. 476

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\frac{h}{2} \sum_{n=0}^{N-1}\left[f\left(x_{1}+a+n h\right)+f\left(x_{2}+a+n h\right)\right]+\frac{(b-a)}{4320} h^{4} f^{(I V)}(\xi) \tag{G.6}
\end{equation*}
$$

p. 487 replace polarisation by polarization and combine the index terms.

