
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Bottom-up parsing: Canonical LR and LALR

Error recovery in LR parsing

Parsing: concluding comments

Joey Paquet, 2000-2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The SLR parser breaks down when there are conflicts between shift/recude:

• Shift-reduce conflict: it cannot decide whether to shift or reduce

• Reduce-reduce conflict: A given configuration implies more than one possible

reduction, e.g.

Problems with LR parsers

Joey Paquet, 2000-2018

2COMP 442/6421 – Compiler Design

S → if E then S
| if E then S else S

State 3 : S → id• FOLLOW(S) = {$}
V[id] E → id• FOLLOW(E) = {$,+,=}

Z → S
S → E = E
S → id

E → E + id
E → id

Concordia University Department of Computer Science and Software Engineering

• For example, the previous example problem is not without solution:

• if the next token is either + or =, reduce idididid to E

• if the next token is $, reduce idididid to S

• SolutionSolutionSolutionSolution: use lookahead sets in the items generation process to

eliminate ambiguities

Canonical LR parsers

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Canonical LR parsing: item sets generation

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

State 0: [Z → •S :{$}] : [Z → •S :{$}] : V[S] : State 1
V[ε] [S → •id :{$}] [S → •E=E :{$}] : V[E] : State 2

[S → •E=E :{$}] [E → •E+id :{=,+}] : V[E] : State 2
[E → •E+id :{=}] [E → •id] :{=,+}] : V[id] : State 3
[E → •id :{=}] [S → •id :{$}] : V[id] : State 3
[E → •E+id :{+}]
[E → •id :{+}]

State 1: [Z → S• :{$}] : [Z → S• :{$}] : accept : Final State
V[S]

State 2: [S → E•= E :{$}] : [S → E•=E :{$}] : V[E=] : State 4
V[E] [E → E•+id :{=,+} [E → E•+id :{=,+}] : V[E+] : State 5

State 3: [E → id• :{=,+}] : [E → id• :{=,+}] : : handle (r4)
V[id] [S → id• :{$}] [S → id• :{$}] : : handle (r2)

State 4: [S → E=•E :{$}] : [S → E=•E :{$}] : V[E=E] : State 6
V[E=] [E → •E+id :{$}] [E → •E+id :{+,$}] : V[E=E] : State 6

[E → •id :{$}] [E → •id :{+,$}] : V[E=id] : State 7
[E → •E+id :{+}]
[E → •id :{+}]

Concordia University Department of Computer Science and Software Engineering

Canonical LR parsing: item sets generation

Joey Paquet, 2000-2018

5COMP 442/6421 – Compiler Design

State 5: [E → E+•id :{=,+}] : [E → E+•id :{=,+}] : V[E+id] : State 8
V[E+]

State 6: [S → E=E• :{$}] : [S → E=E• :{$}] : : handle (r1)
V[E=E] [E → E•+id :{+,$}] [E → E•+id :{+,$}] : V[E=E+] : State 9

State 7: [E → id• :{+,$}] : [E → id• :{+,$}] : : handle (r4)
V[E=id]

State 8: [E → E+id• :{=,+}] : [E → E+id• :{=,+}] : : handle (r3)
V[E+id]

State 9: [E → E+•id :{+,$}] : [E → E+•id :{+,$}] : V[E=E+id] : State 10
V[E=E+]

State 10: [E → E+id• :{+,$}] : [E → E+id• :{+,$}] : : handle (r3)
V[E=E+id]

Concordia University Department of Computer Science and Software Engineering

Canonical LR parsing: corresponding DFA

Joey Paquet, 2000-2018

6COMP 442/6421 – Compiler Design

State 0 : V[ɛ]

[Z→●S :$] : 1
[E→●E=E :$] : 2
[S→●id :$] : 3
[E→●E+id :=,+] : 2
[E→●id :=,+] : 3

State 1 : V[S]

[Z→S● : $] : acc
S

State 3 : V[id]

[S→id● :$] : r2
[E→id● :=,+] : r4

id

State 2 : V[E]

[S→E●=E :$] : 4
[E→E●+id :=,+] : 5

E

State 5 : V[E+]

[E→E+●id :=,+] : 8
+

State 8 : V[E+id]

[E→E+id● :=,+] : r3

id

State 4 : V[E=]

[S→E=●E :$] : 6
[E→●E+id :+,$] : 6
[E→●id :+,$] : 7

=

State 7 : V[E=id]

[E→id● : +,$] : r4

id

State 6 : V[E=E]

[S→E=E● :$] : r1
[E→E●+id :+,$] : 9

E

State 9 : V[E=E+]

[E→E+●id :+,$] : 10

+

State 10 : V[E=E+id]

[E→E+id● :+,$] : r3
id

Concordia University Department of Computer Science and Software Engineering

Canonical LR parsing: parsing table

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

state
action goto

id = + $ S E

0 s3 1 2

1 acc

2 s4 s5

3 r4 r4 r2

4 s7 6

5 s8

6 s9 r1

7 r4 r4

8 r3 r3

9 s10

10 r3 r3

0 Z → S

1 S → E = E

2 S → id

3 E → E + id

4 E → id

Concordia University Department of Computer Science and Software Engineering

• ProblemProblemProblemProblem: CLR generates more states than SLR, e.g. for a typical programming

language, the SLR table has hundreds of states whereas a CLR table has

thousands of states

• SolutionSolutionSolutionSolution: merge similar states, i.e. states that have the same item sets, but not

necessarily with the same lookahead sets. Merge such states into one state, and

merge the lookahead sets of items that are duplicated.

LALR

Joey Paquet, 2000-2018

8COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

LALR

Joey Paquet, 2000-2018

9COMP 442/6421 – Compiler Design

A. State 0: {[Z → •S:{$}],[S → •id:{$}],[S → •E=E:{$}],
[E → •E+id:{=,+}],[E → •id]:{=,+}]}

B. State 1: {[Z → S•:{$}]}
C. State 2: {[S → E•=E:{$}],[E → E•+id:{=,+}]}
D. State 3: {[E → id•:{=,+}],[S → id•:{$}]}
E. State 4: {[S → E=•E:{$}],[E → •E+id:{+,$}],[E → •id:{+,$}]}
F. State 5: {[E → E+•id:{=,+}]}

State 9: {[E → E+•id:{+,$}]}
G. State 6: {[S → E=E•:{$}],[E → E•+id:{+,$}]}
H. State 7: {[E → id•:{+,$}]}
I. State 8: {[E → E+id•:{=,+}]}

State 10: {[E → E+id•:{+,$}]}

State 0: {[Z → •S:{$}],[S → •id:{$}],[S → •E=E:{$}],
[E → •E+id:{=,+}],[E → •id]:{=,+}]}

State 1: {[Z → S•:{$}]}
State 2: {[S → E•=E:{$}],[E → E•+id:{=,+}]}
State 3: {[E → id•:{=,+}],[S → id•:{$}]}
State 4: {[S → E=•E:{$}],[E → •E+id:{+,$}],[E → •id:{+,$}]}
State 5: {[E → E+•id:{=,+,$}]}
State 6: {[S → E=E•:{$}],[E → E•+id:{+,$}]}
State 7: {[E → id•:{+,$}]}
State 8: {[E → E+id•:{=,+,$}]}

Concordia University Department of Computer Science and Software Engineering

LALR parsing table

Joey Paquet, 2000-2018

10COMP 442/6421 – Compiler Design

state
action goto

id = + $ S E

0 s3 1 2

1 acc

2 s4 s5

3 r4 r4 r2

4 s7 6

5 s8

6 s5 r1

7 r4 r4

8 r3 r3 r3

1 Z → S

2 S → E = E

3 S → id

4 E → E + id

5 E → id

Concordia University Department of Computer Science and Software Engineering

Error recovery in LR parsing

Joey Paquet, 2000-2018

11COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• An error is detected when the parser consults the action table and finds an

empty entry

• Each empty entry potentially represents a different and specific syntax error

• If we come onto an empty entry on the goto table, it means that there is an error

in the table itself

Error detection in LR parsers

Joey Paquet, 2000-2018

12COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Error recovery in LR parsers

Joey Paquet, 2000-2018

13COMP 442/6421 – Compiler Design

onError()
1. pop() until a state s is on top of the stack and T is not empty

where
s has at least one entry in the goto table under non-terminal N
S is the set of states in the goto table for s
T is the set of terminals for which the elements of S
have a shift or accept entry in the action table

4. lookahead = nextToken() until lookahead x is in T
5. push the N corresponding to x and its corresponding state in S
6. resume parse

Concordia University Department of Computer Science and Software Engineering

Error recovery in LR parsers

Joey Paquet, 2000-2018

14COMP 442/6421 – Compiler Design

• This method of error recovery attempts to eliminate the remainder of the

current phrase derivable from a non-terminal A which contains a syntactic error.

• Part of that A was already parsed, which resulted in a sequence of states on top

of the stack.

• The remainder of this phrase is still in the input.

• The parser attempts to skip over the remainder of this phrase by looking for a

symbol on the input that can legitimately follow A.

• By removing states from the stack, skipping over the input, and pushing GOTO(s,

A) on the stack, the parser pretends that it has successfully reduced an instance

of A and resumes normal parsing.

• ExampleExampleExampleExample: in many programming languages, statements end with a “;”

• if an error is found in a statement, the stack is popped until we get V[<statement>] on

top of the stack

• nextToken() until the next “;” is found

• resume parse

Concordia University Department of Computer Science and Software Engineering

Error recovery in LR parsers: example

Joey Paquet, 2000-2018

15COMP 442/6421 – Compiler Design

state
action goto

id + * () $ E T F

0 s5 e1 e1 s4 e1 e0 1 2 3

1 e2 s6 ee e2 e3 acc

2 e2 r2 s7 e2 r2 r2

3 e2 r4 r4 e2 r4 r4

4 s5 e1 e1 s4 e1 e0 8 2 3

5 e2 r6 r6 e2 r6 r6

6 s5 e4 e4 s4 e4 e0 9 3

7 s5 e5 e5 s4 e5 e0 10

8 e2 r1 s7 e2 s11 e0

9 e2 r1 s7 e2 r1 r1

10 e2 r3 r3 e2 r3 r3

11 e2 r5 r5 e2 r5 r5

1 E → E + T

2 E → T

3 T → T * F

4 T → F

5 F → (E)

6 F → id

Concordia University Department of Computer Science and Software Engineering

Error recovery in LR parsers: example

Joey Paquet, 2000-2018

16COMP 442/6421 – Compiler Design

stack input action

1 0 id)id*id)$ shift 5

2 0id5)id*id)$ reduce (F → id)

3 0F3)id*id)$ reduce (T → F)

4 0T2)id*id)$ reduce (E → T)

5 0E1)id*id)$ e3

6 0T2 *id)$ shift 7

7 0T2*7 id)$ shift 5

8 0T2*7id5)$ reduce (F → id)

9 0T2*7F10)$ reduce (T → T * F)

10 0T2)$ reduce (E → T)

11 0E1)$ e3

12 0E1 $ accept

e0 unexpected end of program

e1 missing operand

e2 missing operator

e3 mismatched parenthesis

e4 missing term

e5 factor expected

e6 + or) expected

ee parser error

1 E → E + T

2 E → T

3 T → T * F

4 T → F

5 F → (E)

6 F → id

Concordia University Department of Computer Science and Software Engineering

Parsing: general comments

Joey Paquet, 2000-2018

17COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• For real-life programming languages, construction of the table is extremely
laborious and error-prone (several thousands of states)

• Table construction follows strictly defined rules that can be implemented as a
program called a parser generator

• Yacc (Yet Another Compiler-Compiler) generates a LALR(1) parser code and table

• Grammar is given in input in (near) BNF

• Detects conflicts and resolves some conflicts automatically

• Requires a minimal number of changes to the grammar

• Each right hand side is associated with a custom semantic action to generate the
symbol table and code

Parser generators

Joey Paquet, 2000-2018

18COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• We have seen

• Top-down: recursive descent predictive, table-driven predictive

• Bottom-up: SLR, CLR, LALR

• Parser generator

• For real-life languages, the recursive descent parser lacks maintainability

• The need for changing the grammar is a disadvantage for predictive parsers

• Code generation and error detection is more difficult and less accurate in top-
down parsers

• Most compilers are now implemented using the LR method, using parser
generators

• Other more recent ones are generating top-down parsing methods (e.g. JavaCC)

Which method to use?

Joey Paquet, 2000-2018

19COMP 442/6421 – Compiler Design

