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COMPILER DESIGN
Bottom-up parsing: Canonical LR and LALR

Error recovery in LR parsing

Parsing: concluding comments
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• The SLR parser breaks down when there are conflicts between shift/recude:

• Shift-reduce conflict: it cannot decide whether to shift or reduce

• Reduce-reduce conflict: A given configuration implies more than one possible 

reduction, e.g.  

Problems with LR parsers

Joey Paquet, 2000-2018
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S → if E then S
|  if E then S else S

State 3 : S → id• FOLLOW(S) = {$}
V[id] E → id• FOLLOW(E) = {$,+,=}

Z → S
S → E = E
S → id

E → E + id
E → id
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• For example, the previous example problem is not without solution:

• if the next token is either + or =, reduce idididid to E

• if the next token is $, reduce idididid to S

• SolutionSolutionSolutionSolution: use lookahead sets in the items generation process to 

eliminate ambiguities

Canonical LR parsers

Joey Paquet, 2000-2018
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Canonical LR parsing: item sets generation

Joey Paquet, 2000-2018
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State 0: [Z → •S    :{$}] : [Z → •S    :{$}]     : V[S] : State 1
V[ε] [S → •id   :{$}] [S → •E=E  :{$}]     : V[E] : State 2

[S → •E=E  :{$}] [E → •E+id :{=,+}]   : V[E]      : State 2
[E → •E+id :{=}] [E → •id]  :{=,+}]   : V[id]     : State 3
[E → •id   :{=}] [S → •id   :{$}]     : V[id]     : State 3
[E → •E+id :{+}] 
[E → •id   :{+}] 

State 1: [Z → S• :{$}] : [Z → S• :{$}]     : accept    : Final State
V[S]

State 2: [S → E•= E :{$}] : [S → E•=E  :{$}]     : V[E=]     : State 4
V[E] [E → E•+id :{=,+}    [E → E•+id :{=,+}]   : V[E+]     : State 5

State 3: [E → id• :{=,+}] : [E → id• :{=,+}]   :           : handle (r4)
V[id] [S → id• :{$}] [S → id• :{$}]     :           : handle (r2)

State 4: [S → E=•E  :{$}] : [S → E=•E  :{$}]     : V[E=E]    : State 6
V[E=] [E → •E+id :{$}] [E → •E+id :{+,$}]   : V[E=E]    : State 6

[E → •id   :{$}] [E → •id   :{+,$}]   : V[E=id]   : State 7
[E → •E+id :{+}]
[E → •id   :{+}]
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Canonical LR parsing: item sets generation

Joey Paquet, 2000-2018
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State 5: [E → E+•id :{=,+}] : [E → E+•id :{=,+}]   : V[E+id]   : State 8
V[E+]

State 6: [S → E=E• :{$}] : [S → E=E• :{$}]     :           : handle (r1)
V[E=E] [E → E•+id :{+,$}] [E → E•+id :{+,$}]   : V[E=E+]   : State 9

State 7: [E → id• :{+,$}] : [E → id• :{+,$}]   :           : handle (r4)
V[E=id]

State 8: [E → E+id• :{=,+}] : [E → E+id• :{=,+}]   :           : handle (r3)
V[E+id]

State 9: [E → E+•id :{+,$}] : [E → E+•id :{+,$}]   : V[E=E+id] : State 10
V[E=E+]

State 10: [E → E+id• :{+,$}] : [E → E+id• :{+,$}]   :           : handle (r3)
V[E=E+id]
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Canonical LR parsing: corresponding DFA
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State 0  : V[ɛ]   

[Z→●S    :$  ] : 1
[E→●E=E  :$  ] : 2
[S→●id   :$  ] : 3
[E→●E+id :=,+] : 2
[E→●id   :=,+] : 3

State 1  : V[S]

[Z→S● : $] : acc
S

State 3  : V[id]

[S→id● :$  ] : r2
[E→id● :=,+] : r4

id

State 2  : V[E]

[S→E●=E  :$  ] : 4
[E→E●+id :=,+] : 5

E

State 5  : V[E+]

[E→E+●id :=,+] : 8
+

State 8  : V[E+id]

[E→E+id● :=,+] : r3

id

State 4  : V[E=]

[S→E=●E  :$  ] : 6
[E→●E+id :+,$] : 6
[E→●id   :+,$] : 7

=

State 7  : V[E=id]

[E→id● : +,$] : r4

id

State 6  : V[E=E]

[S→E=E●  :$  ] : r1
[E→E●+id :+,$] : 9

E

State 9  : V[E=E+]

[E→E+●id :+,$] : 10

+

State 10  : V[E=E+id]

[E→E+id● :+,$] : r3
id
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Canonical LR parsing: parsing table
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state
action goto

id = + $ S E

0 s3 1 2

1 acc

2 s4 s5

3 r4 r4 r2

4 s7 6

5 s8

6 s9 r1

7 r4 r4

8 r3 r3

9 s10

10 r3 r3

0 Z → S

1 S → E = E

2 S → id

3 E → E + id

4 E → id
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• ProblemProblemProblemProblem: CLR generates more states than SLR, e.g. for a typical programming 

language, the SLR table has hundreds of states whereas a CLR table has 

thousands of states

• SolutionSolutionSolutionSolution: merge similar states, i.e. states that have the same item sets, but not 

necessarily with the same lookahead sets. Merge such states into one state, and 

merge the lookahead sets of items that are duplicated. 

LALR

Joey Paquet, 2000-2018
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LALR

Joey Paquet, 2000-2018
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A. State 0: {[Z → •S:{$}],[S → •id:{$}],[S → •E=E:{$}],
[E → •E+id:{=,+}],[E → •id]:{=,+}]}

B.      State 1:  {[Z → S•:{$}]}
C. State 2: {[S → E•=E:{$}],[E → E•+id:{=,+}]}
D. State 3: {[E → id•:{=,+}],[S → id•:{$}]}
E. State 4: {[S → E=•E:{$}],[E → •E+id:{+,$}],[E → •id:{+,$}]}
F. State 5: {[E → E+•id:{=,+}]}

State 9: {[E → E+•id:{+,$}]}
G. State 6: {[S → E=E•:{$}],[E → E•+id:{+,$}]}
H.     State 7: {[E → id•:{+,$}]}
I. State 8:  {[E → E+id•:{=,+}]}

State 10: {[E → E+id•:{+,$}]}

State 0: {[Z → •S:{$}],[S → •id:{$}],[S → •E=E:{$}],
[E → •E+id:{=,+}],[E → •id]:{=,+}]}

State 1:  {[Z → S•:{$}]}
State 2:  {[S → E•=E:{$}],[E → E•+id:{=,+}]}
State 3:  {[E → id•:{=,+}],[S → id•:{$}]}
State 4:  {[S → E=•E:{$}],[E → •E+id:{+,$}],[E → •id:{+,$}]}
State 5:  {[E → E+•id:{=,+,$}]}
State 6:  {[S → E=E•:{$}],[E → E•+id:{+,$}]}
State 7:  {[E → id•:{+,$}]}
State 8:  {[E → E+id•:{=,+,$}]}
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LALR parsing table
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state
action goto

id = + $ S E

0 s3 1 2

1 acc

2 s4 s5

3 r4 r4 r2

4 s7 6

5 s8

6 s5 r1

7 r4 r4

8 r3 r3 r3

1 Z → S

2 S → E = E

3 S → id

4 E → E + id

5 E → id
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Error recovery in LR parsing
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• An error is detected when the parser consults the action table and finds an 

empty entry

• Each empty entry potentially represents a different and specific syntax error

• If we come onto an empty entry on the goto table, it means that there is an error 

in the table itself

Error detection in LR parsers 

Joey Paquet, 2000-2018
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Error recovery in LR parsers 

Joey Paquet, 2000-2018

13COMP 442/6421 – Compiler Design

onError()
1. pop() until a state s is on top of the stack and T is not empty

where 
s has at least one entry in the goto table under non-terminal N
S is the set of states in the goto table for s
T is the set of terminals for which the elements of S
have a shift or accept entry in the action table

4. lookahead = nextToken() until lookahead x is in T
5. push the N corresponding to x and its corresponding state in S
6. resume parse
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Error recovery in LR parsers 

Joey Paquet, 2000-2018
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• This method of error recovery attempts to eliminate the remainder of the 

current phrase derivable from a non-terminal A which contains a syntactic error. 

• Part of that A was already parsed, which resulted in a sequence of states on top 

of the stack. 

• The remainder of this phrase is still in the input. 

• The parser attempts to skip over the remainder of this phrase by looking for a 

symbol on the input that can legitimately follow A. 

• By removing states from the stack, skipping over the input, and pushing GOTO(s, 

A) on the stack, the parser pretends that it has successfully reduced an instance 

of A and resumes normal parsing.

• ExampleExampleExampleExample: in many programming languages, statements end with a “;”

• if an error is found in a statement, the stack is popped until we get V[<statement>] on 

top of the stack

• nextToken() until the next “;” is found

• resume parse 
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Error recovery in LR parsers: example
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state
action goto

id + * ( ) $ E T F

0 s5 e1 e1 s4 e1 e0 1 2 3

1 e2 s6 ee e2 e3 acc

2 e2 r2 s7 e2 r2 r2

3 e2 r4 r4 e2 r4 r4

4 s5 e1 e1 s4 e1 e0 8 2 3

5 e2 r6 r6 e2 r6 r6

6 s5 e4 e4 s4 e4 e0 9 3

7 s5 e5 e5 s4 e5 e0 10

8 e2 r1 s7 e2 s11 e0

9 e2 r1 s7 e2 r1 r1

10 e2 r3 r3 e2 r3 r3

11 e2 r5 r5 e2 r5 r5

1 E → E + T

2 E → T

3 T → T * F

4 T → F

5 F → (E)

6 F → id
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Error recovery in LR parsers: example

Joey Paquet, 2000-2018

16COMP 442/6421 – Compiler Design

stack input action

1 0 id)id*id)$ shift 5

2 0id5 )id*id)$ reduce (F → id)

3 0F3 )id*id)$ reduce (T → F)

4 0T2 )id*id)$ reduce (E → T)

5 0E1 )id*id)$ e3

6 0T2 *id)$ shift 7

7 0T2*7 id)$ shift 5

8 0T2*7id5 )$ reduce (F → id)

9 0T2*7F10 )$ reduce (T → T * F)

10 0T2 )$ reduce (E → T)

11 0E1 )$ e3

12 0E1 $ accept

e0 unexpected end of program

e1 missing operand

e2 missing operator

e3 mismatched parenthesis

e4 missing term

e5 factor expected

e6 + or ) expected

ee parser error

1 E → E + T

2 E → T

3 T → T * F

4 T → F

5 F → (E)

6 F → id
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Parsing: general comments
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• For real-life programming languages, construction of the table is extremely 
laborious and error-prone (several thousands of states)

• Table construction follows strictly defined rules that can be implemented as a 
program called a parser generator

• Yacc (Yet Another Compiler-Compiler) generates a LALR(1) parser code and table

• Grammar is given in input in (near) BNF

• Detects conflicts and resolves some conflicts automatically

• Requires a minimal number of changes to the grammar

• Each right hand side is associated with a custom semantic action to generate the 
symbol table and code

Parser generators

Joey Paquet, 2000-2018
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• We have seen

• Top-down: recursive descent predictive, table-driven predictive

• Bottom-up: SLR, CLR, LALR

• Parser generator

• For real-life languages, the recursive descent parser lacks maintainability

• The need for changing the grammar is a disadvantage for predictive parsers

• Code generation and error detection is more difficult and less accurate in top-
down parsers

• Most compilers are now implemented using the LR method, using parser 
generators

• Other more recent ones are generating top-down parsing methods (e.g. JavaCC)

Which method to use?

Joey Paquet, 2000-2018
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