
COMP 442/6421 Compiler
Design
Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TA: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

LAB 2 – LEXICAL ANALYSIS

1

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca

Lexer vs DFA
• Lexers and DFAs are not quite the same
• A lexer combines many patterns into a single matching system, whereas a DFA operates on a single pattern

• A lexer terminates/resets on a finished token, a DFA terminates on end of input

• After a lexeme is found, the lexer has more input to process

• Deciding when a token finishes is a not trivial problem

• Examples:

• classy

• public_x

• 01.23

• These are design issues, which are not easily solved by an algorithm!

2

Lexer vs DFA - design decisions
• Prioritization, which RegEx takes priority?
• classy

• [class]:keyword [y]:identifier
• Should keywords be prioritized?

• Should this be allowed in the language?

• [classy]:identifier
• What if this were a typo?

3

Lexer vs DFA - design decisions
• Permissiveness, do you assume a user knows what they’re doing?
• public_x

• [public]:keyword [_x]:invalid token
• Should keywords be prioritized?

• What about context?

• [public_x]:identifier
• Allows more expressive identifiers

• The possible number of lexical errors are diminished

• Could it lead to confusion?

4

Lexer vs DFA - design decisions
• Permissiveness, do you assume a user knows what they’re doing?
• 01.23

• [0]:integer [1.23]:float
• Is allowing this useful?

• [01.23]:invalid token
• Is this due to user error?

5

Lexer vs DFA - design decisions
• There are a lot of these decisions to make
• Some of them are straightforward

• Some involve trade-offs

• The costs and benefits may only become clear in later stages of the compiler’s design!

• What if you realize you made a bad lexer choice while you’re working on A3? . . .

6

Programming with Data - why?
• Motivations:
• Separating business logic and application logic

• When mixed, they exhibit high coupling and low cohesion

• Often conceived by different people, or in different stages of application development

• Applications which contain no business logic can be reused in any context

• Libraries (ex: RegEx, STL containers, Java generics)

• Changing business logic dynamically and easily

• Bugs due to faulty business logic can be more easily found

• A programs core functioning can be changed easily

• A lexer that can tokenize multiple programming languages, by being supplied with different lexical
specifications

7

Programming with Data - how?
• Literal separation:
• Business logic is encoded differently

• In non programming files (text, tables, i.e. any data format)

• Simpler than programming

• In another programming language

• Interpreted languages (compilation delayed till runtime)

• Plugins are frequently developed this way

• Domain specific languages

• In another application

• Business rule management system (BRMS)

• Logical separation:
• Specific architectures can encourage or enforce separation of business and application logic

8

Programming with Data - compilers
• Compilers have complex and changing business logic
• Language updates

• Complexity

• Lexical specifications

• Syntax specifications

• Data types

• Code generation

• It may be productive to separate some of these . . .

9

A1 tools - handling RegEx and DFA
• https://regexr.com/
• RegEx simulator web-tool

• http://ivanzuzak.info/noam/
• JavaScript library for regular languages

• http://www.madebyevan.com/fsm/
• simple and fast DFA drawing web-tool (small DFAs)

• https://cyberzhg.github.io/toolbox/
• A set of web-tools for handling regular languages

• In particular RegEx to DFA conversion

10

http://www.madebyevan.com/fsm/
http://www.madebyevan.com/fsm/
http://www.madebyevan.com/fsm/
https://cyberzhg.github.io/toolbox/

Making a simple lexer - Lexicon
• We’ll use a reduced version of the A1 specification

• id ::= letter [letter | _]*

• letter ::= a..z|A..Z

• Keywords:
• if

• then

• else

• while

• Valid characters: Σ = {a..z}∪{A..Z}

11

Making a simple lexer - RegEx
• Approach: combine all the regular expressions
• (Σ(Σ|_)*) | if | else | end

• Process into DFA
• Using cyberzhg tool

• Σ = {a..z}∪{A..Z}

12

Making a simple lexer - Correcting DFA
• A good start, but there are some issues:
• Ambiguities with letter input

• Missing transitions

• Only 2 final states

• Which token is found?

• What about backtracking?

• Σ = {a..z}∪{A..Z}

13

Making a simple lexer - Correcting DFA
• Adding final states
• These have no transitions, as they

terminate the automata

• Use special transition ω

• Any character which guarantees
the end of a lexeme

• Here, whitespace fulfills the role

• Maybe be different for different
end states (<, +, :, etc.)

• This character should be used for backtracking,
if backtracking.

• Σ = {a..z}∪{A..Z}

14

Making a simple lexer - Correcting DFA

• Adding missing transitions
• DFA is deterministic, every state must have

a unique transition for every possible
input

• Using set notation as a shorthand
will aid with clarity and

• Some sets might merit their own
names:

• Set of keyword starting letters

• Set of letters not in keywords

• Σ = {a..z}∪{A..Z}

15

Making a simple lexer – The result

• This DFA is complex!
• It’s only for a subset of the language!!
• Staying organized is critical

• Fortunately, it can be used as is, almost
like a normal DFA

• Table-based lexer
• The table will be easier to manage

than the DFA
• Hard-coded lexer
• Make sure your DFA is:
• Easy to read
• Easy to change, if necessary
• You’ll be referring to it a lot

• Σ = {a..z}∪{A..Z}

16

Quick Review - Context-free Grammars
◦ A proper super-set of regular languages

◦ Context-free grammars

◦ Deterministic context-free grammars

◦ A subset of context-free grammars

◦ Can be expressed using:
◦ Production rule notation

◦ Backus–Naur form

◦ Push-down automata

◦ Two important subtypes, depending on uniqueness of derivations
◦ Ambiguous

◦ Non-deterministic

◦ Unambiguous

◦ Deterministic

◦ Some examples on the board . . .

17

