COMPILER DESIGN

Lexical analysis

COMP 442/6421 — Compiler Design
Lexical analysis

Lexical analysis is the process of converting a sequence of characters into a
sequence of tokens.

A program or function which performs lexical analysis is called a lexical analyzer,
lexer or scanner.

A scanner often exists as a single function which is called by the parser, whose
functionality is to extract the next token from the source code.

The lexical specification of a programming language is defined by a set of rules
which defines the scanner, which are understood by a lexical analyzer generator
such as lex or flex. These are most often expressed as regular expressions.

The lexical analyzer (either generated automatically by a tool like /ex, or hand-
crafted) reads the source code as a stream of characters, identifies the lexemes
in the stream, categorizes them into tokens, and outputs a token stream.

This is called "tokenizing."
If the scanner finds an invalid token, it will report a lexical error.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Roles of the scanner

« Removal of comments

- Comments are not part of the program’s meaning

* Multiple-line comments?
* Nested comments?
« Case conversion

+ |s the lexical definition case sensitive?
- For identifiers
« For keywords

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Roles of the scanner

Removal of white spaces

- Blanks, tabulars, carriage returns
« Is it possible to identify tokens in a program without spaces?
Interpretation of compiler directives

- #include, #ifdef, #ifndef and #define are directives to “redirect the input”
of the compiler

- May be done by a pre-compiler
Initial creation of the symbol table
- A symbol table entry is created when an identifier is encountered
« The lexical analyzer cannot create the whole entries
- Can convert literals to their value and assign a type
Convert the input file to a token stream
« Input file is a character stream
- Lexical specifications: literals, operators, keywords, punctuation

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Lexical specifications: tokens and lexemes

- Token: An element of the lexical definition of the language.
- Lexeme: A sequence of characters identified as a token.

id distance,rate,time,a,x
relop >=,<,==

openpar (

if if

then

assignop

semi

Concordia University Department of Computer Science and Software Engineering

Joey Paquet, 2000-2018

Design of a lexical analyzer

COMP 442/6421 — Compiler Design
Design of a lexical analyser

 Procedure
Construct a set of regular expressions (REs) that define the form of any valid token
Derive an NDFA from the REs
Derive a DFA from the NDFA
Translate the NDFA to a state transition table
Implement the table
Implement the algorithm to interpret the table

- This is exactly the procedure that a scanner generator is implementing.

- Scanner generators include:
- Lex, flex
Jlex
Alex
Lexgen
re2c

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Regular expressions

{ }

{s | s in s"}

{a}

{r | rin r'} or {s | s in s}
{s" | s in s" and n>=0}

{s" | s in s” and n>=1}

id ::= letter(letter|digit)*

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design

Deriving DFA from REs

Thompson’s construction is an algorithm invented
by Ken Thompson in 1968 to translate regular
expressions into an NFA.

Rabin-Scott powerset construction is an algorithm
invented by Michael O. Rabin and Dana Scott in
1959 to transform an NFA to a DFA.

Kleene’s algorithm, is an algorithm invented by
Stephen Cole Kleene in 1956 to transform a DFA
into a regular expression.

These algorithms are the basis of the
implementation of all scanner generators.

Stephen Cole Kleene
Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Thompson’s construction

COMP 442/6421 — Compiler Design
REs to NDFA: Thompson's construction

id ::= letter(letter|digit)*

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Thompson’s construction

- Thompson’s construction
works recursively by splitting
an expression into its
constituent subexpressions.

Each subexpression
corresponds to a subgraph.

Each subgraph is then grafted
with other subgraphs
depending on the nature of
the composed subexpression,
.e.

« An atomic lexical symbol
+ A concatenation expression
* A union expression

- A Kleene star expression

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Thompson'’s construction: example

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Thompson'’s construction: example

(a|b)*abb

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Thompson'’s construction: example

(a|b)*abb

(a|b)*abb

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Rabin-Scott powerset construction

COMP 442/6421 — Compiler Design
Rabin-Scott powerset construction: concepts

Speat Set of states in the DFA
Snyeas Set of states in the NFA
2. setof all symbols in the lexical specification.

g-closure(S): setof states in the NDFA that can be reached with €
transitions from any element of the set of states S, including the state itself.

Movey,(T,a): statein Sy, to which there is a transition from one of the
states in states set T, having encountered symbol a.

Movep,(T,a): statein Sy, to which there is a transition from one of the
states in states set T, having encountered symbol a.

id ::= letter(letter|digit)*

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Rabin-Scott powerset construction: algorithm

Spra = 1}
add -closure(S,) to Sy, as the start state
set this state as unmarked
while (Spr, contains unmarked states)
let T be an unmarked state in S,, and mark T
for (each a in %)
S = e-closure(Move,(T,a))

if S 1s not in Sy,
add S to Sy, as unmarked
set Move,.,(T,a) to S
for (each S in Sy,)
if any s€S 1is a final state in the NFA
mark s as a final state in the DFA

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Rabin-Scott powerset construction: example

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Rabin-Scott powerset construction: example

Starting state A = e€-closure(@) = {0}

State A : {0}

movep,(A,1)
ge-closure(movey:,(A,1))
g-closure({1})
{1,2,4,7}
B

movey,(A,d)

ge-closure(movey,(A,d))
g-closure({})

{}

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design

Rabin-Scott powerset construction: example

State B : {1,2,4,7}
movepe,(B,1)
= g€-closure(move,(B,1)) @—IH@
= €-closure({3})
{1,2,3,4,6,7}
C

move,:,(B,d)
g-closure(movey:,(B,d))

AO)
-cl ({5})
Ay OXO8
o)

D

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Rabin-Scott powerset construction: example

State C : {1,2,3,4,6,7}

movep,(C,1)
ge-closure(movey,(C,1))
g-closure({3})
{1,2,3,4,6,7}
C

move,,(C,d)

g-closure(movey:,(C,d))
g-closure({5})
{1,2,4,5,6,7}

D

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design

Rabin-Scott powerset construction: example

State D : {1,2,4,5,6,7}

movep,(D, 1)
= g-closure(movey (D, 1))
= g€-closure({3})
{1,2,3,4,6,7}
C

move,,(D,d)
g-closure(movey:,(D,d))
g-closure({5})
{1,2,4,5,6,7}
D

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Rabin-Scott powerset construction: example

Final states:

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Generate state transition table

%@*I; d

A B N
B C D Y
C C D Y
D C D Y

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Implementation

COMP 442/6421 — Compiler Design

Implementation concerns

- Backtracking

« Principle : A token is normally recognized only when the next character is read.
- Problem : Maybe this character is part of the next token.

- Example : x<1 “<™ is recognized only when “1” is read. In this case, we have to

backtrack one character to continue token recognition without skipping the first
character of the next token.

- Solution : include the occurrence of these cases in the state transition table.

- Ambiguity
+ Problem : Some tokens’ lexemes are subsets of other tokens.
- Example:
cn-1.Isit<n><-><1>o0r<n><-1>7
- Solutions :

» Postpone the decision to the syntactic analyzer
* Do not allow sign prefix to numbers in the lexical specification
 Interact with the syntactic analyzer to find a solution. (Induces coupling)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Example

Alphabet :
o, % = G o), < o> {,)}, [a..z2], [0..9]}

Simple tokens :
{6), 1, < >}
Composite tokens :
=, <>, (*, *)}
Words :
- id ::= letter(letter | digit)*
cnum ::= digit*
- {..} or (*..*) represent comments

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Example

- Ambiguity problems

possible tokens

- Solution: Backtracking
« Must back up a character when we read a character that is part of the next token.
- Each case is encoded in the table

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design

Example - DFA

(o @ o
{1\ O ERR
P O OPENPAR

oo

@ COLON
@ ASSGN

@ LT
@ LESSEQ

@ NOTEQ
23 or
@ GREATEQ

@ CLOSEPAR

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Table-driven scanner — state transition table

© 00 N o g b~ W N

NNNNN R R R R R R R R R
A ®W N B O © ® ~N o U » W N K~ O

Concordia University

P © B O = O = N DN

= e
o o

—~

kr © O Fr A N b
k © O r O B W o

=

o o
N =
r P o o

}
20

1
3
1
5)
1
6
1
9
1

(
8
3
1
5
1
6
1
9
1

B © Rk N R O Rk W
N I T = L =)
N = T = T =)
N I T = T =)
N I T = T =)
N I = T = T =)

[y
o
=
o
=
o
=
o
=
o

10

=
o

10

[Eny
N
=
o
=
o
=
o
=
o

10

=
o

10
1
21
1
22
1
1
23

Department of Computer Science and Software Engineering

yes|[id]

yes [num]

yes [cmt]

yes [openpar]

yes [cmt]

yes [assgn]

yes [lesseq]

yes [noteq]

yes[gt]
yes [err]
yes [colon]
yes[1t]
yes[gt]

yes [closepar]

- 1o] | =] < | - | s | fnaoken | Backiack |
20 20 13 20 15 18

Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Table-driven scanner - algorithm

nextToken()
state =1
token = null
do
lookup = nextChar()
state = table(state, lookup)

if (isFinalState(state))
token = createToken(state)
if (table(state, “backup”) == yes)
backupChar()
until (token != null)
return (token)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Table-driven scanner — functions

nextToken()

- Extract the next token in the program (called by syntactic analyzer)
nextChar()

- Read the next character in the input program
backupChar()

- Back up one character in the input file in case we have just read the next character in
order to resolve an ambiguity

isFinalState(state)
- Returns TRUE if state is a final state

table(state, column)
- Returns the value corresponding to [state, column] in the state transition table.
createToken(state)

- Creates and returns a structure that contains the token type, its location in the source
code, and its value (for literals), for the token kind corresponding to a state, as found in
the state transition table.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Hand-written scanner

nextToken()
c = nextChar()
case (c) of
"[a..z],[A..Z]":
c = nextChar()
while (c in {[a..z],[A..Z],[0..9]}) do
s = makeUpString()
¢ = nextChar()
if (isReservedWord(s))then
token = createToken(RESWORD,null)
else
token = createToken(1ID,s)
backupChar()
91"
c = nextChar()
while (c in [0..9]) do
v = makeUpValue()
¢ = nextChar()
token = createToken(NUM,v)
backupChar()

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Hand-written scanner

g

Concordia University

¢ = nextChar()
while (¢ != "}") do
¢ = nextChar()

¢ = nextChar()

if (¢ == "*") then
¢ = nextChar()
repeat
while (c != "*") do
c = nextChar()
c = nextChar()
until (c = ")")
else
token = createToken(LPAR,null)

¢ = nextChar()
if (¢ == "=") then
token = createToken(ASSIGNOP,null)
else
token = createToken(COLON,null)
backupChar()

Department of Computer Science and Software Engineering

Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Hand-written scanner

¢ = nextChar()
if (c == "=") then
token = createToken(LEQ,null)
else if (c == ">") then
token = createToken(NEQ,null)
else
token = createToken(LT,null)
backupChar()

c = nextChar()
if (c == "=") then
token = createToken(GEQ,null)
else
token = createToken(GT,null)
backupChar()

token = createToken(RPAR,null)

token = createToken(STAR,null)

token = createToken(EQ,null)
end case
return token

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Error-recovery in lexical analysis

COMP 442/6421 — Compiler Design
Possible lexical errors

- Depends on the accepted conventions:
Invalid character
letter not allowed to terminate a number
numerical overflow
identifier too long
end of line before end of string
Are these lexical errors?

123a

<Error> or <num><id>?

123456789012345678901234567
<Error> related to machine’s limitations

“Hello <CR> world

Either <CR> is skipped or <Error>
ThisIsAVeryLongVariableNameThatIsMeantToConveyMeaning = 1
Limit identifier length?

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Lexical error recovery techniques

 Finding only the first error is not acceptable
- Panic Mode:
- Skip characters until a valid character is read
+ Guess Mode:
- do pattern matching between erroneous strings and valid strings
- Example: (beggin vs. begin)
- Rarely implemented

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Conclusions

COMP 442/6421 — Compiler Design
Possible implementations

- Lexical Analyzer Generator (e.g. Lex)

+ safe, quick

- Must learn software, unable to handle unusual situations
- Table-Driven Lexical Analyzer

+ general and adaptable method, same function can be used for all table-driven lexical
analyzers

- Building transition table can be tedious and error-prone

« Hand-written
+ Can be optimized, can handle any unusual situation, easy to build for most languages
- Error-prone, not adaptable or maintainable

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Lexical analyzer’s modularity

- Why should the Lexical Analyzer and the Syntactic Analyzer be separated?
- Modularity/Maintainability : system is more modular, thus more maintainable

- Efficiency : modularity = task specialization = easier optimization
- Reusability : can change the whole lexical analyzer without changing other parts

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
References

- R. McNaughton, H. Yamada (Mar 1960). "Regular Expressions and State Graphs
for Automata". IEEE Trans. on Electronic Computers 9 (1): 39-47.
doi:10.1109/TEC.1960.5221603

Ken Thompson (Jun 1968). "Programming Techniques: Regular expression search
algorithm". Communications of the ACM 11 (6): 419-422.
doi:10.1145/363347.363387

Rabin, M. O.; Scott, D. (1959). "Finite automata and their decision problems".
IBM Journal of Research and Development 3 (2): 114-125.
doi:10.1147/rd.32.0114

Russ Cox. Implementing Regular Expressions.

Russ Cox. Regular Expression Matching Can Be Simple And Fast.

CyberZHG. Regular Expression to NFA, to DFA.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

http://swtch.com/~rsc/regexp/
http://swtch.com/~rsc/regexp/regexp1.html
https://cyberzhg.github.io/toolbox/

