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Lexical analysis

Lexical analysis is the process of converting a sequence of characters into a
sequence of tokens.

A program or function which performs lexical analysis is called a lexical analyzer,
lexer or scanner.

A scanner often exists as a single function which is called by the parser, whose
functionality is to extract the next token from the source code.

The lexical specification of a programming language is defined by a set of rules
which defines the scanner, which are understood by a lexical analyzer generator
such as lex or flex. These are most often expressed as regular expressions.

The lexical analyzer (either generated automatically by a tool like /ex, or hand-
crafted) reads the source code as a stream of characters, identifies the lexemes
in the stream, categorizes them into tokens, and outputs a token stream.

This is called "tokenizing."
If the scanner finds an invalid token, it will report a lexical error.
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Roles of the scanner

« Removal of comments

- Comments are not part of the program’s meaning

* Multiple-line comments?
* Nested comments?
« Case conversion

+ |s the lexical definition case sensitive?
- For identifiers
« For keywords
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Roles of the scanner

Removal of white spaces

- Blanks, tabulars, carriage returns
« Is it possible to identify tokens in a program without spaces?
Interpretation of compiler directives

- #include, #ifdef, #ifndef and #define are directives to “redirect the input”
of the compiler

- May be done by a pre-compiler
Initial creation of the symbol table
- A symbol table entry is created when an identifier is encountered
« The lexical analyzer cannot create the whole entries
- Can convert literals to their value and assign a type
Convert the input file to a token stream
« Input file is a character stream
- Lexical specifications: literals, operators, keywords, punctuation

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018



COMP 442/6421 — Compiler Design
Lexical specifications: tokens and lexemes

- Token: An element of the lexical definition of the language.
- Lexeme: A sequence of characters identified as a token.

id distance,rate,time,a,x
relop >=,<,==

openpar (

if if

then

assignop

semi
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Design of a lexical analyser

 Procedure
Construct a set of regular expressions (REs) that define the form of any valid token
Derive an NDFA from the REs
Derive a DFA from the NDFA
Translate the NDFA to a state transition table
Implement the table
Implement the algorithm to interpret the table

- This is exactly the procedure that a scanner generator is implementing.

- Scanner generators include:
- Lex, flex
Jlex
Alex
Lexgen
re2c
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Regular expressions

{ }

{s | s in s"}

{a}

{r | rin r'} or {s | s in s}
{s" | s in s" and n>=0}

{s" | s in s” and n>=1}

id ::= letter(letter|digit)*
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Deriving DFA from REs

Thompson’s construction is an algorithm invented
by Ken Thompson in 1968 to translate regular
expressions into an NFA.

Rabin-Scott powerset construction is an algorithm
invented by Michael O. Rabin and Dana Scott in
1959 to transform an NFA to a DFA.

Kleene’s algorithm, is an algorithm invented by
Stephen Cole Kleene in 1956 to transform a DFA
into a regular expression.

These algorithms are the basis of the
implementation of all scanner generators.

Stephen Cole Kleene
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REs to NDFA: Thompson's construction

id ::= letter(letter|digit)*
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Thompson’s construction

- Thompson’s construction
works recursively by splitting
an expression into its
constituent subexpressions.

Each subexpression
corresponds to a subgraph.

Each subgraph is then grafted
with other subgraphs
depending on the nature of
the composed subexpression,
.e.

« An atomic lexical symbol
+ A concatenation expression
* A union expression

- A Kleene star expression
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Thompson'’s construction: example
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Thompson'’s construction: example

(a|b)*abb
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Thompson'’s construction: example

(a|b)*abb

(a|b)*abb
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Rabin-Scott powerset construction: concepts

Speat Set of states in the DFA
Snyeas Set of states in the NFA
2. setof all symbols in the lexical specification.

g-closure(S): setof states in the NDFA that can be reached with €
transitions from any element of the set of states S, including the state itself.

Movey,(T,a): statein Sy, to which there is a transition from one of the
states in states set T, having encountered symbol a.

Movep,(T,a): statein Sy, to which there is a transition from one of the
states in states set T, having encountered symbol a.

id ::= letter(letter|digit)*
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Rabin-Scott powerset construction: algorithm

Spra = 1}
add -closure(S,) to Sy, as the start state
set this state as unmarked
while (Spr, contains unmarked states)
let T be an unmarked state in S,, and mark T
for (each a in %)
S = e-closure(Move,(T,a))

if S 1s not in Sy,
add S to Sy, as unmarked
set Move,.,(T,a) to S
for (each S in Sy,)
if any s€S 1is a final state in the NFA
mark s as a final state in the DFA

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018



COMP 442/6421 — Compiler Design
Rabin-Scott powerset construction: example
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Rabin-Scott powerset construction: example

Starting state A = e€-closure(@) = {0}

State A : {0}

movep,(A,1)
ge-closure(movey:,(A,1))
g-closure({1})
{1,2,4,7}
B

movey,(A,d)

ge-closure(movey,(A,d))
g-closure({})

{}
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Rabin-Scott powerset construction: example

State B : {1,2,4,7}
movepe,(B,1)
= g€-closure(move,(B,1)) @—IH@
= €-closure({3})
{1,2,3,4,6,7}
C

move,:,(B,d)
g-closure(movey:,(B,d))

AO)
-cl ({5})
Ay OXO8
o)

D
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Rabin-Scott powerset construction: example

State C : {1,2,3,4,6,7}

movep,(C,1)
ge-closure(movey,(C,1))
g-closure({3})
{1,2,3,4,6,7}
C

move,,(C,d)

g-closure(movey:,(C,d))
g-closure({5})
{1,2,4,5,6,7}

D
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Rabin-Scott powerset construction: example

State D : {1,2,4,5,6,7}

movep,(D, 1)
= g-closure(movey (D, 1))
= g€-closure({3})
{1,2,3,4,6,7}
C

move,,(D,d)
g-closure(movey:,(D,d))
g-closure({5})
{1,2,4,5,6,7}
D
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Rabin-Scott powerset construction: example

Final states:
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Generate state transition table

%@*I; d

A B N
B C D Y
C C D Y
D C D Y
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Implementation concerns

- Backtracking

« Principle : A token is normally recognized only when the next character is read.
- Problem : Maybe this character is part of the next token.

- Example : x<1 “<™ is recognized only when “1” is read. In this case, we have to

backtrack one character to continue token recognition without skipping the first
character of the next token.

- Solution : include the occurrence of these cases in the state transition table.

- Ambiguity
+ Problem : Some tokens’ lexemes are subsets of other tokens.
- Example:
cn-1.Isit<n><-><1>o0r<n><-1>7
- Solutions :

» Postpone the decision to the syntactic analyzer
* Do not allow sign prefix to numbers in the lexical specification
 Interact with the syntactic analyzer to find a solution. (Induces coupling)
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Example

Alphabet :
o, % = G o), < o> {, )}, [a..z2], [0..9]}

Simple tokens :
{6 ), 1, < >}
Composite tokens :
=, <>, (*, *)}
Words :
- id ::= letter(letter | digit)*
cnum ::= digit*
- {..} or (*..*) represent comments
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Example

- Ambiguity problems

possible tokens

- Solution: Backtracking
« Must back up a character when we read a character that is part of the next token.
- Each case is encoded in the table
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Example - DFA

(o @ o
{1\ O ERR
P O OPENPAR

oo

@ COLON
@ ASSGN

@ LT
@ LESSEQ

@ NOTEQ
23 or
@ GREATEQ

@ CLOSEPAR
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Table-driven scanner — state transition table
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yes|[ id ]

yes [ num ]

yes [cmt ]

yes [ openpar]

yes [cmt ]

yes [assgn ]

yes [ lesseq]

yes [ noteq ]

yes[gt]
yes [err]
yes [ colon]
yes[1t]
yes[gt]

yes [ closepar]

- 1o ] | =] < | - | s | fnaoken | Backiack |
20 20 13 20 15 18
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Table-driven scanner - algorithm

nextToken()
state =1
token = null
do
lookup = nextChar()
state = table(state, lookup)

if (isFinalState(state))
token = createToken(state)
if (table(state, “backup”) == yes)
backupChar()
until (token != null)
return (token)
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Table-driven scanner — functions

nextToken()

- Extract the next token in the program (called by syntactic analyzer)
nextChar()

- Read the next character in the input program
backupChar()

- Back up one character in the input file in case we have just read the next character in
order to resolve an ambiguity

isFinalState(state)
- Returns TRUE if state is a final state

table(state, column)
- Returns the value corresponding to [state, column] in the state transition table.
createToken(state)

- Creates and returns a structure that contains the token type, its location in the source
code, and its value (for literals), for the token kind corresponding to a state, as found in
the state transition table.
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Hand-written scanner

nextToken()
c = nextChar()
case (c) of
"[a..z],[A..Z]":
c = nextChar()
while (c in {[a..z],[A..Z],[0..9]}) do
s = makeUpString()
¢ = nextChar()
if ( isReservedWord(s) )then
token = createToken(RESWORD,null)
else
token = createToken(1ID,s)
backupChar()
91"
c = nextChar()
while (c in [0..9]) do
v = makeUpValue()
¢ = nextChar()
token = createToken(NUM,v)
backupChar()
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Hand-written scanner

g

Concordia University

¢ = nextChar()
while ( ¢ != "}" ) do
¢ = nextChar()

¢ = nextChar()

if ( ¢ == "*" ) then
¢ = nextChar()
repeat
while ( c != "*" ) do
c = nextChar()
c = nextChar()
until ( c = ")" )
else
token = createToken(LPAR,null)

¢ = nextChar()
if ( ¢ == "=" ) then
token = createToken(ASSIGNOP,null)
else
token = createToken(COLON,null)
backupChar()
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Hand-written scanner

¢ = nextChar()
if ( c == "=" ) then
token = createToken(LEQ,null)
else if ( c == ">" ) then
token = createToken(NEQ,null)
else
token = createToken(LT,null)
backupChar()

c = nextChar()
if ( c == "=" ) then
token = createToken(GEQ,null)
else
token = createToken(GT,null)
backupChar()

token = createToken(RPAR,null)

token = createToken(STAR,null)

token = createToken(EQ,null)
end case
return token
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Possible lexical errors

- Depends on the accepted conventions:
Invalid character
letter not allowed to terminate a number
numerical overflow
identifier too long
end of line before end of string
Are these lexical errors?

123a

<Error> or <num><id>?

123456789012345678901234567
<Error> related to machine’s limitations

“Hello <CR> world

Either <CR> is skipped or <Error>
ThisIsAVeryLongVariableNameThatIsMeantToConveyMeaning = 1
Limit identifier length?
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Lexical error recovery techniques

 Finding only the first error is not acceptable
- Panic Mode:
- Skip characters until a valid character is read
+ Guess Mode:
- do pattern matching between erroneous strings and valid strings
- Example: (beggin vs. begin)
- Rarely implemented
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Possible implementations

- Lexical Analyzer Generator (e.g. Lex)

+ safe, quick

- Must learn software, unable to handle unusual situations
- Table-Driven Lexical Analyzer

+ general and adaptable method, same function can be used for all table-driven lexical
analyzers

- Building transition table can be tedious and error-prone

« Hand-written
+ Can be optimized, can handle any unusual situation, easy to build for most languages
- Error-prone, not adaptable or maintainable
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Lexical analyzer’s modularity

- Why should the Lexical Analyzer and the Syntactic Analyzer be separated?
- Modularity/Maintainability : system is more modular, thus more maintainable

- Efficiency : modularity = task specialization = easier optimization
- Reusability : can change the whole lexical analyzer without changing other parts
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