
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Lexical analysis

Joey Paquet, 2000-2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Lexical analysis is the process of converting a sequence of characters into a
sequence of tokens.

• A program or function which performs lexical analysis is called a lexical analyzer,
lexer or scanner.

• A scanner often exists as a single function which is called by the parser, whose
functionality is to extract the next token from the source code.

• The lexical specification of a programming language is defined by a set of rules
which defines the scanner, which are understood by a lexical analyzer generator
such as lex or flex. These are most often expressed as regular expressions.

• The lexical analyzer (either generated automatically by a tool like lex, or hand-
crafted) reads the source code as a stream of characters, identifies the lexemes
in the stream, categorizes them into tokens, and outputs a token stream.

• This is called "tokenizing."

• If the scanner finds an invalid token, it will report a lexical error.

Lexical analysis

Joey Paquet, 2000-2018

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Removal of comments

• Comments are not part of the program’s meaning

• Multiple-line comments?

• Nested comments?

• Case conversion

• Is the lexical definition case sensitive?

• For identifiers

• For keywords

Roles of the scanner

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Removal of white spaces

• Blanks, tabulars, carriage returns

• Is it possible to identify tokens in a program without spaces?

• Interpretation of compiler directives

• #include, #ifdef, #ifndef and #define are directives to “redirect the input”
of the compiler

• May be done by a pre-compiler

• Initial creation of the symbol table

• A symbol table entry is created when an identifier is encountered

• The lexical analyzer cannot create the whole entries

• Can convert literals to their value and assign a type

• Convert the input file to a token stream

• Input file is a character stream

• Lexical specifications: literals, operators, keywords, punctuation

Roles of the scanner

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Token: An element of the lexical definition of the language.

• Lexeme: A sequence of characters identified as a token.

Lexical specifications: tokens and lexemes

Joey Paquet, 2000-2018

5COMP 442/6421 – Compiler Design

Token Lexeme

id distance,rate,time,a,x

relop >=,<,==

openpar (

if if

then then

assignop =

semi ;

Concordia University Department of Computer Science and Software Engineering

Design of a lexical analyzer

Joey Paquet, 2000-2018

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Procedure

1. Construct a set of regular expressions (REs) that define the form of any valid token

2. Derive an NDFA from the REs

3. Derive a DFA from the NDFA

4. Translate the NDFA to a state transition table

5. Implement the table

6. Implement the algorithm to interpret the table

• This is exactly the procedure that a scanner generator is implementing.

• Scanner generators include:

• Lex, flex

• Jlex

• Alex

• Lexgen

• re2c

Design of a lexical analyser

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Regular expressions

Joey Paquet, 2000-2018

8COMP 442/6421 – Compiler Design

 : { }
s : {s | s in s^}
a : {a}
r | s : {r | r in r^} or {s | s in s^}
s* : {sn | s in s^ and n>=0}
s+ : {sn | s in s^ and n>=1}

id ::= letter(letter|digit)*

Concordia University Department of Computer Science and Software Engineering

• Thompson’s construction is an algorithm invented
by Ken Thompson in 1968 to translate regular
expressions into an NFA.

• Rabin-Scott powerset construction is an algorithm
invented by Michael O. Rabin and Dana Scott in
1959 to transform an NFA to a DFA.

• Kleene’s algorithm, is an algorithm invented by
Stephen Cole Kleene in 1956 to transform a DFA
into a regular expression.

• These algorithms are the basis of the
implementation of all scanner generators.

Deriving DFA from REs

Joey Paquet, 2000-2018

9COMP 442/6421 – Compiler Design

Michael O. Rabin

Dana Scott

Stephen Cole Kleene

Ken Thompson

Concordia University Department of Computer Science and Software Engineering

Thompson’s construction

Joey Paquet, 2000-2018

10COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

REs to NDFA: Thompson’s construction

Joey Paquet, 2000-2018

11COMP 442/6421 – Compiler Design

id ::= letter(letter|digit)*

1l

2

4

3

5

l

d

0 6
ɛ

ɛ ɛ

ɛ

ɛ

ɛ

7ɛ

Concordia University Department of Computer Science and Software Engineering

Thompson’s construction

Joey Paquet, 2000-2018

12COMP 442/6421 – Compiler Design

• Thompson’s construction
works recursively by splitting
an expression into its
constituent subexpressions.

• Each subexpression
corresponds to a subgraph.

• Each subgraph is then grafted
with other subgraphs
depending on the nature of
the composed subexpression,
i.e.

• An atomic lexical symbol

• A concatenation expression

• A union expression

• A Kleene star expression

si fs

N(t)N(s)i fst

ɛ ɛ

ɛ ɛ

i f

N(s)

N(t)

s|t

ɛ ɛ

ɛ

i fN(s)

ɛ

s*

Concordia University Department of Computer Science and Software Engineering

Thompson’s construction: example

Joey Paquet, 2000-2018

13COMP 442/6421 – Compiler Design

a2 3a

b4 5b

ɛ ɛ

ɛ ɛ

1 6a|b

2

4

3

5

a

b

ei fe

ei fe

ɛ ɛ

ɛ ɛ

i f

N(s)

N(t)

s|t

(a|b)*abb

Concordia University Department of Computer Science and Software Engineering

Thompson’s construction: example

Joey Paquet, 2000-2018

14COMP 442/6421 – Compiler Design

ɛ ɛ

ɛ ɛ

1 6a|b

2

4

3

5

a

b

1ɛ(a|b)*

2

4

3

5

a

b

0 76 ɛ
ɛ

ɛ ɛ

ɛ

ɛ

ɛ

(a|b)*abb

ɛ ɛ

ɛ

i fN(s)

ɛ

s*

Concordia University Department of Computer Science and Software Engineering

Thompson’s construction: example

Joey Paquet, 2000-2018

15COMP 442/6421 – Compiler Design

1ɛ(a|b)*

2

4

3

5

a

b

0 76 ɛ
ɛ

ɛ ɛ

ɛ

ɛ

ɛ

N(t)N(s)i fst

1ɛ(a|b)*abb

2

4

3

5

a

b

0 6
ɛ

ɛ ɛ

ɛ

ɛ

ɛ

8 97 10ɛ a b b

a2 3a

b4 5b

(a|b)*abb

Concordia University Department of Computer Science and Software Engineering

Rabin-Scott powerset construction

Joey Paquet, 2000-2018

16COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Rabin-Scott powerset construction: concepts

Joey Paquet, 2000-2018

17COMP 442/6421 – Compiler Design

• SDFA: set of states in the DFA

• SNFA: set of states in the NFA

• Σ: set of all symbols in the lexical specification.

• ɛ-closure(S): set of states in the NDFA that can be reached with ɛ
transitions from any element of the set of states S, including the state itself.

• MoveNFA(T,a): state in SNFA to which there is a transition from one of the
states in states set T, having encountered symbol a.

• MoveDFA(T,a): state in SDFA to which there is a transition from one of the
states in states set T, having encountered symbol a.

id ::= letter(letter|digit)*

A Bl

C
l

D
d

l

d l

d

1l

2

4

3

5

l

d

0 6
ɛ

ɛ ɛ

ɛ

ɛ

ɛ

7ɛ

Concordia University Department of Computer Science and Software Engineering

Rabin-Scott powerset construction: algorithm

Joey Paquet, 2000-2018

18COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Rabin-Scott powerset construction: example

Joey Paquet, 2000-2018

19COMP 442/6421 – Compiler Design

A Bl

C
l

D
d

l

d l

d

1l

2

4

3

5

l

d

0 6
ɛ

ɛ ɛ

ɛ

ɛ

ɛ

7ɛ

Concordia University Department of Computer Science and Software Engineering

Starting state A = ɛ-closure(0) = {0}

State A : {0}

moveDFA(A,l)

= ɛ-closure(moveNFA(A,l))

= ɛ-closure({1})

= {1,2,4,7}

= B

moveDFA(A,d)

= ɛ-closure(moveNFA(A,d))

= ɛ-closure({})

= {}

Rabin-Scott powerset construction: example

Joey Paquet, 2000-2018

20COMP 442/6421 – Compiler Design

A

A Bl

Concordia University Department of Computer Science and Software Engineering

State B : {1,2,4,7}

moveDFA(B,l)

= ɛ-closure(moveNFA(B,l))

= ɛ-closure({3})

= {1,2,3,4,6,7}

= C

moveDFA(B,d)

= ɛ-closure(moveNFA(B,d))

= ɛ-closure({5})

= {1,2,4,5,6,7}

= D

Rabin-Scott powerset construction: example

Joey Paquet, 2000-2018

21COMP 442/6421 – Compiler Design

A Bl Cl

A Bl

C
l

D
d

Concordia University Department of Computer Science and Software Engineering

State C : {1,2,3,4,6,7}

moveDFA(C,l)

= ɛ-closure(moveNFA(C,l))

= ɛ-closure({3})

= {1,2,3,4,6,7}

= C

moveDFA(C,d)

= ɛ-closure(moveNFA(C,d))

= ɛ-closure({5})

= {1,2,4,5,6,7}

= D

Rabin-Scott powerset construction: example

Joey Paquet, 2000-2018

22COMP 442/6421 – Compiler Design

A Bl

C
l

D
d

l

A Bl

C
l

D
d

l

d

Concordia University Department of Computer Science and Software Engineering

State D : {1,2,4,5,6,7}

moveDFA(D,l)

= ɛ-closure(moveNFA(D,l))

= ɛ-closure({3})

= {1,2,3,4,6,7}

= C

moveDFA(D,d)

= ɛ-closure(moveNFA(D,d))

= ɛ-closure({5})

= {1,2,4,5,6,7}

= D

Rabin-Scott powerset construction: example

Joey Paquet, 2000-2018

23COMP 442/6421 – Compiler Design

A Bl

C
l

D
d

l

d l

A Bl

C
l

D
d

l

d l

d

Concordia University Department of Computer Science and Software Engineering

Final states:

Rabin-Scott powerset construction: example

Joey Paquet, 2000-2018

24COMP 442/6421 – Compiler Design

A Bl

C
l

D
d

l

d l

d

Concordia University Department of Computer Science and Software Engineering

Generate state transition table

Joey Paquet, 2000-2018

25COMP 442/6421 – Compiler Design

A Bl

C
l

D
d

l

d l

d

state letter digit final

A B N

B C D Y

C C D Y

D C D Y

Concordia University Department of Computer Science and Software Engineering

Implementation

Joey Paquet, 2000-2018

26COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Backtracking

• Principle : A token is normally recognized only when the next character is read.

• Problem : Maybe this character is part of the next token.

• Example : x<1 “<“ is recognized only when “1” is read. In this case, we have to
backtrack one character to continue token recognition without skipping the first
character of the next token.

• Solution : include the occurrence of these cases in the state transition table.

• Ambiguity

• Problem : Some tokens’ lexemes are subsets of other tokens.

• Example :

• n-1. Is it <n><-><1> or <n><-1>?

• Solutions :

• Postpone the decision to the syntactic analyzer

• Do not allow sign prefix to numbers in the lexical specification

• Interact with the syntactic analyzer to find a solution. (Induces coupling)

Implementation concerns

Joey Paquet, 2000-2018

27COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Alphabet :

• {:, *, =, (,), <, >, {, }, [a..z], [0..9]}

• Simple tokens :

• {(,), :, <, >}

• Composite tokens :

• {:=, >=, <=, <>, (*, *)}

• Words :

• id ::= letter(letter | digit)*

• num ::= digit*

• {…} or (*…*) represent comments

Example

Joey Paquet, 2000-2018

28COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Ambiguity problems

• Solution: Backtracking
• Must back up a character when we read a character that is part of the next token.

• Each case is encoded in the table

Example

Joey Paquet, 2000-2018

29COMP 442/6421 – Compiler Design

character possible tokens

: :, :=

> >, >=

< <, <=, <>

((, (*

* *, *)

Concordia University Department of Computer Science and Software Engineering

Example - DFA

Joey Paquet, 2000-2018

30COMP 442/6421 – Compiler Design

1

2

4

6 7

5

3

8

13

15

18

10 11 12

14

16

19

17

20

21

l

d

{

(

:

<

l or d

}

d

*)

=

=

>

=

>

*

23

22

sp
9

24

)

ID

NUM

CMT

ERR

OPENPAR

CMT

COLON

ASSGN

LESSEQ

NOTEQ

GT

GREATEQ

CLOSEPAR

LT

Concordia University Department of Computer Science and Software Engineering

Table-driven scanner – state transition table

Joey Paquet, 2000-2018

31COMP 442/6421 – Compiler Design

l d { } (*) : = < > sp final [token] Backtrack

1 2 4 6 20 8 20 20 13 20 15 18 1

2 2 2 3 3 3 3 3 3 3 3 3 3

3 1 1 1 1 1 1 1 1 1 1 1 1 yes [id] yes

4 5 4 5 5 5 5 5 5 5 5 5 5

5 1 1 1 1 1 1 1 1 1 1 1 1 yes [num] yes

6 6 6 6 7 6 6 6 6 6 6 6 6

7 1 1 1 1 1 1 1 1 1 1 1 1 yes [cmt] no

8 9 9 9 9 9 10 9 9 9 9 9 9

9 1 1 1 1 1 1 1 1 1 1 1 1 yes [openpar] no

10 10 10 10 10 10 11 10 10 10 10 10 10

11 10 10 10 10 10 10 12 10 10 10 10 10

12 1 1 1 1 1 1 1 1 1 1 1 1 yes [cmt] yes

13 21 21 21 21 21 21 21 21 14 21 21 21

14 1 1 1 1 1 1 1 1 1 1 1 1 yes [assgn] no

15 22 22 22 22 22 22 22 22 16 22 17 22

16 1 1 1 1 1 1 1 1 1 1 1 1 yes [lesseq] no

17 1 1 1 1 1 1 1 1 1 1 1 1 yes [noteq] no

18 23 23 23 23 23 23 23 23 19 23 23 23

19 1 1 1 1 1 1 1 1 1 1 1 1 yes [gt] no

20 1 1 1 1 1 1 1 1 1 1 1 1 yes [err] no

21 1 1 1 1 1 1 1 1 1 1 1 1 yes [colon] yes

22 1 1 1 1 1 1 1 1 1 1 1 1 yes [lt] yes

23 1 1 1 1 1 1 1 1 1 1 1 1 yes [gt] yes

24 1 1 1 1 1 1 1 1 1 1 1 1 yes [closepar] no

Concordia University Department of Computer Science and Software Engineering

Table-driven scanner - algorithm

Joey Paquet, 2000-2018

32COMP 442/6421 – Compiler Design

nextToken()
state = 1
token = null
do
lookup = nextChar()
state = table(state, lookup)
if (isFinalState(state))

token = createToken(state)
if (table(state, “backup”) == yes)
backupChar()

until (token != null)
return (token)

Concordia University Department of Computer Science and Software Engineering

• nextToken()

• Extract the next token in the program (called by syntactic analyzer)

• nextChar()

• Read the next character in the input program

• backupChar()

• Back up one character in the input file in case we have just read the next character in
order to resolve an ambiguity

• isFinalState(state)

• Returns TRUE if state is a final state

• table(state, column)

• Returns the value corresponding to [state, column] in the state transition table.

• createToken(state)

• Creates and returns a structure that contains the token type, its location in the source
code, and its value (for literals), for the token kind corresponding to a state, as found in
the state transition table.

Table-driven scanner – functions

Joey Paquet, 2000-2018

33COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Hand-written scanner

Joey Paquet, 2000-2018

34COMP 442/6421 – Compiler Design

nextToken()
c = nextChar()
case (c) of
"[a..z],[A..Z]":

c = nextChar()
while (c in {[a..z],[A..Z],[0..9]}) do
s = makeUpString()
c = nextChar()

if (isReservedWord(s))then
token = createToken(RESWORD,null)

else
token = createToken(ID,s)

backupChar()
"[0..9]":

c = nextChar()
while (c in [0..9]) do
v = makeUpValue()
c = nextChar()

token = createToken(NUM,v)
backupChar()

Concordia University Department of Computer Science and Software Engineering

Hand-written scanner

Joey Paquet, 2000-2018

35COMP 442/6421 – Compiler Design

"{":
c = nextChar()
while (c != "}") do
c = nextChar()

"(":
c = nextChar()
if (c == "*") then
c = nextChar()
repeat
while (c != "*") do
c = nextChar()

c = nextChar()
until (c != ")")

else
token = createToken(LPAR,null)

":":
c = nextChar()
if (c == "=") then
token = createToken(ASSIGNOP,null)

else
token = createToken(COLON,null)
backupChar()

Concordia University Department of Computer Science and Software Engineering

Hand-written scanner

Joey Paquet, 2000-2018

36COMP 442/6421 – Compiler Design

"<":
c = nextChar()
if (c == "=") then
token = createToken(LEQ,null)

else if (c == ">") then
token = createToken(NEQ,null)

else
token = createToken(LT,null)
backupChar()

">":
c = nextChar()
if (c == "=") then
token = createToken(GEQ,null)

else
token = createToken(GT,null)
backupChar()

")":
token = createToken(RPAR,null)

"*":
token = createToken(STAR,null)

"=":
token = createToken(EQ,null)

end case
return token

Concordia University Department of Computer Science and Software Engineering

Error-recovery in lexical analysis

Joey Paquet, 2000-2018

37COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Depends on the accepted conventions:

• Invalid character

• letter not allowed to terminate a number

• numerical overflow

• identifier too long

• end of line before end of string

• Are these lexical errors?

123a

<Error> or <num><id>?

123456789012345678901234567

<Error> related to machine’s limitations

“Hello <CR> world

Either <CR> is skipped or <Error>

ThisIsAVeryLongVariableNameThatIsMeantToConveyMeaning = 1

Limit identifier length?

Possible lexical errors

Joey Paquet, 2000-2018

38COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Finding only the first error is not acceptable

• Panic Mode:

• Skip characters until a valid character is read

• Guess Mode:

• do pattern matching between erroneous strings and valid strings

• Example: (beggin vs. begin)

• Rarely implemented

Lexical error recovery techniques

Joey Paquet, 2000-2018

39COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Conclusions

Joey Paquet, 2000-2018

40COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Lexical Analyzer Generator (e.g. Lex)
+ safe, quick

- Must learn software, unable to handle unusual situations

• Table-Driven Lexical Analyzer
+ general and adaptable method, same function can be used for all table-driven lexical

analyzers

- Building transition table can be tedious and error-prone

• Hand-written

+ Can be optimized, can handle any unusual situation, easy to build for most languages

- Error-prone, not adaptable or maintainable

Possible implementations

Joey Paquet, 2000-2018

41COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Why should the Lexical Analyzer and the Syntactic Analyzer be separated?

• Modularity/Maintainability : system is more modular, thus more maintainable

• Efficiency : modularity = task specialization = easier optimization

• Reusability : can change the whole lexical analyzer without changing other parts

Lexical analyzer’s modularity

Joey Paquet, 2000-2018

42COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• R. McNaughton, H. Yamada (Mar 1960). "Regular Expressions and State Graphs
for Automata". IEEE Trans. on Electronic Computers 9 (1): 39–47.
doi:10.1109/TEC.1960.5221603

• Ken Thompson (Jun 1968). "Programming Techniques: Regular expression search
algorithm". Communications of the ACM 11 (6): 419–422.
doi:10.1145/363347.363387

• Rabin, M. O.; Scott, D. (1959). "Finite automata and their decision problems".
IBM Journal of Research and Development 3 (2): 114–125.
doi:10.1147/rd.32.0114

• Russ Cox. Implementing Regular Expressions.

• Russ Cox. Regular Expression Matching Can Be Simple And Fast.

• CyberZHG. Regular Expression to NFA, to DFA.

References

Joey Paquet, 2000-2018

43COMP 442/6421 – Compiler Design

http://swtch.com/~rsc/regexp/
http://swtch.com/~rsc/regexp/regexp1.html
https://cyberzhg.github.io/toolbox/

