
COMP 442/6421 Compiler
Design
Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TA: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

LAB 6 – LR GRAMMARS AND PARSING – AN OVERVIEW

1

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca

Grammars
• Context free grammars are a general class of formal grammars, whose rules

can be applied regardless of context
• In the context of compiler design, we are interested in grammars which are deterministic

• For the project, you have used an LL(1) grammar

• There exist grammars which are deterministic, which can not be parsed by LL(k) parsers

• These can however be parsed by LR(k) Parsers

2

Grammars - LR(1)
• Left to Right
• Traversing input from left to right

• Rightmost parse derivation
• In the derivation, the leftmost terminals are reduced to first

• 1 lookahead token
• A unique shift/reduce action can be selected and applied, by looking at the next (only 1) terminal

symbol

• LR(k) grammars can exist for k ≥ 0, and all are deterministic
• They are a proper subset of context free grammars, and a proper superset of LR(k)

grammars
• All deterministic context free grammars can be LR(k)

3

How LR(k) grammars work
• LR(k) parsing works by waiting until a RHS is complete before committing to a

production, without requiring grammar transformations to do so.
• LL(k) parsers must choose a production when they see its leftmost symbol.

• Many of the ambiguities in the project’s language can be handle by LR(k) parsers

• They do so with two main operations
• Shift: Proceed to the next input symbol

• Reduce: Reduce a set of symbols into a single symbol, using a grammar rule

• An example . . .

4

LR(k) grammars - types
• All of the following operate using the same grammar, and are more expressive than LL(k) grammars

• They differ in the algorithms they use

• Simple LR: SLR
• Simple LR parser -> small memory requirement

• Fails on Shift/Reduce and Reduce/Reduce conflicts

• Look Ahead LR: LALR
• A simplified CLR parser, often obtained by merging similar states

• Smaller

• May introduce reduce/reduce conflicts

• Canonical LR: CLR
• Can parse any deterministic CFG

• No conflicts

• Large memory requirement (often exponential)

• Recent advancements somewhat negate this
so-called Minimal LR(1) parsers have memory requirements comparable to the above parsers

5

