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Basic Structural Modeling
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Part I

Classes
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Classes
• Description of a set of objects sharing the same

attributes, operations and semantics

• Abstraction of the things that are part of the
application domain vocabulary

• Can represent software, hardware or conceptual
things



Copyright Joey Paquet, 2000 4

Terms and Concepts
• Names

– nouns drawn from the application domain
vocabulary, beginning with a capital letter

– short but long enough to carry a meaning

– can include the path of the package(s) it
belongs to
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Terms and Concepts
• Attributes

– named properties of a class representing the
state of the objects

– extension of classical data structures

– can include type and default values
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Terms and Concepts
• Operations

– implementation of a behavior or service

– messages that can be understood by the class

– verb or verb phrase describing the intended
behavior

– can define the interface of the functions
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Terms and Concepts
• Organizing Attributes and Operations

– some attributes and operations can be omitted

– they can be organized using stereotypes
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Terms and Concepts
• Responsibilities

– defines the requirements of classes

– expressed as form-free text

– can be used in early stages for abstraction
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Common Modeling Techniques
• Modeling the vocabulary of the system

– identify things that users use to describe the problem

– identify things that implementers use to describe the
solution

– for each class, identify a set of responsibilities

– provide the attributes and operations needed to carry
out these responsibilities

– aggregate related clusters into packages
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Common Modeling Techniques
• Modeling the distribution of responsibilities

in a system
– identify a set of classes that work together to carry out

some behavior

– identify a set of responsibilities for these classes

– aggregate classes that have too few responsibilities

– split classes that have too many responsibilities

– consider the workload involved by each responsibility
and distribute the load evenly
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Hints and Tips
• When you model, define classes that

– are an abstraction of something drawn either from the
vocabulary of the problem or the solution

– embody a small, well-defined set of responsibilities

– are understandable, simple, extensible and adaptable
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Hints and Tips
• When you draw class diagrams

– show only those properties of the class that important in
the current context

– organize long lists of attributes and operations using
stereotypes

– show related classes in the same diagrams
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Part II

Relationships
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Relationships
• Very few classes stand alone

• Classes collaborate to respond to service requests

• We must model the interactions between objects
and classes
– Dependencies: uses relationships

– Generalizations: subclass/superclass relationships

– Associations: structural relationships
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Relationships



Copyright Joey Paquet, 2000 16

Terms and Concepts
• Dependencies

– a change in the state of an object may affect the
behavior of the depending object

– a class uses another in its behavior

– drawn as a dashed directed line

– most often used to show that one of the operations uses
another class as an argument

– dependencies can be used at various levels of
abstraction
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Terms and Concepts
• Generalizations

– relationship between a general thing (parent) and a
more specific thing (child) of the same kind

– the child inherits the attributes and operations of the
parent class

– operations can be redefined in the child and override
the operations of the parent (polymorphism)

– drawn as a directed line with open arrowhead
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Terms and Concepts

5-3
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Terms and Concepts
• Associations

– used to show structural relationships where none of the classes is
part of the other

– drawn as a solid line connecting classes

• Name of an association
– describes the nature of the relationship

– can include the direction of the relationship

– drawn as a tag on the middle of the association

5-4
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Terms and Concepts
• Roles of an association

– identifies the role that each class plays in the
relationship

– drawn as a tag on the near end of the association

– same class can play different roles in different contexts
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Terms and Concepts
• Defining multiplicity in an association

– shows how many objects of the same type are involved
in the association

– similar to multiplicity defined in entity-relationship
diagrams



Copyright Joey Paquet, 2000 22

Terms and Concepts
• Aggregation

– an association where one class is part of the other
(has-a relationship)

– drawn as a solid line with a diamond on the whole side
of the relation
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Common Modeling Techniques
• Modeling simple dependencies

– e.g. dependency between a class and a class being a
parameter in one of its operations

– can be omitted if the signature of the operations is
provided in the class description
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Common Modeling Techniques
• Modeling single inheritance

– some classes that have common behavior or structure
can be have a common superclass

– given a set of classes, look for responsibilities,
attributes and operations common to two or more
classes

– elevate these elements to a more general class without
introducing too many levels

– specify that the children inherit from the parent using a
generalization relationship from children to parent

– multiple inheritance is allowed, cyclic inheritance is not
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Common Modeling Techniques
• Modeling structural relationships

– for each pair of classes, if you need to navigate between
the two, define an association between them (data-
driven associations)

– for each pair of classes, if an interaction is needed
between the two (other than parameters to an operation)
specify an association between the two (behavior-
driven associations)

– for each of these associations, define their multiplicity

– if one of the classes is a part of the other, make it an
aggregation
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Common Modeling Techniques
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Hints and Tips
• When you model

– use dependencies only when the relationship is not
structural

– use generalizations only when you have a is-kind-of
relationship

– cyclical generalization is not allowed

– inheritance trees should not be too deep nor too wide
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Hints and Tips
• When you draw

– use rectilinear or oblique lines consistently

– avoid lines that cross

– show only relationships that are necessary to the
understanding of the diagram in the current context
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Part III

Common Mechanisms
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Common Mechanisms
• Some important facts about a design might

not be expressible in the basic UML
notation
– notes

– version number of components

– constraints on dependencies
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Terms and Concepts
• Notes

– a graphical symbol used to attach comments or
constraints to an element

– drawn as a rectangle with a dog-eared corner containing
a textual or graphical comment

– it does not carry any semantic impact

• Tagged values
– extension of the properties of a UML element

– drawn as a string enclosed in {brackets}
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Terms and Concepts
• Stereotypes

– extension of the vocabulary of the UML

– used to create new kinds of building blocks

– drawn as a name enclosed in <<guillemets>>

– can be represented as a new kind of icon

• Constraint
– extension of the semantics of a UML element

– drawn as a string enclosed in {brackets}

– can be put in a note
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Hints and Tips
• Use notes only for facts that can’t be expressed

using the UML

• Use notes to specify work in progress

• Don’t use too many or large notes

• Standardize the use of stereotypes, tagged values
and constraints

• Don’t use too many graphical stereotypes

• Use only general and simple additions
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Part IV

Diagrams
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Diagrams
• Simplification of reality

• Using a limited set of general-use building blocks

• Different types of diagrams are used to represent
the system in different perspectives

• Good diagrams make the system more
understandable

• Choosing the right diagrams forces you to ask the
right questions and illuminate their implications
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Terms and Concepts
• Structural diagrams

– Used to visualize, specify, construct and
document the static aspects of the system

– Represents the “skeleton” of the system
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Terms and Concepts
• Structural diagrams

– Class diagram
• a set of classes interfaces, collaborations and their relationships

• used to render the static design view of a system

– Object diagram
• same as class diagram, but for instances

• “snapshot” of the relations between objects in a hypothetical
situation
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Terms and Concepts
• Structural diagrams

– Component diagrams
• shows a set of software components and their relationships

• used to render a static implementation view of the system

– Deployment diagrams
• shows a set of nodes and their relations

• used to render the static deployment view of the system

• more abstract version of component diagrams
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Terms and Concepts
• Behavioral diagrams

– Used to visualize, specify, construct and
document the dynamic aspects of the system

– Represents the behavior of the system
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Terms and Concepts
• Behavioral diagrams

– Use case diagrams
• shows a set of use cases and actors and their

relationships

• shows the different views that are possible on the
system

• defines subsets of classes (and their interactions)
that are needed to achieve a certain goal of the
system
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Terms and Concepts
• Behavioral diagrams

– Sequence diagrams
• defines the time ordering of messages exchanged

between a set of objects

• shows a set of objects and the messages sent and
received between these objects towards the
realization of a certain service
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Terms and Concepts
• Behavioral diagrams

– Collaboration diagrams
• defines all the dynamic interactions between a set of

objects

• shows a set of objects, links among those objects,
and messages sent and received by those objects in
the general case (not related to a specific service)

– Sequence and collaboration diagrams carry the
same information but not in the same context
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Terms and Concepts
• Behavioral diagrams

– Statechart diagram
• defines a behavior that specifies the sequences of

states an object goes through during its lifetime in
response to events, together with its responses to
those events

• emphasizes the event-ordered behavior of an object

• used to model the behavior of an interface, class or
collaboration between classes
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Terms and Concepts
• Behavioral diagrams

– Activity diagram
• defines the flow of control among objects

• shows the flow from activity to activity within the
system

• shows a set of activities, the sequential or branching
flow between activities and objects that act or are
acted upon in the activity
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Common Modeling Techniques
• Modeling different views of a system

– views are the different dimensions from which
the system can be represented

– different views expose different aspects of the
problem or see the same aspect in a different
context

– must find the right set of views

– must focus on different views separately, and
then find a compromise for common parts
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Common Modeling Techniques
• Modeling different views of a system

– decide which views best express the
architecture and expose all problems

– for each of these views, chose which kind of
diagrams you will use to capture its details

– decide which of these will be part of the
documentation

– unused diagrams should not be thrown away
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Common Modeling Techniques
• Modeling different levels of abstraction

– different people involved in the development
have different needs

– the different kinds of diagrams propose a
different view on the system

– some people need abstract information, others
need exact information

– several versions of the same diagram, at various
levels of abstraction, might be needed
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Common Modeling Techniques
• Modeling different levels of abstraction

– consider the different needs of the readers

– create different abstraction levels for diagrams
that are read by different readers

– hide or reveal building blocks and relationships

– hide or expand messages and transitions that
are essential to understanding

– reveal only adornments that are essential to
understanding (e.g. classifying stereotypes)
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Hints and Tips
• When you design a diagram

– diagrams are a tool, they do not need to be cute

– not all diagrams are meant to be preserved

– find an goal and an audience for each diagram
and show only the information needed to
explain the solution to the intended audience

– give meaningful names to all diagrams

– group diagrams into packages
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Hints and Tips
• A well structured diagram

– is focused on communicating one aspect of the
system

– contains only those elements that are essential
to understanding that aspect

– provides details consistent with its level of
abstraction
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Hints and Tips
• When you draw a diagram

– give it a name that communicates its purpose

– lay out elements to minimize lines that cross

– lay out related elements close to one another

– use colors and notes to draw attention on
important features
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Part V

Class Diagrams
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Class Diagrams
• Most common diagram used to model

object-oriented systems

• Shows a set of classes, interfaces, and
collaborations and their relationships

• Models the static design view of the system

• Involves modeling the vocabulary of the
system requirements specifications
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Terms and Concepts
• Class diagrams commonly contain

– classes

– interfaces

– collaborations

– relationships

– notes and constraints

– packages or subsystems
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Terms and Concepts
• Common uses

– model the static design view to support the
functional requirements of the system

• model the vocabulary of the system: first define
classes and their responsibilities, and then refine
towards attributes, operations

• model simple collaborations: define the interactions
between classes towards the definition of a common
behavior

• model a database schema:  data elements are
attributes, tables are classes, and relationships
are…relationships
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Common Modeling Techniques
• Modeling simple collaborations

– identify the mechanism to model.

– for each mechanism, identify the classes, interfaces,
and other collaborations that participate in this
collaboration; as well as their relationships

– use scenarios to walk through these things

– populate these elements with their required contents
(attributes and operations) first starting with
responsibilities
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Example
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Common Modeling Techniques
• Modeling a logical database schema

– identify the classes whose state must transcend the
lifetime of their application

– create a class diagram for these and mark them as
<<persistent>> with a tagged value

– define their attributes and associations (and their
cardinalities)

– define data-specific operations on these classes
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Example of Database Schema
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Hints and Tips
• A well-structured class diagram

– is focused on communicating only one aspect
of the system’s static design

– provides only the details that are consistent
with its associated level of abstraction

– is not minimalist
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Hints and Tips
• When you draw a class diagram

– give it a name that communicates its purpose

– minimize line crossing

– use colors and notes to emphasize important
aspects

– lay out related elements close to one another


