
Copyright Joey Paquet, 2000 1

Basic Structural Modeling

Copyright Joey Paquet, 2000 2

Part I

Classes

Copyright Joey Paquet, 2000 3

Classes
• Description of a set of objects sharing the same

attributes, operations and semantics

• Abstraction of the things that are part of the
application domain vocabulary

• Can represent software, hardware or conceptual
things

Copyright Joey Paquet, 2000 4

Terms and Concepts
• Names

– nouns drawn from the application domain
vocabulary, beginning with a capital letter

– short but long enough to carry a meaning

– can include the path of the package(s) it
belongs to

Copyright Joey Paquet, 2000 5

Terms and Concepts
• Attributes

– named properties of a class representing the
state of the objects

– extension of classical data structures

– can include type and default values

Copyright Joey Paquet, 2000 6

Terms and Concepts
• Operations

– implementation of a behavior or service

– messages that can be understood by the class

– verb or verb phrase describing the intended
behavior

– can define the interface of the functions

Copyright Joey Paquet, 2000 7

Terms and Concepts
• Organizing Attributes and Operations

– some attributes and operations can be omitted

– they can be organized using stereotypes

Copyright Joey Paquet, 2000 8

Terms and Concepts
• Responsibilities

– defines the requirements of classes

– expressed as form-free text

– can be used in early stages for abstraction

Copyright Joey Paquet, 2000 9

Common Modeling Techniques
• Modeling the vocabulary of the system

– identify things that users use to describe the problem

– identify things that implementers use to describe the
solution

– for each class, identify a set of responsibilities

– provide the attributes and operations needed to carry
out these responsibilities

– aggregate related clusters into packages

Copyright Joey Paquet, 2000 10

Common Modeling Techniques
• Modeling the distribution of responsibilities

in a system
– identify a set of classes that work together to carry out

some behavior

– identify a set of responsibilities for these classes

– aggregate classes that have too few responsibilities

– split classes that have too many responsibilities

– consider the workload involved by each responsibility
and distribute the load evenly

Copyright Joey Paquet, 2000 11

Hints and Tips
• When you model, define classes that

– are an abstraction of something drawn either from the
vocabulary of the problem or the solution

– embody a small, well-defined set of responsibilities

– are understandable, simple, extensible and adaptable

Copyright Joey Paquet, 2000 12

Hints and Tips
• When you draw class diagrams

– show only those properties of the class that important in
the current context

– organize long lists of attributes and operations using
stereotypes

– show related classes in the same diagrams

Copyright Joey Paquet, 2000 13

Part II

Relationships

Copyright Joey Paquet, 2000 14

Relationships
• Very few classes stand alone

• Classes collaborate to respond to service requests

• We must model the interactions between objects
and classes
– Dependencies: uses relationships

– Generalizations: subclass/superclass relationships

– Associations: structural relationships

Copyright Joey Paquet, 2000 15

Relationships

Copyright Joey Paquet, 2000 16

Terms and Concepts
• Dependencies

– a change in the state of an object may affect the
behavior of the depending object

– a class uses another in its behavior

– drawn as a dashed directed line

– most often used to show that one of the operations uses
another class as an argument

– dependencies can be used at various levels of
abstraction

Copyright Joey Paquet, 2000 17

Terms and Concepts
• Generalizations

– relationship between a general thing (parent) and a
more specific thing (child) of the same kind

– the child inherits the attributes and operations of the
parent class

– operations can be redefined in the child and override
the operations of the parent (polymorphism)

– drawn as a directed line with open arrowhead

Copyright Joey Paquet, 2000 18

Terms and Concepts

5-3

Copyright Joey Paquet, 2000 19

Terms and Concepts
• Associations

– used to show structural relationships where none of the classes is
part of the other

– drawn as a solid line connecting classes

• Name of an association
– describes the nature of the relationship

– can include the direction of the relationship

– drawn as a tag on the middle of the association

5-4

Copyright Joey Paquet, 2000 20

Terms and Concepts
• Roles of an association

– identifies the role that each class plays in the
relationship

– drawn as a tag on the near end of the association

– same class can play different roles in different contexts

Copyright Joey Paquet, 2000 21

Terms and Concepts
• Defining multiplicity in an association

– shows how many objects of the same type are involved
in the association

– similar to multiplicity defined in entity-relationship
diagrams

Copyright Joey Paquet, 2000 22

Terms and Concepts
• Aggregation

– an association where one class is part of the other
(has-a relationship)

– drawn as a solid line with a diamond on the whole side
of the relation

Copyright Joey Paquet, 2000 23

Common Modeling Techniques
• Modeling simple dependencies

– e.g. dependency between a class and a class being a
parameter in one of its operations

– can be omitted if the signature of the operations is
provided in the class description

Copyright Joey Paquet, 2000 24

Common Modeling Techniques
• Modeling single inheritance

– some classes that have common behavior or structure
can be have a common superclass

– given a set of classes, look for responsibilities,
attributes and operations common to two or more
classes

– elevate these elements to a more general class without
introducing too many levels

– specify that the children inherit from the parent using a
generalization relationship from children to parent

– multiple inheritance is allowed, cyclic inheritance is not

Copyright Joey Paquet, 2000 25

Common Modeling Techniques
• Modeling structural relationships

– for each pair of classes, if you need to navigate between
the two, define an association between them (data-
driven associations)

– for each pair of classes, if an interaction is needed
between the two (other than parameters to an operation)
specify an association between the two (behavior-
driven associations)

– for each of these associations, define their multiplicity

– if one of the classes is a part of the other, make it an
aggregation

Copyright Joey Paquet, 2000 26

Common Modeling Techniques

Copyright Joey Paquet, 2000 27

Hints and Tips
• When you model

– use dependencies only when the relationship is not
structural

– use generalizations only when you have a is-kind-of
relationship

– cyclical generalization is not allowed

– inheritance trees should not be too deep nor too wide

Copyright Joey Paquet, 2000 28

Hints and Tips
• When you draw

– use rectilinear or oblique lines consistently

– avoid lines that cross

– show only relationships that are necessary to the
understanding of the diagram in the current context

Copyright Joey Paquet, 2000 29

Part III

Common Mechanisms

Copyright Joey Paquet, 2000 30

Common Mechanisms
• Some important facts about a design might

not be expressible in the basic UML
notation
– notes

– version number of components

– constraints on dependencies

Copyright Joey Paquet, 2000 31

Terms and Concepts
• Notes

– a graphical symbol used to attach comments or
constraints to an element

– drawn as a rectangle with a dog-eared corner containing
a textual or graphical comment

– it does not carry any semantic impact

• Tagged values
– extension of the properties of a UML element

– drawn as a string enclosed in {brackets}

Copyright Joey Paquet, 2000 32

Terms and Concepts
• Stereotypes

– extension of the vocabulary of the UML

– used to create new kinds of building blocks

– drawn as a name enclosed in <<guillemets>>

– can be represented as a new kind of icon

• Constraint
– extension of the semantics of a UML element

– drawn as a string enclosed in {brackets}

– can be put in a note

Copyright Joey Paquet, 2000 33

Hints and Tips
• Use notes only for facts that can’t be expressed

using the UML

• Use notes to specify work in progress

• Don’t use too many or large notes

• Standardize the use of stereotypes, tagged values
and constraints

• Don’t use too many graphical stereotypes

• Use only general and simple additions

Copyright Joey Paquet, 2000 34

Part IV

Diagrams

Copyright Joey Paquet, 2000 35

Diagrams
• Simplification of reality

• Using a limited set of general-use building blocks

• Different types of diagrams are used to represent
the system in different perspectives

• Good diagrams make the system more
understandable

• Choosing the right diagrams forces you to ask the
right questions and illuminate their implications

Copyright Joey Paquet, 2000 36

Terms and Concepts
• Structural diagrams

– Used to visualize, specify, construct and
document the static aspects of the system

– Represents the “skeleton” of the system

Copyright Joey Paquet, 2000 37

Terms and Concepts
• Structural diagrams

– Class diagram
• a set of classes interfaces, collaborations and their relationships

• used to render the static design view of a system

– Object diagram
• same as class diagram, but for instances

• “snapshot” of the relations between objects in a hypothetical
situation

Copyright Joey Paquet, 2000 38

Terms and Concepts
• Structural diagrams

– Component diagrams
• shows a set of software components and their relationships

• used to render a static implementation view of the system

– Deployment diagrams
• shows a set of nodes and their relations

• used to render the static deployment view of the system

• more abstract version of component diagrams

Copyright Joey Paquet, 2000 39

Terms and Concepts
• Behavioral diagrams

– Used to visualize, specify, construct and
document the dynamic aspects of the system

– Represents the behavior of the system

Copyright Joey Paquet, 2000 40

Terms and Concepts
• Behavioral diagrams

– Use case diagrams
• shows a set of use cases and actors and their

relationships

• shows the different views that are possible on the
system

• defines subsets of classes (and their interactions)
that are needed to achieve a certain goal of the
system

Copyright Joey Paquet, 2000 41

Terms and Concepts
• Behavioral diagrams

– Sequence diagrams
• defines the time ordering of messages exchanged

between a set of objects

• shows a set of objects and the messages sent and
received between these objects towards the
realization of a certain service

Copyright Joey Paquet, 2000 42

Terms and Concepts
• Behavioral diagrams

– Collaboration diagrams
• defines all the dynamic interactions between a set of

objects

• shows a set of objects, links among those objects,
and messages sent and received by those objects in
the general case (not related to a specific service)

– Sequence and collaboration diagrams carry the
same information but not in the same context

Copyright Joey Paquet, 2000 43

Terms and Concepts
• Behavioral diagrams

– Statechart diagram
• defines a behavior that specifies the sequences of

states an object goes through during its lifetime in
response to events, together with its responses to
those events

• emphasizes the event-ordered behavior of an object

• used to model the behavior of an interface, class or
collaboration between classes

Copyright Joey Paquet, 2000 44

Terms and Concepts
• Behavioral diagrams

– Activity diagram
• defines the flow of control among objects

• shows the flow from activity to activity within the
system

• shows a set of activities, the sequential or branching
flow between activities and objects that act or are
acted upon in the activity

Copyright Joey Paquet, 2000 45

Common Modeling Techniques
• Modeling different views of a system

– views are the different dimensions from which
the system can be represented

– different views expose different aspects of the
problem or see the same aspect in a different
context

– must find the right set of views

– must focus on different views separately, and
then find a compromise for common parts

Copyright Joey Paquet, 2000 46

Common Modeling Techniques
• Modeling different views of a system

– decide which views best express the
architecture and expose all problems

– for each of these views, chose which kind of
diagrams you will use to capture its details

– decide which of these will be part of the
documentation

– unused diagrams should not be thrown away

Copyright Joey Paquet, 2000 47

Common Modeling Techniques
• Modeling different levels of abstraction

– different people involved in the development
have different needs

– the different kinds of diagrams propose a
different view on the system

– some people need abstract information, others
need exact information

– several versions of the same diagram, at various
levels of abstraction, might be needed

Copyright Joey Paquet, 2000 48

Common Modeling Techniques
• Modeling different levels of abstraction

– consider the different needs of the readers

– create different abstraction levels for diagrams
that are read by different readers

– hide or reveal building blocks and relationships

– hide or expand messages and transitions that
are essential to understanding

– reveal only adornments that are essential to
understanding (e.g. classifying stereotypes)

Copyright Joey Paquet, 2000 49

Hints and Tips
• When you design a diagram

– diagrams are a tool, they do not need to be cute

– not all diagrams are meant to be preserved

– find an goal and an audience for each diagram
and show only the information needed to
explain the solution to the intended audience

– give meaningful names to all diagrams

– group diagrams into packages

Copyright Joey Paquet, 2000 50

Hints and Tips
• A well structured diagram

– is focused on communicating one aspect of the
system

– contains only those elements that are essential
to understanding that aspect

– provides details consistent with its level of
abstraction

Copyright Joey Paquet, 2000 51

Hints and Tips
• When you draw a diagram

– give it a name that communicates its purpose

– lay out elements to minimize lines that cross

– lay out related elements close to one another

– use colors and notes to draw attention on
important features

Copyright Joey Paquet, 2000 52

Part V

Class Diagrams

Copyright Joey Paquet, 2000 53

Class Diagrams
• Most common diagram used to model

object-oriented systems

• Shows a set of classes, interfaces, and
collaborations and their relationships

• Models the static design view of the system

• Involves modeling the vocabulary of the
system requirements specifications

Copyright Joey Paquet, 2000 54

Terms and Concepts
• Class diagrams commonly contain

– classes

– interfaces

– collaborations

– relationships

– notes and constraints

– packages or subsystems

Copyright Joey Paquet, 2000 55

Terms and Concepts
• Common uses

– model the static design view to support the
functional requirements of the system

• model the vocabulary of the system: first define
classes and their responsibilities, and then refine
towards attributes, operations

• model simple collaborations: define the interactions
between classes towards the definition of a common
behavior

• model a database schema: data elements are
attributes, tables are classes, and relationships
are…relationships

Copyright Joey Paquet, 2000 56

Common Modeling Techniques
• Modeling simple collaborations

– identify the mechanism to model.

– for each mechanism, identify the classes, interfaces,
and other collaborations that participate in this
collaboration; as well as their relationships

– use scenarios to walk through these things

– populate these elements with their required contents
(attributes and operations) first starting with
responsibilities

Copyright Joey Paquet, 2000 57

Example

Copyright Joey Paquet, 2000 58

Common Modeling Techniques
• Modeling a logical database schema

– identify the classes whose state must transcend the
lifetime of their application

– create a class diagram for these and mark them as
<<persistent>> with a tagged value

– define their attributes and associations (and their
cardinalities)

– define data-specific operations on these classes

Copyright Joey Paquet, 2000 59

Example of Database Schema

Copyright Joey Paquet, 2000 60

Hints and Tips
• A well-structured class diagram

– is focused on communicating only one aspect
of the system’s static design

– provides only the details that are consistent
with its associated level of abstraction

– is not minimalist

Copyright Joey Paquet, 2000 61

Hints and Tips
• When you draw a class diagram

– give it a name that communicates its purpose

– minimize line crossing

– use colors and notes to emphasize important
aspects

– lay out related elements close to one another

