
A

Submitted by:
Marker:

General Notes:

Notes %mark ratio letter
100% 100.00% 1 Part 1 : Player strategy pattern
100% 10.00% 1.1 Knowledge/Correctness of Game Rules
100% 5.00% A 1.1.1 Students are fully aware of the correct Warzone game rules to implement during the presentation

100% 5.00% A 1.1.2 Code is implementing game mechanics that is fully according the Warzone game

100% 60.00% 1.2 Compliance of solution with Stated Problem
100% 4.62% A 1.2.1 Human player: requires user interactions to make decisions

100% 4.62% A 1.2.2 Aggressive player: computer player that focuses on attack (deploys or advances armies on its strongest country, then always advances to enemy territories until it cannot do so anymore).

100% 4.62% A 1.2.3 Benevolent player: computer player that focuses on protecting its weak countries (deploys or advances armies on its weakest countries, never advances to enemy territories).

100% 4.62% A 1.2.4 Neutral player: computer player that never issues any order.

100% 4.62% A 1.2.5 Cheater player: computer player that automatically conquers all territories that are adjacent to its own territories (only once per turn).

100% 4.62% A 1.2.6 If a Neutral player is attacked, it becomes an Aggressive player.

100% 4.62% A 1.2.7 All data members of user-defined class type are of pointer type.

100% 4.62% A 1.2.8 Classes declared in header file. Functions implemented in cpp file. Absence of inline functions

100% 4.62% A 1.2.9 All classes implement a correct copy constructor, assignment operator, and stream insertion operator.

100% 4.62% A 1.2.10 Absence of memory leaks.

100% 4.62% A 1.2.11 Driver that demonstrates that different players can be assigned different strategies that lead to different behavior using the Strategy design pattern.

100% 4.62% A 1.2.12 Driver that demonstrates that the strategy adopted by a player can be changed dynamically during play.

100% 4.62% A 1.2.13 Driver that demonstrates that the human player makes decisions according to user interaction, and computer players make decisions automatically, which are both implemented using the strategy pattern.

100% 10.00% 1.3 Modularity of Solution
100% 1.67% A 1.3.1 All is implemented in the file duo named PlayerStrategies.cpp/PlayerStrategies.h and no other files.

100% 1.67% A 1.3.2 The Player class does not have subclasses that implement different behaviors

100% 1.67% A 1.3.3 Presence of a PlayerStrategy abstract class that is a superclass of all the player strategy behavioral classes.

100% 1.67% A 1.3.4 For each strategy as described above, you have a ConcreteStrategy class: HumanPlayerStrategy, AggressivePlayerStrategy, BenevolentPlayerStrategy, and NeutralPlayerStrategy that are subclasses of the PlayerStrategy class.

100% 1.67% A 1.3.5 Each of the ConcreteStrategy classes implement their own version of the issueOrder(), toAttack(), and toDefend() methods.

100% 1.67% A 1.3.6 The Player class contains a data member of type PlayerStrategy.

100% 1.67% A 1.3.7 The issueOrder(), toDefend(), and toAttack() methods of the player do not implement behavior and simply delegate their call to the corresponding methods in the PlayerStrategy member of the Player.

100% 10.00% 1.4 Mastery of Language/Tools/Libraries
100% 5.00% A 1.4.1 The program never crashed during the demonstration or code review

100% 5.00% A 1.4.2 Students were very clear in technical discussions during the demonstration

100% 10.00% 1.5 Code readability: name conventions, clarity of code, use of comments
100% 5.00% A 1.5.1 All user-defined classes, methods, free functions, and operators are documented

100% 5.00% A 1.5.2 Absence of commented-out code

100% 100.00% 2 Part 2 : Touranment mode
100% 10.00% 2.1 Knowledge/Correctness of Game Rules
100% 5.00% A 2.1.1 Students are fully aware of the correct Warzone game rules to implement during the presentation

100% 5.00% A 2.1.2 Code is implementing game mechanics that is fully according the Warzone game

100% 60.00% 2.2 Compliance of solution with Stated Problem
100% 5.00% A 2.2.1 The tournament command can be entered either from the console or from a file.

100% 5.00% A 2.2.2 Invalid tournament commands are rejected.

100% 5.00% A 2.2.3 Map files are loaded and validated as a result of executing a tournament command.

100% 5.00% A 2.2.4 Players are created as a result of executing a tournament command.

100% 5.00% A 2.2.5 The specified number of games are executed with all the players specified as a result of executing a tournament command.

100% 5.00% A 2.2.6 The played games end as a draw after the specified number of turns have been played without a winner.

100% 5.00% A 2.2.7 The games in a tournament all play witout any user interaction.

100% 5.00% A 2.2.8 All data members of user-defined class type are of pointer type.

100% 5.00% A 2.2.9 Classes declared in header file. Functions implemented in cpp file. Absence of inline functions

100% 5.00% A 2.2.10 All classes implement a correct copy constructor, assignment operator, and stream insertion operator.

100% 5.00% A 2.2.11 Absence of memory leaks.

100% 5.00% A 2.2.12 Driver clearly demonstrates the tournament command can be processed and validated by the CommandProcessor, and executed by the GameEngine, resulting in a tournament being played as described above.

100% 10.00% 2.3 Modularity of Solution
100% 5.00% A 2.3.1 The code for the processing of the tournament command must be implemented in the existing CommandProcessing.cpp/CommandProcessing.h file duo

100% 5.00% A 2.3.2 The code for the execution of the tournament must be implemented in the existing GameEngine.cpp/GameEngine.h file duo.

100% 10.00% 2.4 Mastery of Language/Tools/Libraries
100% 5.00% A 2.4.1 The program never crashed during the demonstration or code review

100% 5.00% A 2.4.2 Students were very clear in technical discussions during the demonstration

100% 10.00% 2.5 Code readability: name conventions, clarity of code, use of comments
100% 5.00% A 2.5.1 All user-defined classes, methods, free functions, and operators are documented

100% 5.00% A 2.5.2 Absence of commented-out code

