
COMP 442/6421 Compiler Design
Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

TBD

LAB 1 – INTRODUCTION

1

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca

Why Compiler Design?
• Compilers/Interpreters are a fundamental tool in programming
• Making and customizing your own tools will make you a coding wizard

• Gain valuable insight into how compilers work and what limitations they have

• What can compilers do, and what can’t they do?

• Create simple yet powerful Domain Specific Languages to express ideas in a programming
style, in non programming domains

2

Why Compiler Design? - DSL
DSL: Domain Specific Language

◦ A specialized “programming” language which allows writing “applications” for a specific domain

◦ Contrast with General Purpose Language (C, C++, C#, Java, Python, etc.)

◦ Can be similar to a programming language, for a specific platform:
◦ HTML

◦ Unix Shell Scripts

◦ SQL

◦ Or designed for a specific task:
◦ Mathematics: Maple, Wolfram, R

◦ Document editing: LaTeX, Markdown, Emacs Lisp

◦ Software building: Gradle, CMake, Maven

◦ Static analysis tools: Linters, Style checkers, Bug finders, etc.

◦ Compute device programming: GLSL, OpenCL C

◦ Music: Csound, Sonic Pi

◦ Anything really: game level design, animation, drawing, chemistry, accounting, you name it!

3

What the project entails
• Compiler
• 4 assignments

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• Code Generation

• The project

• The cumulative result of the 4 assignments

• If you fall behind, catching up will be difficult

• How do you stay on schedule?

• Start early, aim for consistent momentum

• And . . .

4

Project - Language Choice
You can use any language
◦ Pick a language you’re familiar with

◦ Now is not the time to learn a new language

◦ Java is supported in the labs and by the TAs

Recommendation: Pick a language where the following is easy . . .

5

Project - Testing
Manual testing
◦ Consistency in tests, inputs and results

◦ Test files

Automatic testing
◦ Important for validating your compiler

◦ Compilers are straightforward to test, since they are stateless at a high level
◦ Given an input, they produce an output (source -> tokens)

◦ Test cases can be made easily from the assignment specifications

◦ Test often!

◦ Your tests should be easy and fast to run

6

Project - Testing: Junit example
//Test if the lexer can separate a string into 2 valid identifiers

@Test

public void identifierTokens_lexed_makes2Tokens() {

Lexer l = stringLexerFactory("the token");

Token t1 = l.next();

Token t2 = l.next();

assertEquals("'id'", t1.type);

assertEquals("the", t1.lexeme);

assertEquals("'id'", t2.type);

assertEquals("token", t2.lexeme);

}

7

Project - Version Control and Backups
Version control

◦ Important for any software project

◦ Very important for a complex software project which are prone to errors, i.e. compilers

◦ If you haven’t done so before, now is a good time to start using version control
◦ SCS Concordia frequently offers tutorials on the version control system Git

Backups
◦ Please, please, please backup your assignments

◦ If using version control, repository systems (GitHub, BitBucket)

◦ Free for students

◦ Dropbox, OneDrive, email, external hard drive, USB stick

◦ ANY backup is better than none

◦ Make sure your backups are private, and accessible only to you
◦ Not doing so constitutes an academic offense under the Academic Code of Conduct

◦ Private repositories

8

https://www.facebook.com/scsconcordia/
https://education.github.com/pack
https://bitbucket.org/product/education

Theoretical Computer Science -
recommended review
The following topics are the foundation to this class, and compiler design in
general. Reviewing them is recommended
◦ Regular Languages

◦ Finite State Automata

◦ Regular Expression

◦ Conversion between the two

◦ Context Free Grammars
◦ Derivation process

◦ Push-down automata

9

AtoCC
A handy, free program, for manipulating Regular Languages and Context Free Grammars

◦ Can simulate automata

Warning: avoid relying on it too much
◦ It won’t be available during the exam

◦ It’s quite an old program, and has trouble with larger simulations
◦ It’s prone to crashes

◦ e.g. The DFA required for A1

It’s best used to check the validity of your transformed regex and grammar
◦ Live Demo!

10

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

