
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design (COMP 442/6421)
Winter 2020

Assignment 2, Syntactic Analyzer

Deadline: Monday February 17th, 2020
Evaluation: 10% of final grade
Late submission: penalty of 50% for each late working day

This assignment is about the design and implementation of a syntactic analyzer for the language specified by the
grammar given below. The syntactic analyzer should use as input the token stream produced by the lexical analyzer
that you have produced in assignment #1, and prove whether or not the token stream is a valid program according to
the grammar given below. While doing so, it should locate, report, and recover from eventual syntax errors. The
operation of the syntactic analyzer should produce an abstract syntax tree that is going to be used by the further
processing steps to be implemented in assignment #3 (semantic analysis) and assignment #4 (code generation). It
should also write to a file a trace of the derivation that is proving that the input token stream can be derived from the
starting symbol of the grammar.

The assignment includes two grading source files used by the marker. These files should be used as-is and not be
altered in any way. Completeness of testing is a major grading topic. You are responsible for providing appropriate test
cases that test for a wide variety of valid and invalid cases in addition to what is in the grading source files provided.

Grammar

G = (N, T, S, R)

N – Nonterminal Symbols

START, aParams, aParamsTail, addOp, arithExpr, arraySize, assignOp, assignStat, classDecl,
expr, fParams, fParamsTail, factor, funcBody, funcDecl, funcDef, funcHead, functionCall,
idnest, indice, memberDecl, multOp, prog, relExpr, sign, statBlock, statement, term, type,
varDecl, variable, visibility

T – Terminal Symbols

,, +, -, or, [, intNum,], =, class, id, {, }, ;, (,), floatNum, not, do, end, :, void, ., *,
/, and, inherits, local, sr, main, eq, geq, gt, leq, lt, neq, if, then, else, read, return,
while, write, float, integer, private, public

S – Starting Symbol

START

R – Rules

<START> ::= <prog>
<prog> ::= {{<classDecl>}} {{<funcDef>}} 'main' <funcBody>
<classDecl> ::= 'class' 'id' [['inherits' 'id' {{',' 'id'}}]] '{' {{<visibility> <memberDecl>}} '}' ';'
<visibility> ::= 'public' | 'private'
<memberDecl> ::= <funcDecl> | <varDecl>
<funcDecl> ::= 'id' '(' <fParams> ')' ':' <type> ';'
 | 'id' '(' <fParams> ')' ':' 'void' ';'
<funcHead> ::= [['id' 'sr']] 'id' '(' <fParams> ')' ':' <type>
 | [['id' 'sr']] 'id' '(' <fParams> ')' ':' 'void'
<funcDef> ::= <funcHead> <funcBody>
<funcBody> ::= [['local' {{<varDecl>}}]] 'do' {{<statement>}} 'end'
<varDecl> ::= <type> 'id' {{<arraySize>}} ';'
<statement> ::= <assignStat> ';'
 | 'if' '(' <relExpr> ')' 'then' <statBlock> 'else' <statBlock> ';'
 | 'while' '(' <relExpr> ')' <statBlock> ';'
 | 'read' '(' <variable> ')' ';'
 | 'write' '(' <expr> ')' ';'
 | 'return' '(' <expr> ')' ';'
 | <functionCall> ';'
<assignStat> ::= <variable> <assignOp> <expr>
<statBlock> ::= 'do' {{<statement>}} 'end' | <statement> | EPSILON
<expr> ::= <arithExpr> | <relExpr>
<relExpr> ::= <arithExpr> <relOp> <arithExpr>
<arithExpr> ::= <arithExpr> <addOp> <term> | <term>
<sign> ::= '+' | '-'
<term> ::= <term> <multOp> <factor> | <factor>
<factor> ::= <variable>
 | <functionCall>
 | 'intNum' | 'floatNum'
 | '(' <arithExpr> ')'
 | 'not' <factor>
 | <sign> <factor>
<variable> ::= {{<idnest>}} 'id' {{<indice>}}
<functionCall> ::= {{<idnest>}} 'id' '(' <aParams> ')'
<idnest> ::= 'id' {{<indice>}} '.'
 | 'id' '(' <aParams> ')' '.'
<indice> ::= '[' <arithExpr> ']'
<arraySize> ::= '[' 'intNum' ']' | '[' ']'
<type> ::= 'integer' | 'float' | 'id'
<fParams> ::= <type> 'id' {{<arraySize>}} {{<fParamsTail>}} | EPSILON
<aParams> ::= <expr> {{<aParamsTail>}} | EPSILON
<fParamsTail> ::= ',' <type> 'id' {{<arraySize>}}
<aParamsTail> ::= ',' <expr>
<assignOp> ::= '='
<relOp> ::= 'eq' | 'neq' | 'lt' | 'gt' | 'leq' | 'geq'
<addOp> ::= '+' | '-' | 'or'
<multOp> ::= '*' | '/' | 'and'

Notes

• Terminals (lexical elements, or tokens) are represented in single quotes 'likeThis'.

• Non-terminals are represented between angle brackets <likeThis>.

• The empty phrase is represented by EPSILON.

• EBNF-style repetition notation is represented using double curly brackets {{like this}}. It represents zero or

more occurrence of the sentential form enclosed in the brackets.

• EBNF-style optionality notation is represented using double square brackets [[like this]]. It represents zero or

one occurrence of the sentential form enclosed in the brackets.

• id follows the specification for program identifiers found in assignment #1.

• floatNum follows specification for float literals found in assignment #1.

• intNum follows specification for integer literals found in assignment #1.

• The keyword 'void' was not present in assignment #1 and needs to be added as a token identified by the lexer.

Work to submit

Document
You must provide a short document that includes the following sections:

Section 1. Transformed grammar into LL(1) : Remove all the EBNF notations and replace them by right-recursive

list-generating productions. Analyze the syntactical definition (using tools) and list in your documentation
all the ambiguities and left recursions. Modify the grammar so that the left recursions and ambiguities are
removed without modifying the language. Include in your documentation the set of productions that can be
parsed using the top-down predictive parsing method, i.e. an LL(1) grammar.

Section 2. FIRST and FOLLOW sets : Derive the FIRST and FOLLOW sets for each non-terminal in your transformed
grammar.

Section 3. Design : Give a brief overview of the overall structure of your solution, as well as a brief description of the
role of each component of your implementation.

Section 4. Use of tools : Identify all the tools/libraries/techniques that you have used in your analysis or
implementation and justify why you have used these particular ones as opposed to others.

Implementation
• Parser : Implement a predictive parser (recursive descent or table-driven) for your modified set of grammar rules.
• The result of the parser should be the creation of a tree data structure representing the parse tree as identified by

the parsing process. This tree will become the intermediate representation used by the two following assignments.
When parsing a file named, for example, originalfilename, the parser should write into a file named

originalfilename.outderivation the derivation that corresponds to the original program, as well as write into a

file named originalfilename.outast a text representation of the abstract syntax tree representing the original

program. When syntax errors are found, error messages should be printed out in a file named
originalfilename.outsyntaxerrors.

• Derivation output : Your parser should write to a file the derivation that proves that the source program can be
derived from the starting symbol.

• AST output: The generated tree should be output to a file in any format that allows easy visualization of the structure
of the tree. This can be a simple text representation of the tree structure, but it needs to allow the marker to quickly
verify that the tree you generate is in fact correct with regards to the parsed program.

• Error reporting : The parser should properly identify all the errors in the input program and print a meaningful
message to the user for each error encountered. The error messages should be informative on the nature of the
errors, as well as the location of the errors in the input file.

• Error recovery : The parser should implement an error recovery method that permits to report all errors present in
the source code.

• Test cases : Write a set of source files that enable to test the parser for all syntactical structures involved in the
language. Include cases testing for a variety of different errors to demonstrate the accuracy of your error reporting
and recovery.

• Driver: Include a driver that extracts the tokens from all your test files. For each test file, the corresponding
outsyntaxerrors, outderivation, and outast files should be generated.

Assignment submission requirements and procedure

You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment
Submission system under the category “programming assignment 2”. The file submitted must be a .zip file containing:

• all your code
• a set of input files to be used for testing purpose, as well as a printout of the resulting output of the program for each

input file (abstract syntax tree, derivation and error reporting, as described above)
• a simple document containing the information requested above

The marking will be done in a short presentation to the marker. A schedule will be provided to you by email in the days
before the due date. You will be given a short time for the presentation, so make sure that you are ready to effectively
demonstrate all the elements mentioned in the “Work to submit” section above.

Evaluation criteria and grading scheme

Analysis:

List of left recursions and ambiguities in the original grammar, and then resulting correctly
transformed LL(1) grammar – document Section 1.

ind 2.1 3 pts

FIRST and FOLLOW sets of the transformed grammar – document Section 2. ind 2.2 2 pts

Design/implementation:

Description/rationale of the overall structure of the solution and the roles of the individual
components used in the applied solution – document Section 3.

ind 4.3 2 pts

Correct implementation of a top-down predictive parser following the grammar given in this
handout.

ind 4.4 10 pts

Output of clear error messages (error description and location) in an outsyntaxerrors file. ind 4.4 3 pts

Output of a derivation in an outderivation file. ind 4.4 5 pts

Implementation of an error recovery mechanism. ind 4.4 2 pts

Creation of a tree data structure as intermediate representation of the program, which is
then output as a text representation into an outast file.

ind 4.4 6 pts

Completeness of test cases. ind 4.4 12 pts

Use of tools:

Description of tools/libraries/techniques used in the analysis/implementation. Description of
other tools that might have been used. Justification of why the chosen tools were selected –
document Section 4.

ind 5.2 2 pts

Successful/correct use of tools/libraries/techniques used in the analysis/implementation. ind 5.1 3 pts

Total 50 pts

