
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Syntax-Directed Translation

Joey Paquet, 2000-2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Translation process driven by the syntactic structure of the program, as
generated by the parser.

• In syntax-directed translation, the semantic analysis and translation steps of the
compilation process is divided in two parts:
• analysis (syntactic, semantic)
• synthesis (translation and optimization)

• The semantic analysis becomes the link between analysis and synthesis:
translation (synthesis) is conditional to positive semantic analysis.

• The syntax-directed translation process is inducing very strong coupling between
the syntax analysis phase, the semantic checking phase, and the translation
phase.

Syntax-directed translation: analysis and synthesis

Joey Paquet, 2000-2018

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Semantic actions are integrated in the parsing process.

• Semantic actions are functions whose goal is to accumulate and/or process
semantic information about the program as the parsing is done.

• Different pieces of information are gathered during the parsing of different
syntactical rules.

• These pieces of information, named semantic values, or semantic attributes are
gathered and accumulated in semantic records until they can be processed by
further semantic actions.

• Some of the information that must be gathered spans over the application of
several syntactical rules.

• This raises the need to migrate this information across the parse tree, a process
known as attribute migration.

Syntax-directed translation: semantic actions, semantic values, attribute migration

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Some semantic actions (implemented as semantic routines) do the analysis phase
by performing semantic aggregation and/or checking in productions that need
such aggregation and/or checks, depending on the semantic rules defined by the
language specification, e.g. type checking/aggregation.

• A = B + C;

• Semantic actions assemble information in order to validate and eventually
generate a meaning (i.e. translation) for the program elements generated by the
productions.

• They are the starting point for translation(synthesis).

• Thus, the semantic routines are the heart of the compiler.

Syntax-directed translation: semantic actions

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

A

B C

+

=

type(B)

type(A=B+C)

type(A)

type(B+C)

type(C)

Concordia University Department of Computer Science and Software Engineering

• Conceptually, semantic actions are associated with parse tree nodes:
• Semantic actions at the leaves of the tree typically gather semantic information, either

from the token the node represents, often with the help from a lookup in the symbol
table (i.e. to get the type of an identifier).

• Semantic actions in intermediate nodes typically aggregate, validate, or use semantic
information and pass the information up in the tree (i.e. perform attribute migration).

• As parse trees are also related to grammar rules, so are semantic actions.
Semantic actions are inserted in the right-hand sides of the grammar:
• In recursive-descent predictive parsing, they are represented by function calls inserted

in the parsing functions, attribute migration is performed by using parameters passed
and returned between parsing functions.

• In table-driven parsers, semantic action symbols are inserted in the right-hand-sides
and pushed onto the stack. Popping a semantic action symbol from the stack triggers
the corresponding semantic action. Attribute migration is made by way of the stack.
Some parsers may have to rely on a separate semantic stack.

• Alternatively, recursive-descent predictive parsers can also use a semantic stack instead
of local variables and parameter passing/return values.

Syntax-directed translation: relationship to parse trees, nodes, and parsing methods

Joey Paquet, 2000-2018

5COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Semantic routines can be formalized using attribute grammars.

• Attribute grammars augment ordinary context-free grammars with attributes
that represent semantic properties such as type, value or correctness used in
semantic analysis (checking) and code generation (translation).

• It is useful to keep checking and translation facilities distinct in the semantic
routines’ implementation.

• Semantic checking is machine-independent and code generation is not, so
separating them gives more flexibility to the compiler (front/back end).

Syntax-directed translation and attribute grammars

Joey Paquet, 2000-2018

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• An attribute is a property of a programming language construct, including data
type, value, memory location/size, translated code, etc.

• Implementation-wise, they are also called semantic records.

• The process of computing the value of an attribute is called binding. Static
binding concerns binding that can be done at compile-time, and dynamic binding
happens at run-time, e.g. for polymorphism.

• In our project, we are concerned solely on static compile-time binding.

Attributes

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Static attribute binding is done by gathering, propagating, and aggregating
attributes while traversing the parse tree.

• Attributes are gathered at tree leaves, propagated across tree nodes, and
aggregated at some parent nodes when additional information is available.

• This can be done as the program is being parsed using syntax-directed
translation.

• Synthetized attributes : attributes gathered from a child in the syntax tree

• Inherited attributes : attributes gathered from a sibling in the syntax tree

Attributes migration

Joey Paquet, 2000-2018

8COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Here, semantic information only flows upwards in the tree.

• All aggregated semantic information is available on the same subtree.

Example: Semantic rules and attribute migration

Joey Paquet, 2000-2018

9COMP 442/6421 – Compiler Design

E1  id = E2 E= : [E2: v:] [(id:)  defVar]
[id.valv] [E1.val: v]

E1  E2  E3 E* : [E2: v2:] [E3: v3:]
[E1.val: v2v3]

E1  E2 + E3 E+ : [E2: v2:] [E3 : v3:]
[E1.val: v2+v3]

E  id Eid : [(id:)  defVar]
[(E.val: )id.val]

E  const Econst : [const : v:]
[(E.val: )v]

Y=3*X+Z

E(v3*vx+vz :)

E(v(3*vx)+vz:)id(vY:) =

E(v3*vx:)

id(vZ:)

+ E(vZ:)

const(3:) id(vX:)

* E(vX:) E(3:)

Concordia University Department of Computer Science and Software Engineering

• Problems arise when rules are factorized:

Example 2: attribute migration

Joey Paquet, 2000-2018

10COMP 442/6421 – Compiler Design

E  TE’
E’  +TE’|
T  FT’
T’  FT’|
F  id|const

E

T1

T2

T’2

*

F1

id(va:)

T’1

 F2

id(vb:)

E’2



T’3



F3

id(vc:)

E’1

+

a+b*c

Concordia University Department of Computer Science and Software Engineering

• Solution: migrate attributes sideways, i.e. inherited attributes

• Here, left operands are available on a different subtree, so they have to be
migrated sideways across different subtrees in order to be aggregated.

Example 2: attribute migration

Joey Paquet, 2000-2018

11COMP 442/6421 – Compiler Design

E

T1

T2

T’2

*

F1

id(va:)

T’1

 F2

id(vb:)

E’2



T’3



F3

id(vc:)

E’1

+

a+b*c

E  TE’
E’  +TE’|
T  FT’
T’  FT’|
F  id|const

Concordia University Department of Computer Science and Software Engineering

• semrec potentially represents any kind of semantic record.

• In this example, it represents semantic records that carry type information across
the parsing of an expression.

• It could also be tree nodes that are created, migrated and grafted/adopted in
order to construct an abstract syntax tree.

• It could also in fact be both, as the tree is created, information, such as type or
symbol tables can be gathered as the parse is done or the tree is traversed.

Attribute migration: implementation in recursive-descent predictive parser

Joey Paquet, 2000-2018

12COMP 442/6421 – Compiler Design

Parse(){
semrec Es //semantic record created

//before the call
lookahead = NextToken()
if (E(Es);Match('$')) //passed as a reference

//to parsing functions
//that will compute its value

return(true);
else
return(false);

}

Concordia University Department of Computer Science and Software Engineering

• Each parsing function potentially defines its own semantic records used locally
the processing of its own subtree.

• Ts,E's are semantic records produced/used by the T() and E’() functions
and returned by them to the E() function.

Attribute migration: implementation in recursive-descent predictive parser

Joey Paquet, 2000-2018

13COMP 442/6421 – Compiler Design

E(semrec &Es){
semrec Ts,E's
if (lookahead is in [0,1,(])
if (T(Ts);E'(Ts,E's);) // E' inherits Ts from T
write(E->TE')
Es = E's // Synthetised attribute sent up
return(true)

else
return(false)

else
return(false)

}

Concordia University Department of Computer Science and Software Engineering

• Some semantic actions will do some semantic checking and/or semantic
aggregation, such as a tree node adopting a child node, or inferring the type of
an expression from two child operands.

Attribute migration: implementation in recursive-descent predictive parser

Joey Paquet, 2000-2018

14COMP 442/6421 – Compiler Design

E'(semrec &Ti, type &E's){
semrec Ts,E'2s
if (lookahead is in [+])
if (Match('+');T(Ts);E'(Ts,E'2s)) // E' inherits from T
write(E'->TE')
E's = semcheckop(Ti,E'2s) // Semantic check & synthetized

// attribute sent up
return(true)

else
return(false)

else if (lookahead is in [$,)]
write(E'->epsilon)
E's = Ti // Synth. attr. is inhertied

// from T (sibling, not child)
// and sent up

return(true)
else
return(false)

}

Concordia University Department of Computer Science and Software Engineering

Attribute migration: implementation in recursive-descent predictive parser

Joey Paquet, 2000-2018

15COMP 442/6421 – Compiler Design

T(semrec &Ts){
semrec Fs, T's
if (lookahead is in [0,1,(])
if (F(Fs);T'(Fs,T's);) // T' inherits Fs from F
write(T->FT')
Ts = T's // Synthetized attribute sent up
return(true)

else
return(false)

else
return(false)

}

Concordia University Department of Computer Science and Software Engineering

Attribute migration: implementation in recursive-descent predictive parser

Joey Paquet, 2000-2018

16COMP 442/6421 – Compiler Design

T'(semrec &Fi, type &T's){
semrec Fs, T'2s
if (lookahead is in [*])
if (Match('*');F(Fs);T'(Fs,T'2s)) // T' inherits from F
write(T'->*FT')
T's = semcheckop(Fi,T'2s) // Semantic check and

// synthetized attribute sent up
return(true)

else
return(false)

else if (lookahead is in [+,$,)]
write(T'->epsilon)
T's = Fi // Synthetized attribute is

// inhertied from F sibling
// and sent up the tree

return(true)
else
return(false)

}

Concordia University Department of Computer Science and Software Engineering

• Some semantic actions at the leaves will create new information to be
propagated up.

Attribute migration: implementation in recursive-descent predictive parser

Joey Paquet, 2000-2018

17COMP 442/6421 – Compiler Design

F(semrec &Fs){
semrec Es
if (lookahead is in [id])
if (Match('id'))
write(F->id)
Fs = gettype(id.name,table) // Gets the attribute ``type''

// from the symbol table and
// sends it up the tree as Fs

return(true)
else
return(false)

else if (lookahead is in [(])
if (Match('(');E(Es);Match(')'))
write(F->(E))
Fs = Es // Synthetized attribute from E

// sent up the tree as attribute
// of F

return(true)
else return(false)

else return(false)
}

Concordia University Department of Computer Science and Software Engineering

Attribute migration: implementation in recursive-descent predictive parser

Joey Paquet, 2000-2018

18COMP 442/6421 – Compiler Design

type semcheckop(type ti,type ts){
if (ti == ts)
return(ti)

else
return(typerror)

}

type gettype(name, table){
if (name is in table)
return (type)

else
return(typerror)

}

Concordia University Department of Computer Science and Software Engineering

Attribute migration: example

Joey Paquet, 2000-2018

19COMP 442/6421 – Compiler Design

E

T1

T2

T’2

*

F1

id(va:)

T’1



F2

id(vb:)

E’2



T’3



F3

id(vc:)

E’1

+

Es

E’s

Ts

T’s

Ti

Fi

Fs

E’s

E’s

E’sT’s

Fs

Fs

Fs

Fs

Fs

Ti

T’s

T’s
Fi

Ts

Fi
T’s

a+b*c

T’s

