
Copyright Joey Paquet, 2000 1

Architectural Modeling

Lecture 6



Copyright Joey Paquet, 2000 2

Part I

Realizations

and

Collaborations



Copyright Joey Paquet, 2000 3

Realization Relationship
• A semantic relationship between components in

which one component specifies a contract that
another component guaranties to carry out

• Semantically, a realization is a cross between
dependency and generalization

• It binds a “problem” with a “solution”

• Used in two contexts: interfaces and
collaborations



Copyright Joey Paquet, 2000 4

Realization Examples



Copyright Joey Paquet, 2000 5

Interface
• A named collection of operations that are used to

specify a service of a class or component

• Can be rendered either using a prototyped class
without attributes or the “lollipop” icon

• As a convention, their name begins with an “I” to
distinguish them from classes



Copyright Joey Paquet, 2000 6

Defining Interfaces
• Identify boundaries between groups of tightly coupled

classes and component

• Components that tend to change together should be
grouped as collaborations

• Identify the operations that cross the boundaries and
package them in logically related sets (interfaces)

• For each collaboration in the system, identify the interfaces
it defines and relies on. Interface imports are dependencies,
exports are realizations

• The dynamics of each interface can be specified using pre
and post conditions or state machines



Copyright Joey Paquet, 2000 7

Interface Example



Copyright Joey Paquet, 2000 8

Hints and Tips
• Well-structured interfaces are:

– simple yet complete

– understandable without need of inspection of its
realizer component

– extremely important in the project



Copyright Joey Paquet, 2000 9

Part II

Collaborations:

A general abstraction mechanism



Copyright Joey Paquet, 2000 10

Collaborations
• A conceptual chunk that encompasses both static

and dynamic aspects of a problem

• Names a society of classes, interfaces and other
elements that work together to provide some
cooperative behavior

• Used to specify the realization of use cases and
operations and to model other architecturally
significant mechanisms of the system

• Provides a general abstraction mechanism



Copyright Joey Paquet, 2000 11

Collaboration Example
• Collaborations have two aspects:

– a structural part that specifies the classes, interfaces, and other
elements that work together to carry out the collaboration (class
diagram)

– a behavioral part that specifies the dynamics of how these elements
interact (sequence diagram(s), interaction diagram)

• You can “zoom inside” a collaboration to reveal its
structural and behavioral aspects

• Unlike packages and subsystems, collaborations do not
own any of these elements

• It just uses and aggregates elements into conceptual
chunks

• It may cross subsystem boundaries



Copyright Joey Paquet, 2000 12

Collaboration Example



Copyright Joey Paquet, 2000 13

Collaboration Example



Copyright Joey Paquet, 2000 14

Organizing Collaborations
• The mechanisms that shape a system represent significant

design decisions

• Collaborations are the heart of a system’s architecture

• You should come with a modest number of regularly sized
collaborations

• Collaborations can have relationships with:
– the thing it realizes, e.g. the relation between a use case or

operation and its realizing collaboration

– other collaborations, e.g. <<refine>> relationships similar to those
defined on the corresponding use cases

• Collaborations can be grouped into larger packages,
though it is only used for extremely large systems



Copyright Joey Paquet, 2000 15

Realizing Use Cases
• Analysis is typically driven by the system’s use cases
• Use cases are realized using collaborations
• The structural contents of such collaborations will

eventually overlap
• Process:

– identify the structural elements necessary to carry out the
semantics of the use case

– capture their organization in a class diagram
– identify the set of scenarios that represent this use case
– capture the dynamics of these scenarios in sequence and/or

collaboration diagrams
– organize these structural and behavioral elements as a

collaboration and connect it to the use case with a realization



Copyright Joey Paquet, 2000 16

Realizing Operations
• In many simple cases, operations can be specified using

straight code or an algorithm

• More complex operations can be specified using activity
diagrams

• For complex operations where several classes pay a role,
collaborations can be used. Procedure:
– identify the parameters, return value, and other objects visible to

the operation

– if the operation is complex enough or otherwise requires some
detailed design work, use a collaboration to represent its
implementation. The collaboration’s class and interaction diagrams
can be used to specify the operation in detail.



Copyright Joey Paquet, 2000 17

Realizing Operations



Copyright Joey Paquet, 2000 18

Realizing Mechanisms
• A mechanism is a design pattern that can be applied to

various societies of classes in different contexts, e.g. a
queue mechanism

• Mechanisms can be represented as collaborations

• The use of mechanisms (design patterns) make the system:
– simple: mechanisms reify common interactions

– understandable: the system can be approached through its
mechanisms

– resilient: the whole system can be tuned by tuning its mechanisms

• Design Patterns will be discussed in more details later



Copyright Joey Paquet, 2000 19

Hints and Tips
• A well-structured collaboration

– consists of both structural and behavioral aspects

– provides a crisp abstraction of some identifiable interaction in the
system

– is rarely completely independent, and sometimes overlaps with
other collaborations

– is understandable and simple

• Not all collaborations are useful in the final documentation

• Collaborations should be organized according to the
classifier or operation they represent, or in packages
associated with the system as a whole



Copyright Joey Paquet, 2000 20

Part III

Systems and Models



Copyright Joey Paquet, 2000 21

Systems and Models
• System: a set of elements organized to accomplish

a purpose and described by a set of models
describing the system from different viewpoints.
A system can be decomposed into subsystems

• Model: a simplification of reality, an abstraction
of a system created in order to better understand
the system

• View: a projection of a model which is seen from
one perspective and omits entities that are not
relevant to this perspective



Copyright Joey Paquet, 2000 22

Systems and Subsystems
• A system represents the highest-level thing in a given

context

• The subsystems that make-up a system provide a complete
and non-overlapping partitioning of the system as a whole

• In the UML, a system (or subsystem) is rendered as a
stereotyped package

• A package owns elements such as use cases,
collaborations, interaction diagrams, etc. that specify the
structure and behavior of the modeled system

• The primary relationship among systems (and subsystems)
is aggregation. A system is defined in terms of subsystems.
Similar systems can be generalized



Copyright Joey Paquet, 2000 23

Example



Copyright Joey Paquet, 2000 24

Modeling System Architecture
• Captures the decisions about the system’s

requirements, logical elements and physical
elements

• Models both structural and behavioral aspects of
the system

• Defines the seams between subsystems, and
tracing between requirements and deployment



Copyright Joey Paquet, 2000 25

Modeling System Architecture
• Identify the views used to represent the

system: use case view, design view, process
view, implementation view and deployment
view

• Specify the context of the system, including
actors and other systems

• If necessary, define subsystems



Copyright Joey Paquet, 2000 26

Modeling System Architecture



Copyright Joey Paquet, 2000 27

Modeling System Architecture
• Specify a use case view encompassing all the use cases on

the system. Apply use case, interaction, statechart and
activity diagrams to specify each use case

• Specify a design view encompassing the classes, interfaces
and collaborations that forms the solution. Apply class,
interaction, statechart and activity diagrams to specify the
design of the system and subsystems

• Specify a process view encompassing the threads and
processes that form the system’s mechanisms. Apply the
same diagrams as for design, restricted only to active
classes



Copyright Joey Paquet, 2000 28

Modeling System Architecture
• Specify an implementation view encompassing the

physical components that are used to assemble and release
the system. Apply component, interaction, statechart, and
activity diagrams.

• Specify a deployment view encompassing the nodes that
form the system’s hardware topology on which the system
executes. Apply deployment, interaction, statechart and
activity diagrams.

• Model the architectural and design patterns identified in
the system using collaborations.

• In many cases, some steps will not be needed, especially
steps 3-4 and 5.



Copyright Joey Paquet, 2000 29

Modeling System Architecture
• The system’s architecture is never created in

one “big-bang” step

• Rather, the system model is refined
incrementally using iterations (spiral model)



Copyright Joey Paquet, 2000 30

Hints and Tips
• A well-structured architectural model:

– is self-contained in that it does not require other
content to understand its semantics

– collectively provides a complete statement of a
system’s artifacts

– is functionally, logically and physically
cohesive


