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Architectural Modeling

Lecture 6
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Part I

Realizations

and

Collaborations
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Realization Relationship
• A semantic relationship between components in

which one component specifies a contract that
another component guaranties to carry out

• Semantically, a realization is a cross between
dependency and generalization

• It binds a “problem” with a “solution”

• Used in two contexts: interfaces and
collaborations
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Realization Examples
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Interface
• A named collection of operations that are used to

specify a service of a class or component

• Can be rendered either using a prototyped class
without attributes or the “lollipop” icon

• As a convention, their name begins with an “I” to
distinguish them from classes
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Defining Interfaces
• Identify boundaries between groups of tightly coupled

classes and component

• Components that tend to change together should be
grouped as collaborations

• Identify the operations that cross the boundaries and
package them in logically related sets (interfaces)

• For each collaboration in the system, identify the interfaces
it defines and relies on. Interface imports are dependencies,
exports are realizations

• The dynamics of each interface can be specified using pre
and post conditions or state machines
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Interface Example
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Hints and Tips
• Well-structured interfaces are:

– simple yet complete

– understandable without need of inspection of its
realizer component

– extremely important in the project
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Part II

Collaborations:

A general abstraction mechanism
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Collaborations
• A conceptual chunk that encompasses both static

and dynamic aspects of a problem

• Names a society of classes, interfaces and other
elements that work together to provide some
cooperative behavior

• Used to specify the realization of use cases and
operations and to model other architecturally
significant mechanisms of the system

• Provides a general abstraction mechanism
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Collaboration Example
• Collaborations have two aspects:

– a structural part that specifies the classes, interfaces, and other
elements that work together to carry out the collaboration (class
diagram)

– a behavioral part that specifies the dynamics of how these elements
interact (sequence diagram(s), interaction diagram)

• You can “zoom inside” a collaboration to reveal its
structural and behavioral aspects

• Unlike packages and subsystems, collaborations do not
own any of these elements

• It just uses and aggregates elements into conceptual
chunks

• It may cross subsystem boundaries
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Collaboration Example
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Collaboration Example
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Organizing Collaborations
• The mechanisms that shape a system represent significant

design decisions

• Collaborations are the heart of a system’s architecture

• You should come with a modest number of regularly sized
collaborations

• Collaborations can have relationships with:
– the thing it realizes, e.g. the relation between a use case or

operation and its realizing collaboration

– other collaborations, e.g. <<refine>> relationships similar to those
defined on the corresponding use cases

• Collaborations can be grouped into larger packages,
though it is only used for extremely large systems
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Realizing Use Cases
• Analysis is typically driven by the system’s use cases
• Use cases are realized using collaborations
• The structural contents of such collaborations will

eventually overlap
• Process:

– identify the structural elements necessary to carry out the
semantics of the use case

– capture their organization in a class diagram
– identify the set of scenarios that represent this use case
– capture the dynamics of these scenarios in sequence and/or

collaboration diagrams
– organize these structural and behavioral elements as a

collaboration and connect it to the use case with a realization
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Realizing Operations
• In many simple cases, operations can be specified using

straight code or an algorithm

• More complex operations can be specified using activity
diagrams

• For complex operations where several classes pay a role,
collaborations can be used. Procedure:
– identify the parameters, return value, and other objects visible to

the operation

– if the operation is complex enough or otherwise requires some
detailed design work, use a collaboration to represent its
implementation. The collaboration’s class and interaction diagrams
can be used to specify the operation in detail.
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Realizing Operations
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Realizing Mechanisms
• A mechanism is a design pattern that can be applied to

various societies of classes in different contexts, e.g. a
queue mechanism

• Mechanisms can be represented as collaborations

• The use of mechanisms (design patterns) make the system:
– simple: mechanisms reify common interactions

– understandable: the system can be approached through its
mechanisms

– resilient: the whole system can be tuned by tuning its mechanisms

• Design Patterns will be discussed in more details later
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Hints and Tips
• A well-structured collaboration

– consists of both structural and behavioral aspects

– provides a crisp abstraction of some identifiable interaction in the
system

– is rarely completely independent, and sometimes overlaps with
other collaborations

– is understandable and simple

• Not all collaborations are useful in the final documentation

• Collaborations should be organized according to the
classifier or operation they represent, or in packages
associated with the system as a whole
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Part III

Systems and Models
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Systems and Models
• System: a set of elements organized to accomplish

a purpose and described by a set of models
describing the system from different viewpoints.
A system can be decomposed into subsystems

• Model: a simplification of reality, an abstraction
of a system created in order to better understand
the system

• View: a projection of a model which is seen from
one perspective and omits entities that are not
relevant to this perspective
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Systems and Subsystems
• A system represents the highest-level thing in a given

context

• The subsystems that make-up a system provide a complete
and non-overlapping partitioning of the system as a whole

• In the UML, a system (or subsystem) is rendered as a
stereotyped package

• A package owns elements such as use cases,
collaborations, interaction diagrams, etc. that specify the
structure and behavior of the modeled system

• The primary relationship among systems (and subsystems)
is aggregation. A system is defined in terms of subsystems.
Similar systems can be generalized
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Example
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Modeling System Architecture
• Captures the decisions about the system’s

requirements, logical elements and physical
elements

• Models both structural and behavioral aspects of
the system

• Defines the seams between subsystems, and
tracing between requirements and deployment
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Modeling System Architecture
• Identify the views used to represent the

system: use case view, design view, process
view, implementation view and deployment
view

• Specify the context of the system, including
actors and other systems

• If necessary, define subsystems
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Modeling System Architecture
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Modeling System Architecture
• Specify a use case view encompassing all the use cases on

the system. Apply use case, interaction, statechart and
activity diagrams to specify each use case

• Specify a design view encompassing the classes, interfaces
and collaborations that forms the solution. Apply class,
interaction, statechart and activity diagrams to specify the
design of the system and subsystems

• Specify a process view encompassing the threads and
processes that form the system’s mechanisms. Apply the
same diagrams as for design, restricted only to active
classes
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Modeling System Architecture
• Specify an implementation view encompassing the

physical components that are used to assemble and release
the system. Apply component, interaction, statechart, and
activity diagrams.

• Specify a deployment view encompassing the nodes that
form the system’s hardware topology on which the system
executes. Apply deployment, interaction, statechart and
activity diagrams.

• Model the architectural and design patterns identified in
the system using collaborations.

• In many cases, some steps will not be needed, especially
steps 3-4 and 5.
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Modeling System Architecture
• The system’s architecture is never created in

one “big-bang” step

• Rather, the system model is refined
incrementally using iterations (spiral model)
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Hints and Tips
• A well-structured architectural model:

– is self-contained in that it does not require other
content to understand its semantics

– collectively provides a complete statement of a
system’s artifacts

– is functionally, logically and physically
cohesive


