
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Review

Joey Paquet, 2000-2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• ObjectiveObjectiveObjectiveObjective: to verify that the students grasp the theoretical aspects of compiler

design, as taught in class.

• DurationDurationDurationDuration: 180 minutes.

• OpenOpenOpenOpen----book examinationbook examinationbook examinationbook examination: all course notes, any textbook, or paper documents

allowed, no electronic device permitted.

Examination

Joey Paquet, 2000-2018

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Compiler architectureCompiler architectureCompiler architectureCompiler architecture

• Phases:

• lexical analysis

• syntactic analysis

• semantic analysis

• code optimization

• code generation

• Front-end, back-end

• Intermediate representations

• Mechanisms:

• parsing tables

• symbol table

• semantic actions/semantic records

• attribute migration

• Functioning/role of each phase/component/mechanisms

• Optionality of some phases

Course review

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Lexical analysisLexical analysisLexical analysisLexical analysis

• RolesRolesRolesRoles

• White space removal

• Processing comments

• Check and recover from lexical errors

• Creation of a stream of tokens

• DesignDesignDesignDesign

• Translation of regular expression into a DFA

• Thompson construction

• Rabin–Scott powerset construction

• ImplementationImplementationImplementationImplementation

• Case statement or state transition table/algorithm

• Notable examination questions Notable examination questions Notable examination questions Notable examination questions

• Generate a DFA from regular expressions

• Generate a DFA from NDFA

Course review

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Syntactic analysisSyntactic analysisSyntactic analysisSyntactic analysis

• RolesRolesRolesRoles

• Analyze the program’s structure

• Check, report and recover from syntax errors leading to useful and comprehensive compiler
output

• DesignDesignDesignDesign

• Generative context-free grammars, generating a derivation proving the validity of the input
program according to the grammar

• First and follow sets

• Grammar transformation (removal of left recursions, ambiguities)

• All designs are based on a stack mechanism

• Top-down: predictive parsing, recursive descent, table-driven (require removal of left
recursions, ambiguities)

• Bottom-up: SLR, CLR, LALR (item generation)

• Error recovery using “synchronizing tokens”

• AST generation as intermediate representation

• Attribute migration, semantic stack

Course review

Joey Paquet, 2000-2018

5COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Syntactic analysis (cont.)Syntactic analysis (cont.)Syntactic analysis (cont.)Syntactic analysis (cont.)

• ImplementationImplementationImplementationImplementation

• Recursive descent top-down: each production is implemented as a function matching

terminals and calling other such functions to parse non-terminals according to other rules

• Table-driven top-down: table is constructed using the first and follow sets, based on the notion

of “generative grammar”

• Bottom-up: SLR, CLR, LALR: creation of a DFA using items and first and follow sets, creation of

the state transition table with “action” and “goto” parts, called a “shift/reduce” parser.

• Notable examination questions Notable examination questions Notable examination questions Notable examination questions

• Given a grammar, generate a table for a table-driven top-down predictive parser

• Given a grammar, write some functions for a recursive-descent predictive parser

• Given a grammar, eliminate left recursions and ambiguities

• Given a grammar and a valid sentence, provide a derivation proving that this sentence is
derivable from the grammar

• Given a grammar, generate the sets of (CLR, SLR, LALR) items, then generate the corresponding
state transition table and/or state transition diagram

• Given a state transition table and a token stream, execute a parse trace for any of the above
bottom-up parsing techniques

Course review

Joey Paquet, 2000-2018

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Semantic Analysis/translationSemantic Analysis/translationSemantic Analysis/translationSemantic Analysis/translation

• RolesRolesRolesRoles

• Verify the semantic validity of the program

• Translate the program into executable code

• DesignDesignDesignDesign

• Symbol table

• Intermediate representations (optional)

• Optimization, high level and/or low level (optional)

• Semantic actions and semantic records

• AST traversal and the Visitor design pattern

Course review

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Semantic Analysis/translation (cont.)Semantic Analysis/translation (cont.)Semantic Analysis/translation (cont.)Semantic Analysis/translation (cont.)

• ImplementationImplementationImplementationImplementation

• Symbol table: nested tables to manage scoping

• Intermediate representation: trees, directed acyclic graphs, tree traversal/analysis algorithms
for further processing

• Intermediate code: postfix notation, three-address code, quadruples, pcode, byte code

• Notable examination questionsNotable examination questionsNotable examination questionsNotable examination questions

• Given a program, sketch its corresponding symbol table structure.

• Given a simple statement/expression write the corresponding Moon code translation.

Course review

Joey Paquet, 2000-2018

8COMP 442/6421 – Compiler Design

