COMPILER DESIGN

Error recovery in top-down predictive parsing

COMP 442/6421 — Compiler Design
Syntax error recovery

- A syntax error happens when the stream of tokens coming from the lexical

analyzer does not comply with the grammatical rules defining the programming
language.

- The next token in input is not expected according to the syntactic definition of
the language.

- One of the main roles of a compiler is to identify all programming errors and give
meaningful indications about the location and nature of errors in the input
program.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Goals of error recovery

- Detect all compile-time errors

- Report the presence of errors clearly and accurately

- Recover from each error quickly enough to be able to detect subsequent errors
- Should not slow down the processing of correct programs

- Avoid spurious errors that are just a consequence of an earlier error

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Reporting errors

- Give the position of the error in the source file, maybe print the offending line
and point at the error location.

doy.cpp: In function “int main()': doy.cpp:25: “DayOfYear' undeclared (first use this function)
doy.cpp:25: DayOfYear birthday;

N

- If the nature of the error is easily identifiable, give a meaningful error message.

- The compiler should not provide erroneous information about the nature of
errors.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Good error recovery

Good error recovery highly depends on how quickly the error is detected.
Often, an error will be detected only after the faulty token has passed.

It will then be more difficult to achieve good error reporting, as well as good
error recovery.

Top-down parsers generally detect errors quicker than top-down parsers.

Should recover from each error quickly enough to be able to detect subsequent
errors. Error recovery should skip as less tokens as possible.

Should not identify more errors than there really is. Cascades of errors that result
from token skipping should be avoided.

Should give meaningful information about the errors, while avoiding to give
erroneous information.

Error recovery should induce processing overhead only when errors are
encountered.

Should avoid to report other errors that are consequences of the application of
error recovery, e.g. semantic errors.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Error recovery strategies

- There are many different strategies that a parser can employ to
recover from syntactic errors.

- Although some are better than others, none of these methods
provide a universal solution.
- Panic mode, or don’t panic (Nicklaus Wirth)
 Error productions
- Phrase level correction
+ Global correction

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Error Recovery Strategies

- Panic Mode

- On discovering an error, the parser discards input tokens until an element of a
designated set of synchronizing tokens is found. Synchronizing tokens are
typically delimiters such as semicolons or end of block delimiters.

A systematic and general approach is to use the FIRST and FOLLOW sets as
synchronizing tokens.

Skipping tokens often has a side-effect of skipping other errors. Choosing the
right set of synchronizing tokens is of prime importance.

Simplest method to implement.
Can be integrated in most parsing methods.
Cannot enter an infinite loop.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Error Recovery Strategies

- Error Productions

- The grammar is augmented with “error productions”. For each possible error,

an error production is added. An error is trapped when an error production is
used.

Assumes that all specific errors are known in advance.
One error production is needed for each possible error.

Error productions are specific to the rules in the grammar. A change in the
grammar implies a change of the corresponding error productions.

Extremely hard to maintain.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Error Recovery Strategies

- Phrase-Level Correction

- On discovering an error, the parser performs a local correction on the
remaining input, e.g. replace a comma by a semicolon, delete an extraneous
semicolon, insert a missing semicolon, etc.

Corrections are done in specific contexts. There are myriads of different such
contexts.

Cannot cope with errors that occurred before the point of detection.

Can enter an infinite loop, e.g. insertion of an expected token,

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Error Recovery Strategies

- Global Correction
- Ideally, a compiler should make as few changes as possible in processing an
incorrect token stream.

Global correction is about choosing the minimal sequence of changes to
obtain a least-cost correction.

Given an incorrect input token stream x, global correction will find a parse tree
for a related token stream y, such that the number of insertions, deletions,

and changes of tokens required to transform x into y is as reduced as possible.

Too costly to implement.

The closest correct program does not carry the meaning intended by the
programmer anyway.

Can be used as a benchmark for other error correction techniques.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Different variations of “panic mode” error recovery

COMP 442/6421 — Compiler Design

Panic mode error recovery: variations

- Variation 1:

- Given a non-terminal A on top of the stack, skip input tokens until an element of
FOLLOW(A) appears in the token stream.

« Pop A from the stack and resume parsing.

- Report on the error found and where the parsing was resumed.

- Variation 2:

- Given a non-terminal A on top of the stack, skip input tokens until an element of
FIRST(A) appears in the token stream.

- Report on the error found and where the parsing was resumed.

- Variation 3

- If we combine variation 1 and 2, when there is a parse error and a variable A on top of
the stack, we skip input tokens until we see either

« atoken in FIRST(A), in which case we simply continue,
« atoken in FOLLOW(A), in which case we pop A off the stack and continue.

« Report on the error found and where the parsing was resumed.

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Error Recovery in Recursive Descent Predictive Parsers

COMP 442/6421 — Compiler Design
Error Recovery in Recursive Descent Predictive Parsers

- Three possible cases:
- The lookahead symbol is not in FIRST(LHS).

« If €isin FIRST(LHS) and the lookahead symbol is not in FOLLOW(LHS).
- Thematch () function is called in a no match situation.

- Solution:

 Create a skipErrors () function that skips tokens until an element of
FIRST(LHS) or FOLLOW(LHS) is encountered.

« Upon entering any parsing function, call skipErrors ().

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Error Recovery in Recursive Descent Predictive Parsers

skipErrors([FIRST],[FOLLOW])
if (
lookahead is in [FIRST]
or
€ is in [FIRST] and lookahead is in [FOLLOW]
)
return true // no error detected, parse continues in this parsing function
else
write (“syntax error at “ lookahead.location)
while (lookahead not in [FIRST U FOLLOW])
lookahead = nextToken()
if (¢ is in [FIRST] and lookahead is in [FOLLOW])
return false // error detected and parsing function should be aborted
return true // error detected and parse continues in this parsing function

match(token)

if (lookahead == token)
lookahead = nextToken()
return true

else
write (“syntax error at” lookahead.location. “expected” token)
lookahead = nextToken()
return false

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Error Recovery in Recursive Descent Predictive Parsers

LHS(){ // LHS—>RHS1 | RHS2 | .. | €
if (!skipErrors(FIRST(LHS),FOLLOW(LHS))) return false;
if (lookahead € FIRST(RHS1))
if (non-terminals() A match(terminals))
write(“LHS—>RHS1”)
else success = false
else if (lookahead e FIRST(RHS2))
if (non-terminals() A match(terminals))
write(“LHS—>RHS2”)
else success = false
else if .. // other right hand sides
else if (lookahead € FOLLOW(LHS)) // only if LHS—& exists
write(“LHS—¢)
else success = false
return (success)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Example

EO{ E* O
if (!skipErrors([@,1,(],[),$])) return false; if (!skipErrors([+],[),$])) return false;
if (lookahead is in [0,1,(]) if (lookahead is in [+])
if (T();E"();) write(E->TE") if (match('+');T();E"()) write(E'->TE")
else success = false else success = false
else success = false else if (lookahead is in [$,)]
return (success) write(E'->epsilon);
} else success = false
return (success)

}

TOA T Of
if (!skipErrors([@,1,(],[+,),$])) return false; if (!skipErrors([*],[+,),$])) return false;
if (lookahead is in [@,1,(]) if (lookahead is in [*])
if (FO);T'();) write(T->FT") if (match("*");F();T'()) write(T'->*FT")
else success = false else success = false
else success = false else if (lookahead is in [+,),$]
return (success) write(T'->epsilon)
else success = false
return (success)

}

FOA
if (!skipErrors([@,1,(],[*,+,$,)])) return false;
if (lookahead is in [@])
match('0') write(F->0)
else if (lookahead is in [1])
match('1') write(F->1)
else if (lookahead is in [(])
if (match('(");E();match(')"')) write(F->1);
else success = false
else success = false
return (success)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

Error Recovery in Table-Driven Predictive Parsers

COMP 442/6421 — Compiler Design
Error Recovery in Table-Driven Predictive Parsers

- All empty cells in the table represent the occurrence of a syntax error
- Each case represents a specific kind of error
- Task when an empty (error) cell is read:

- Recover from the error
- Either pop the stack, or skip tokens (often called “scan”)

- Qutput an error message

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Building the table with error cases

- Two possible cases:

- pop the stack if the next token is in the FOLLOW set of our current non-
terminal on top of the stack.

- scan tokens until we get one with which we can resume the parse.

skipError(){ // A is top()
write (“syntax error at “ lookahead.location)
if (lookahead is $ or in FOLLOW(top()))
pop() // pop - equivalent to A — ¢
else
while (lookahead ¢ FIRST(top())
or
€ € FIRST(top()) and lookahead ¢ FOLLOW(top())
)

lookahead = nextToken() // scan

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Original table, grammar and sets

FST(E) FLW(E)
FST(E’) : FLW(E®)
FST(T) FLW(T)
FST(T’) FLW(T?)
FST(F) FLW(F)

el 1] () |+] *]$
E rl rl rl
E’ r3 r2 r3
T r4 r4 r4

T ré ré r5 ré
F r7 r8 ro

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Parsing table with error actions

scan scan
E’ scan scan scan R3 r2 scan r3
T r4 R4 R4 pop pop scan pop
T’ scan scan scan ré ré r5 ré

F r7 R8 RO pop pop pop pop

if the next token in input is in FOLLOW(LHS), pop () RHS from the stack.

else, repeat (nextToken())
until (FIRST(LHS) is found or
if FIRST(LHS) constains &, FOLLOW(RHS) is found)

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Parsing algorithm

parse(){
push($)
push(S)
a = nextToken()
while (stack # $) do
x = top()
if (xeT)
if (x ==a)
pop(x) ; a = nextToken()
else
skipError() ; success = false
else
if (TT[x,a] # ‘error’)
pop(x) ; inverseRHSPush(TT[x,a])
else
skipError() ; success = false
if ((a # $) v (success == false))
return(false)
else
return(true)}

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

COMP 442/6421 — Compiler Design
Parsing example with error recovery

T e T e
0(*1)s

SE 0(*1)S rl:E->TE = TE’

SE'T 0(*1)S R4:T-FT = FT'F

SE'T'F 0(*1)S R7:F—>0 = 0T'E’

SE'T'0 0(*1)S

SE'T’ (*1)S error - scan

SE'T’ *1)S r5: T — *FT’ = O*FT'E’

SE'T'F* *1)S

SE'T'F 1)S r8:F =51 = 0*1T'F’

SE'T’1 1)$

SE'T’)S 6:T"—>¢ = 0*1F’

SE’)S r3:E'—>¢ = 0*1

S)$ error - end

1
2
3
4
5
6
7
8
9

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2000-2018

