
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Error recovery in top-down predictive parsing

Joey Paquet, 2000-2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• A syntax error happens when the stream of tokens coming from the lexical
analyzer does not comply with the grammatical rules defining the programming
language.

• The next token in input is not expected according to the syntactic definition of
the language.

• One of the main roles of a compiler is to identify all programming errors and give
meaningful indications about the location and nature of errors in the input
program.

Syntax error recovery

Joey Paquet, 2000-2018

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Detect all compile-time errors

• Report the presence of errors clearly and accurately

• Recover from each error quickly enough to be able to detect subsequent errors

• Should not slow down the processing of correct programs

• Avoid spurious errors that are just a consequence of an earlier error

Goals of error recovery

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Give the position of the error in the source file, maybe print the offending line
and point at the error location.

doy.cpp: In function `int main()': doy.cpp:25: `DayOfYear' undeclared (first use this function)

doy.cpp:25: DayOfYear birthday;

^

• If the nature of the error is easily identifiable, give a meaningful error message.

• The compiler should not provide erroneous information about the nature of
errors.

Reporting errors

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Good error recovery highly depends on how quickly the error is detected.
• Often, an error will be detected only after the faulty token has passed.
• It will then be more difficult to achieve good error reporting, as well as good

error recovery.
• Top-down parsers generally detect errors quicker than top-down parsers.

• Should recover from each error quickly enough to be able to detect subsequent
errors. Error recovery should skip as less tokens as possible.

• Should not identify more errors than there really is. Cascades of errors that result
from token skipping should be avoided.

• Should give meaningful information about the errors, while avoiding to give
erroneous information.

• Error recovery should induce processing overhead only when errors are
encountered.

• Should avoid to report other errors that are consequences of the application of
error recovery, e.g. semantic errors.

Good error recovery

Joey Paquet, 2000-2018

5COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• There are many different strategies that a parser can employ to
recover from syntactic errors.

• Although some are better than others, none of these methods
provide a universal solution.
• Panic mode, or don’t panic (Nicklaus Wirth)

• Error productions

• Phrase level correction

• Global correction

Error recovery strategies

Joey Paquet, 2000-2018

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Panic Mode
• On discovering an error, the parser discards input tokens until an element of a

designated set of synchronizing tokens is found. Synchronizing tokens are
typically delimiters such as semicolons or end of block delimiters.

• A systematic and general approach is to use the FIRST and FOLLOW sets as
synchronizing tokens.

• Skipping tokens often has a side-effect of skipping other errors. Choosing the
right set of synchronizing tokens is of prime importance.

• Simplest method to implement.

• Can be integrated in most parsing methods.

• Cannot enter an infinite loop.

Error Recovery Strategies

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Error Productions
• The grammar is augmented with “error productions”. For each possible error,

an error production is added. An error is trapped when an error production is
used.

• Assumes that all specific errors are known in advance.

• One error production is needed for each possible error.

• Error productions are specific to the rules in the grammar. A change in the
grammar implies a change of the corresponding error productions.

• Extremely hard to maintain.

Error Recovery Strategies

Joey Paquet, 2000-2018

8COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Phrase-Level Correction
• On discovering an error, the parser performs a local correction on the

remaining input, e.g. replace a comma by a semicolon, delete an extraneous
semicolon, insert a missing semicolon, etc.

• Corrections are done in specific contexts. There are myriads of different such
contexts.

• Cannot cope with errors that occurred before the point of detection.

• Can enter an infinite loop, e.g. insertion of an expected token.

Error Recovery Strategies

Joey Paquet, 2000-2018

9COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Global Correction
• Ideally, a compiler should make as few changes as possible in processing an

incorrect token stream.

• Global correction is about choosing the minimal sequence of changes to
obtain a least-cost correction.

• Given an incorrect input token stream x, global correction will find a parse tree
for a related token stream y, such that the number of insertions, deletions,
and changes of tokens required to transform x into y is as reduced as possible.

• Too costly to implement.

• The closest correct program does not carry the meaning intended by the
programmer anyway.

• Can be used as a benchmark for other error correction techniques.

Error Recovery Strategies

Joey Paquet, 2000-2018

10COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Different variations of “panic mode” error recovery

Joey Paquet, 2000-2018

11COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Variation 1:

• Given a non-terminal A on top of the stack, skip input tokens until an element of
FOLLOW(A) appears in the token stream.

• Pop A from the stack and resume parsing.

• Report on the error found and where the parsing was resumed.

• Variation 2:

• Given a non-terminal A on top of the stack, skip input tokens until an element of
FIRST(A) appears in the token stream.

• Report on the error found and where the parsing was resumed.

• Variation 3

• If we combine variation 1 and 2, when there is a parse error and a variable A on top of
the stack, we skip input tokens until we see either

• a token in FIRST(A), in which case we simply continue,

• a token in FOLLOW(A), in which case we pop A off the stack and continue.

• Report on the error found and where the parsing was resumed.

Panic mode error recovery: variations

Joey Paquet, 2000-2018

12COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Error Recovery in Recursive Descent Predictive Parsers

Joey Paquet, 2000-2018

13COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Three possible cases:
• The lookahead symbol is not in FIRST(LHS).

• If  is in FIRST(LHS) and the lookahead symbol is not in FOLLOW(LHS).

• The match() function is called in a no match situation.

• Solution:

• Create a skipErrors() function that skips tokens until an element of
FIRST(LHS) or FOLLOW(LHS) is encountered.

• Upon entering any parsing function, call skipErrors().

Error Recovery in Recursive Descent Predictive Parsers

Joey Paquet, 2000-2018

14COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Error Recovery in Recursive Descent Predictive Parsers

Joey Paquet, 2000-2018

15COMP 442/6421 – Compiler Design

skipErrors([FIRST],[FOLLOW])
if (

lookahead is in [FIRST]
or
 is in [FIRST] and lookahead is in [FOLLOW]

)
return true // no error detected, parse continues in this parsing function

else
write (“syntax error at “ lookahead.location)
while (lookahead not in [FIRST  FOLLOW])

lookahead = nextToken()
if ( is in [FIRST] and lookahead is in [FOLLOW])

return false // error detected and parsing function should be aborted
return true // error detected and parse continues in this parsing function

match(token)
if (lookahead == token)

lookahead = nextToken()
return true

else
write (“syntax error at” lookahead.location. “expected” token)
lookahead = nextToken()
return false

Concordia University Department of Computer Science and Software Engineering

Error Recovery in Recursive Descent Predictive Parsers

Joey Paquet, 2000-2018

16COMP 442/6421 – Compiler Design

LHS(){ // LHSRHS1 | RHS2 | … | 
if (!skipErrors(FIRST(LHS),FOLLOW(LHS))) return false;
if (lookahead  FIRST(RHS1))

if (non-terminals()  match(terminals))
write(“LHSRHS1”)

else success = false
else if (lookahead  FIRST(RHS2))

if (non-terminals()  match(terminals))
write(“LHSRHS2”)

else success = false
else if … // other right hand sides
else if (lookahead  FOLLOW(LHS)) // only if LHS exists

write(“LHS”)
else success = false
return (success)

Concordia University Department of Computer Science and Software Engineering

Example
17COMP 442/6421 – Compiler Design

E(){
if (!skipErrors([0,1,(],[),$])) return false;
if (lookahead is in [0,1,(])

if (T();E'();) write(E->TE')
else success = false

else success = false
return (success)

}

E'(){
if (!skipErrors([+],[),$])) return false;
if (lookahead is in [+])

if (match('+');T();E'()) write(E'->TE')
else success = false

else if (lookahead is in [$,)]
write(E'->epsilon);

else success = false
return (success)

}

T(){
if (!skipErrors([0,1,(],[+,),$])) return false;
if (lookahead is in [0,1,(])

if (F();T'();) write(T->FT')
else success = false

else success = false
return (success)

}

T'(){
if (!skipErrors([*],[+,),$])) return false;
if (lookahead is in [*])

if (match('*');F();T'()) write(T'->*FT')
else success = false

else if (lookahead is in [+,),$]
write(T'->epsilon)

else success = false
return (success)

}

F(){
if (!skipErrors([0,1,(],[*,+,$,)])) return false;
if (lookahead is in [0])

match('0') write(F->0)
else if (lookahead is in [1])

match('1') write(F->1)
else if (lookahead is in [(])

if (match('(');E();match(')')) write(F->1);
else success = false

else success = false
return (success)

}

Joey Paquet, 2000-2018

Concordia University Department of Computer Science and Software Engineering

Error Recovery in Table-Driven Predictive Parsers

Joey Paquet, 2000-2018

18COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• All empty cells in the table represent the occurrence of a syntax error

• Each case represents a specific kind of error

• Task when an empty (error) cell is read:

• Recover from the error

• Either pop the stack, or skip tokens (often called “scan”)

• Output an error message

Error Recovery in Table-Driven Predictive Parsers

Joey Paquet, 2000-2018

19COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Two possible cases:

• pop the stack if the next token is in the FOLLOW set of our current non-
terminal on top of the stack.

• scan tokens until we get one with which we can resume the parse.

Building the table with error cases

Joey Paquet, 2000-2018

20COMP 442/6421 – Compiler Design

skipError(){ // A is top()
write (“syntax error at “ lookahead.location)
if (lookahead is $ or in FOLLOW(top()))

pop() // pop - equivalent to A  

else
while (lookahead  FIRST(top())

or
  FIRST(top()) and lookahead  FOLLOW(top())

)
lookahead = nextToken() // scan

}

Concordia University Department of Computer Science and Software Engineering

Original table, grammar and sets

Joey Paquet, 2000-2018

21COMP 442/6421 – Compiler Design

FLW(E) : { $,) }
FLW(E’) : { $,) }
FLW(T) : { +,$,) }
FLW(T’) : { +,$,) }
FLW(F) : { ,+,$,) }

r1: E  TE
r2: E  +TE
r3: E  

r4: T  FT
r5: T  FT
r6: T  

r7: F  0
r8: F  1
r9: F  (E)

FST(E) : { 0,1,(}
FST(E’) : { ,+ }
FST(T) : { 0,1,(}
FST(T’) : { ,* }
FST(F) : { 0,1,(}

0 1 () + * $

E r1 r1 r1

E’ r3 r2 r3

T r4 r4 r4

T’ r6 r6 r5 r6

F r7 r8 r9

Concordia University Department of Computer Science and Software Engineering

• pop: if the next token in input is in FOLLOW(LHS), pop() RHS from the stack.

• scan: else, repeat (nextToken())
until (FIRST(LHS) is found or

if FIRST(LHS) constains , FOLLOW(RHS) is found)

Parsing table with error actions

Joey Paquet, 2000-2018

22COMP 442/6421 – Compiler Design

0 1 () + * $

E r1 r1 R1 pop scan scan pop

E’ scan scan scan R3 r2 scan r3

T r4 R4 R4 pop pop scan pop

T’ scan scan scan r6 r6 r5 r6

F r7 R8 R9 pop pop pop pop

Concordia University Department of Computer Science and Software Engineering

Parsing algorithm

Joey Paquet, 2000-2018

23COMP 442/6421 – Compiler Design

parse(){
push($)
push(S)
a = nextToken()
while (stack  $) do

x = top()
if (x  T)

if (x == a)
pop(x) ; a = nextToken()

else
skipError() ; success = false

else
if (TT[x,a]  ‘error’)

pop(x) ; inverseRHSPush(TT[x,a])
else

skipError() ; success = false
if ((a  $)  (success == false))

return(false)
else

return(true)}

Concordia University Department of Computer Science and Software Engineering

Parsing example with error recovery

Joey Paquet, 2000-2018

24COMP 442/6421 – Compiler Design

Stack Input Production Derivation

1 $E 0(*1)$ E

2 $E 0(*1)$ r1: ETE’  TE’

3 $E’T 0(*1)$ R4: TFT’  FT’E’

4 $E’T’F 0(*1)$ R7: F0  0T’E’

5 $E’T’0 0(*1)$

6 $E’T’ (*1)$ error - scan

7 $E’T’ *1)$ r5: T  FT  0*FT’E’

8 $E’T’F* *1)$

9 $E’T’F 1)$ r8: F  1  0*1T’E’

10 $E’T’1 1)$

11 $E’T’)$ r6: T    0*1E’

12 $E’)$ r3: E    0*1

13 $)$ error - end

