

Team Redmond

Master Test Plan

Version 1.2

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 2

Revision History
Date Version Description Author

11/15/2003 1.0 Modified template as per group decision on
the sections to include / exclude.

Robert Hanna

12/01/2003 1.1 Integration of individual parts together Stefan Thibeault

12/04/2003 1.2 Finalize document Stefan Thibealt

Robert Hanna

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 3

Table of Contents
1. Introduction 6

1.1 Purpose 6
1.2 Scope 6
1.3 Document Terminology and Acronyms 6
1.4 References 6
1.5 Document Structure 7

2. Evaluation Mission and Test Motivation 7
2.1 Background 7
2.2 Evaluation Mission 7
2.3 Test Motivators 7

3. Target Test Items 8

4. Outline of Planned Tests 10
4.1 Outline of Test Inclusions 10

4.1.1 Unit Testing 10
4.1.2 Integration Testing 10
4.1.3 Function Testing 10
4.1.4 User Interface Testing 10
4.1.5 Performance Profiling 10
4.1.6 Load Testing 10
4.1.7 Configuration Testing 10
4.1.8 Installation Testing 10

4.2 Outline of Other Candidates for Potential Inclusion 10
4.3 Outline of Test Exclusions 11

4.3.1 Data and Database Integrity Testing 11
4.3.2 Business Cycle Testing 11
4.3.3 Stress Testing 11
4.3.4 Volume Testing 11
4.3.5 Security and Access Control Testing 11
4.3.6 Failover and Recovery Testing 11

5. Test Approach 12
5.1 Unit Testing 12

5.1.1 Function move 12
5.1.2 Function payRent 16
5.1.3 Function canBuy 22
5.1.4 Function buyProperty 25
5.1.5 Function canBuild 27
5.1.6 Function doTrade 31

5.2 Integration Testing 34
5.2.1 The testing order 34
5.2.2 Test method 34
5.2.3 Game Start Window 35
5.2.4 Main Window 35
5.2.5 JFL Window 37
5.2.6 Cell Info Window 37
5.2.7 Trade Window 38

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 4

5.2.8 Game End Window 39
5.3 Function Testing 39

5.3.1 Start Game 39
5.3.2 Roll Dice 43
5.3.3 Pass Go 43
5.3.4 Pay Rent 44
5.3.5 Buy Property 46
5.3.6 Build/Sell Hotel 47
5.3.7 Mortgage/Un-Mortgage 50
5.3.8 Tax 52
5.3.9 JFL Cards 53
5.3.10 Jail 54
5.3.11 Trade 55
5.3.12 End Turn 57
5.3.13 Bankruptcy 57
5.3.14 End Game 59
5.3.15 Game Winner 59

5.4 User Interface Testing 60
5.5 Performance Profiling 78

5.5.1 Token Movements 79
5.5.2 AI Response 79

5.6 Load Testing 80
5.7 Configuration Testing 81
5.8 Installation Testing 83

6. Testing Workflow 85
6.1 Workflow Overview 85

6.1.1 Test Plan & Software Engineering process 85
6.1.2 Static and Dynamic Verification 85
6.1.3 Work Flow of a Test 86

6.2 Incident Logs and Change Requests 86
6.2.1 Managing changes: the file manager and group e-mail list 86
6.2.2 Bug Workflow 87
6.2.3 Bug Report Template 88
6.2.4 Master Bug List 89
6.2.5 Responsibilities of the tester, bug master and coder 89
6.2.6 Black box testing template 90
6.2.7 White box testing template 93
6.2.8 Integration test 94

7. Iteration Milestones 96

8. Team Members Log Sheets 96
8.1 Stefan Thibeault 96
8.2 Robert Hanna 96
8.3 Simon Lacasse 97
8.4 Alexandre Bosserelle 97
8.5 Eugena Zolorova 97
8.6 Zhi Zhang 98
8.7 Xin Xi 98
8.8 Patrice Michaud 98
8.9 Hu Shan Liu 98

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 5

8.10 Jens Witkowski 99

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 6

Master Test Plan
1. Introduction
The primary goal of this project is to develop the Montrealopoly game. This game is based on the original
Monopoly© game, with some modifications. Some of the original rules of the game have been changed. Further, the
game board and cell names have been modified to a Montreal-based theme. This is the final phase of the project,
which includes the test plan and the implementation of the game. This test plan contains a comprehensive list of
tests that will be performed along with a workflow of how the tests will be executed.

1.1 Purpose
The purpose of the Iteration Test Plan is to gather all of the information necessary to plan and control the test effort
for this phase.

This Test Plan for the Montrealopoly game supports the following objectives:

• Identify the requirements that are to be tested.

• Outline the testing approach that will be used.

• Describe the workflow of the testing process that must be executed.

• Provide a timeline with milestones for the testing phase.

1.2 Scope
This document is intended to provide a test plan to test the Montrealopoly game, which Team Redmond developed.
The test plan will consist of unit, integration, function, user interface, performance profiling,
load, configuration and installation testing. Testing techniques that will be performed include white box and
black box testing, boundary testing and basis path testing. Some tests that were omitted in the test plan include: Data
and Database Integrity, Business Cycle, Stress, Volume, Security and Access Control, Failover and Recovery
testing. A test plan workflow will also be included along with milestones that have been set for this phase.

1.3 Document Terminology and Acronyms

Term Definition
BVA Boundary Value Analysis
GUI Graphical User Interface
AI Artificial Intelligence
QA Quality Assurance
API Application Programming Interface
VB Visual Basic

1.4 References

• Pressman, Roger S. Software Engineering: A Practitioner's Approach. 5th ed. Toronto: McGraw-Hill,
2001.

• Dr. Joey Paquet, "COMP 354 Course Notes"
http://newton.cs.concordia.ca/~paquet/teaching/354/notes/COMP354F2003notesAll.pdf
(Current December 1, 2003)

• Paula Bo Lu, "COMP 354 Tutorial 3"
http://www.cs.concordia.ca/~grad/blu/comp354-2.ppt (Current December 1, 2003)

• Microsoft, “Virtual PC”, http://www.microsoft.com/windowsxp/virtualpc/ (Current December 1, 2003)

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 7

1.5 Document Structure
The remainder of this document is divided into following major parts: evaluation mission and test motivation, target
test items, outline of planned tests, test approach and testing workflow, iteration milestones. The evaluation mission
and test motivation contains a brief background on this project, its objectives and motivators for testing. The target
test items and outline of planned tests include what will be tested and what tests will not be performed. The test
approach contains the actual tests that were performed and how the tests were carried out. The testing workflow
contains the workflow that Team Redmond followed in this phase. The last two sections contain the milestones of
this phase and the team member's log sheets.

2. Evaluation Mission and Test Motivation
The goal of this test plan is to ensure that the Montrealopoly game meets the specifications and design criteria of the
two previous phases. Moreover, the test plan will provide a methodology on what the implementation team should
test and the types of tests they will perform. Finally, the test plan will enable Team Redmond to release a stable and
bug-free Montrealopoly game.

2.1 Background
The third phase of the COMP 354 project involves creating the actual Montrealopoly game based on the
requirements and design documents of the two previous phases. The game will be developed by the implementation
using Visual Basic. A comprehensive test plan has been developed to ensure that the game conforms to the
specifications, design and to perform quality assurance on the final product. This will enable Team Redmond to
release a complete and bug free Montrealopoly game and minimize the risk of software failure.

The requirements document outlines the game’s specifications and high-level requirements along with an analysis
model with use cases, class diagrams, sequence diagrams and state transition diagrams of the game. The design
document contains architectural, software interface and internal module designs, which is a foundation that the
implementation team can create Montrealopoly. The test plan will allow Team Redmond to verify if the final
product successfully meets these specifications with a variety of testing techniques. The plan will also help in fault
detection with the test cases that have been designed.

The requirements and design documents are available at http://montrealopoly.maverick.to

2.2 Evaluation Mission
The three main objectives of the third phase are:

• Ensuring that the specifications of the requirements document have been achieved.
• Ensuring that the specifications of the design document have been achieved.
• Ensuring that the risk of software failure is reduced to a minimum.

To achieve these objectives, Team Redmond has developed a test plan to verify that these objectives have been met.
Meeting these objectives will enable Team Redmond to release a stable version on Montrealopoly.

2.3 Test Motivators
The targeted test items listed below will be the motivation for testing in this phase.

Unit Testing: A select number of methods will be tested in a couple of classes with black and white box testing to
ensure that they function correctly.
Integration Testing: Units will be integrated with other units to see if they work correctly together.
Function Testing: Will ensure that the use cases have been met.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 8

User Interface Testing: Will verify if the requirements of the GUI have been implemented as specified.
Performance Profiling: Ensure that the game’s performance is at an acceptable playable level.
Load Testing: See how the game performs when being played at its limits.
Configuration Testing: Ensure that the game works correctly under different environment configurations.
Installation Testing: Verify that the game installs itself correctly under different environment configurations.

3. Target Test Items
In this section, we will list the target test items. These are the items that should be tested. Due to time restrictions,
we were not able to document and generate test cases for all the target test items; therefore, although we list all the
target test items, we only provide a detailed test plan for a few of the major test items. For ease of reference, we
have categorized the test items by motivation.

Unit Testing

Unit testing consists of testing all the different units of the system, in isolation. In essence, we must therefore test
each class in isolation, and each method in isolation using white box and black box techniques. The list of test items
for unit testing consists of all the classes and all their methods, as per the design document. For a complete list of the
classes and methods, please refer to the design document - section 4 – Internal Module Design. Below is a list of the
test items for which test cases have been generated and included in this document:

• Function move
• Function payRent
• Function canBuy
• Function buyProperty
• Function canBuild
• Function doTrade

Integration Testing

During integration testing, we will be testing components separately, and then integrating them together one by one,
and testing them again. Due to time restrictions, we have not included full test cases for all the integration tests that
are to be done. Below is a list of the test items for which integration tests were documented and tested:

• Game Start Window
• Main Window
• JFL Window
• Cell Info Window
• Trade Window
• Game End Window

Function Testing

Function testing consists of testing all the requirements and specifications, as per the requirements and specifications
document. In essence, the list of functions to test corresponds to the list of use cases and requirements in the
requirements document. Due to the importance of function testing, we have included detailed test cases for all the
product functions. Below is the list of functions that were tested:

• Start Game
• Roll Dice
• Pass Go
• Pay Rent
• Buy Property
• Build/Sell Hotel
• Mortgage/Un-Mortgage
• Tax
• JFL Cards

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 9

• Jail
• Trade
• End Turn
• Bankruptcy
• End Game
• Game Winner

User Interface testing

User interface testing is concerned with making sure that each functionality concerning the user interface is
works as per the requirements defined in the design document. For the user interface, the possible interactions
with the game will be tested in great detail. During the test, the objective will be to compare and check the
validity of an implemented functionality with the expected functionality elaborated and described in previous
phases. Below is a list of the User Interface items that were tested:

• Start Panel
• Game board
• Title deed cards
• Metro / Utility cards (as the title deed cards)
• Trading cards
• JFL cards
• Income / Luxury tax cards
• Winner interface

Performance Profiling

Performance profiling is concerned with testing the different response times of the software. In these types of
tests, we have focused mainly on the following test items:

• Token Movements
• AI Response Time

Load Testing

Load Testing is concerned with testing the system beyond the limits it was designed for. In this type of test, we
have focused mainly on testing the game when the board is fully loaded. This will be described in detail in
section 5.5. Below are the test items that were identified:

• Functionality of Game with Fully Loaded Board
• AI Response Time with Fully Loaded Board

Configuration Testing

Configuration testing is concerned with testing the system under different environment configurations. In this
type of test, we have focused on testing the game under different versions of the Windows ™ operating system.
Below is a list of the operating systems the game will be tested under:

• Windows 95
• Windows 98
• Windows Me
• Windows 2K
• Windows XP

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 10

Installation Testing

During installation testing, we will focus on testing the packaged installation program that will be produced
once the implementation is completed. For more details on this, refer to section 5.7. Below is a list of the test
items that were identified:

• Installer
• Un-Installer

4. Outline of Planned Tests
Team Redmond will perform the following test: unit testing, integration testing, function testing, user interface
testing, performance profiling, load testing, configuration testing and installation testing. The following tests will not
be performed: data and database integrity testing, business cycle testing, stress testing, volume testing, security and
access control testing and failover and recovery testing. A list of other candidates for potential inclusion is also
provided.

4.1 Outline of Test Inclusions
The following tests will be performed to test the Montrealopoly game.

4.1.1 Unit Testing
Unit testing will be performed with black box and white box testing. Black box testing will include boundary value
analysis and equivalence partitioning. White box testing will include basis path testing.

4.1.2 Integration Testing
Integration testing will allow testing of all the individually tested units together as a whole. Sandwich testing will be
performed in the integration testing.

4.1.3 Function Testing
Function testing will ensure that the use cases have been implemented correctly by verifying if they are present in
the game.

4.1.4 User Interface Testing
The GUI will be tested by comparing the requirements in the design document and with the actual implementation
of the game.

4.1.5 Performance Profiling
Performance profiling will verify that the game’s performance is at an acceptable playable level. The speed of the
game’s AI will be monitored to see whether the rate that it plays the game at is acceptable.

4.1.6 Load Testing
Load testing will see how the game performs when being played at its limits. This will be achieved by testing the
game with the maximum allowable players, with all the properties owned and with hotels built on all streets.

4.1.7 Configuration Testing
Configuration testing is concerned with testing the application under different environment configurations the users
may have.

4.1.8 Installation Testing
Installation testing will verify that the game installs itself correctly under different environment configurations the
users may have.

4.2 Outline of Other Candidates for Potential Inclusion
Team Redmond’s test plan contains a comprehensive amount of tests to help reduce the risk of software failure.
However, with the extensive use of AI, several potential tests could be developed to test the effectiveness of the
game’s AI. These tests were not developed, as Team Redmond’s knowledge of AI is limited and these tests are

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 11

complex and time consuming.

Playing the game with many computer players at the same time is difficult to test as there are many different paths
that the computer player may take, depending on the state of the game. The more computer players a game has, the
greater the difficulty in testing the different paths that any computer player can take. For example, trading performed
between a couple of computers may execute correctly, but what if several computer players are interested in the
same streets in a district? A property “fight” may break out and the computer players may keep trading the same
streets back and forth. This could result in an endless loop or bankrupt players early on in the game.

The game’s AI has been designed based on a decision tree which a computer player follows each time it plays it’s
turn. Each computer player uses the same decision tree and it never changes or adapts to the state of the game. As a
result, someone playing the game often enough may start to notices patterns on how the computer reacts to certain
situations. The game will then become less challenging, as human players will be able to predict what the computer
player will do next. Another possibility is that weaknesses in the computer’s decision-making abilities may be
discovered. Human players who notice these patterns and weaknesses may use them to their advantages and trick
the computer into performing poor moves. This will result in problems with game playability.

Game playability will be poor if the AI turns out to be ineffective as mention above. If the game’s AI ends up in
semi-infinite loops or makes poor decisions, the fun factor will quickly disappear. This will lead to a game that has
no challenge if the computer player’s decisions can be predicted or very difficult to play if property “fights” break
out between computer players. Perfecting AI and testing it properly is difficult and is beyond the scope of this
project and has been left out by Team Redmond.

4.3 Outline of Test Exclusions
Due to the nature of Montrealopoly’s implementation, certain tests will be excluded, which are listed below.

4.3.1 Data and Database Integrity Testing
Montrealopoly does not use a database system, as no information is saved or retrieved. Any data that needs to be
saved during game play is stored in main memory and is released when the game has ended.

4.3.2 Business Cycle Testing
Business cycle testing is not applicable to Montrealopoly as the game is not design to be played over long periods of
time. It also is not time/date-sensitive and has been designed to be played within a maximum of several hours.

4.3.3 Stress Testing
Montrealopoly has been designed to be played with a maximum of eight players and be able to function correctly.
Since the game cannot be played with any more players, stress testing cannot be applied. Furthermore, Team
Redmond does not have the capabilities to simulate low system resources to test Montrealopoly. However, Team
Redmond will conduct load testing to ensure that the game can be played at its designed limits.

4.3.4 Volume Testing
Volume testing will not be performed, as the game does not process large amounts of data. Besides mouse clicks,
the only data that will be inputted into the game are the players’ names and dollar amounts.

4.3.5 Security and Access Control Testing
No security testing will be performed as the game does not contain or manipulate any sensitive data. The game can
be played by all and no sensitive information can be revealed while playing the game. All users playing the game are
assumed to be allowed to use the computer that they are playing the game on.

4.3.6 Failover and Recovery Testing
Team Redmond does not have sufficient resources to perform failover and recovery testing. Moreover, the nature of
Montrealopoly does not warrant these types of testing as there is little benefit of such testing as Montrealopoly is not
a mission critical application.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 12

5. Test Approach
The Test Approach describes the recommended strategy for designing and implementing the required tests. In this
section, we will be describing the details of the tests that need to be performed for each target test item that was
identified. These tests will be organized into the following sub-sections:

• Unit Testing
• Integration Testing
• Function Testing
• User Interface Testing
• Performance Profiling
• Load Testing
• Configuration Testing
• Installation Testing

Moreover, for each of these test motivators, test cases will be described in detail. For each test case, we will provide
a description of the test case, the inputs (or steps to reproduce) of the test case, and the outputs (the expected results)
of the test case.

5.1 Unit Testing
Unit testing will test individual components along with their functions in isolation. This low level form of testing
will include black box testing and white box testing. In black box testing, the function’s boundaries will be tested to
see if any errors occur there. White box testing will verify that all the paths in the function are correct through basis
path testing.

5.1.1 Function move
Tests will be conducted on the move function which is suppose to move the player from a starting position (x) to it’s
expected final destination (y). The movement is defined by the argument numCells so that (y = x + numCells). The
function move takes a second argument beside numCells, which is penalty. Penalty is a Boolean argument. When
the penalty is set too false the player collect 200$ when it passes go. When penalty is set to true, the player doesn’t
collect 200$ when it passes go.

5.1.1.1 Black Box Testing
Every test case will be tested starting from position 0, which is the GO cell. Moreover, the penalty argument will be
set to false.

Test Case 1: Pass an argument that is under the lower bound for the variable numCells.
(numCells = -1)

Test Case 2: Pass an argument that is on the lower bound for the variable numCells.
(numCells = 0)

Test Case 3: Pass an argument that is between the bound.
(numCells = 10)

Test Case 4: Pass an argument that is exactly one lap around the board, there are 40 cells
(numCells = 40)

Test Case 5: Pass an argument that is more than one lap around the board, there are 40 cells.
(numCells = 45)

The expected result is the new player position or y as defined before.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 13

Tester name Patrice Michaud Test date November 29, 2003
Class name Player Method name move File name Player.cls
Variable name numCells Lower bound 0 Upper bound: 40

less than lower bound Value: -1

on lower bound Value: 0

between the bounds Value: 10

on the upper bound Value: 40

greater than upper bound Value: 45

Test case less than lower

bound
on lower bound between the

bounds
on the upper
bound

greater than
upper bound

Expected
output

Position = -1 Position = 0 Position = 10 Position = 0
Balance + 200

Position = 5
Balance + 200

Actual output Position = -1 Position = 0 Position = 10 Position = 0
Balance + 200

Position = 5
Balance + 200

Bug found? No No No No No

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 14

5.1.1.2 White Box Testing

Basis Path Testing

Private position As Integer ‘Actual Position Of The Player
Public Sub move(numCells As Integer, penalty As Boolean)
 ‘Move the player by the number of cells passed
 ‘Update the balance if you pass go and penalty is
 ‘equal to false

 Dim oldPos As Integer ‘Starting position
 oldPos = position
 position = position + numCells ‘New Position
 bBoard.getCell(oldPos).display ‘Display the oldPos cell

 If (position >= 40 And penalty = False) Then
 MainWindow.MoveToken Me.getId, oldPos, 39
 oldPos = 0
 position = position mod 40
 credit 200
 Else
 If position >= 40 Then
 MainWindow.MoveToken Me.getId, oldPos, 39
 oldPos = 0
 position = position mod 40
 End If
 End If
 ‘Display the movement of the token
 MainWindow.MoveToken Me.getId, oldPos, position
End Sub

Path 1 1-2-6
Path 2 1-2-3-4-6
Path 3 1-2-3-5-6

Path 1 1-2-6
Variables Position = 0 <= Position < 40.
Expected result Return the correct position.

Path 2 1-2-3-4-6
Variables Position = (Position >= 40).

Penalty = false.
Expected result Return the position and the balance go up by $200.

Path 3 1-2-3-5-6
Variables Position = (Position >= 40)

Penalty = true.
Expected result Return correct position and the balance stays the same.

1

2 3

4

5

6

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 15

Path diagram for function: move

1

2

3

45

6

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 16

5.1.2 Function payRent
Tests will be conducted on the payRent function, which is suppose to make a player pay if he lands on land owned
by someone else, or if the player landed on a tax cell. When called, the function takes the current position of the
player and makes the player pay, if required, by the amount X. The function payRent does not take any argument.

5.1.2.1 Black Box Testing

Every test case will be tested using different player positions.

Test Case 1: Call the function when the player is on a negative position.
(Position = -1)

Test Case 2: Call the function when the player is on position 0.
(Position = 0)

Test Case 3: Call the function when the player is on a property.
(Position = 1)

Test Case 4: Call the function when the player is on the last property
(Position = 39)

Test Case 5: Call the function when the player is above the last possible position.
(Position = 40)

The expected result is the balance changed depending on the rent they have to pay. The rent is of 0 if a player land
on a cell he owns a cell not owned or a mortgaged cell. It is important to notice that the function is only called if the
player as enough money to pay the rent.

Tester name Patrice Michaud Test date November 29, 2003
Class name Player Method name payRent File name Player.cls
Variable name cellId Lower bound 0 Upper bound: 39

less than lower bound Value: -1

on lower bound Value: 0

between the bounds Value: 1

on the upper bound Value: 39

greater than upper bound Value: 40

Test case less than lower

bound
on lower bound between the

bounds
on the upper
bound

greater than
upper bound

Expected
output

nothing nothing Balance=-rent Balance=-rent nothing

Actual output nothing nothing Balance=-rent Balance=-rent nothing
Bug found? No No No No No

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 17

5.1.2.2 White Box Testing

Basis Path Testing

Private position As Integer ‘Actual Position Of The Player
Public Sub payRent()
‘Pay the rent of the cell you landed on
‘If tax pay tax, if income tax, check if assets are smaller then 2000
 Dim iRent As Integer
 If TypeOf bBoard.getCell(position) Is Property Then
 Dim pProp As Property
 Set pProp = bBoard.getCell(position)
 iRent = bBoard.getCell(position).getRent ‘get the rent
 If pProp.getOwners Is Me Or pProp.isMortgaged2 Then

Else

 If Me.isComputer2 Then ‘if is a computer player

 debit iRent
 pProp.getOwners.credit iRent ‘credit player
 Else
 If Me.canPayRent(position) = 0 Then ‘can pay?
 debit iRent
 pProp.getOwners.credit iRent ‘credit player
 End If
 End If
 End If
 Else
 If TypeOf bBoard.getCell(position) Is LuxuryTax Then
 Dim lTax As Variant
 Set lTax = bBoard.getCell(position)
 iRent = lTax.getRent ‘get the tax
 If Me.isComputer2 Then ‘is computer
 debit iRent
 Else
 If Me.canPayTax(position) = 0 Then ‘can pay?
 debit iRent
 End If
 End If
 Else
 If TypeOf bBoard.getCell(position) Is IncomeTax Then
 Dim iTax As Variant
 Set iTax = bBoard.getCell(position)
 iRent = iTax.getRent
 If ((Me.calcAssets * 0.1) < iRent) Then‘assets<rent?
 iRent = (Me.calcAssets * 0.1)
 End If
 If Me.isComputer2 Then ‘is computer?
 debit iRent

1
2

3

5 4 6

7

8

9

10

12

11

13

14
15

16

18

17

19

21 20

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 18

 Else
 If Me.canPayTax(position) = 0 Then ‘can pay?
 debit iRent
 End If
 End If
 End If
 End If
 End If
End Sub

Path 1 1-2-3-4-24
Path 2 1-2-3-4-5-24
Path 3 1-2-3-4-6-7-24
Path 4 1-2-3-4-5-6-8-24
Path 5 1-2-3-4-5-6-8-9-24

Path 1 1-2-3-4-24
Variables Position is property.

Player is the owner.
Expected result Nothing.

Path 2 1-2-3-4-5-24
Variables Position is property.

Player is not the owner.
Property is mortgaged.

Expected result Nothing.

Path 3 1-2-3-4-6-7-24
Variables Position is property.

Owner is not me.
Property is not mortgaged.
Player is a computer.

Expected result Balance of player is decreased by rent, Balance of owner increased by rent

Path 4 1-2-3-4-5-6-8-24
Variables Position is property.

Owner is not me.
Property is not mortgaged.
Player is not a computer.
Player cannot pay rent.

Expected result Nothing.

Path 5 1-2-3-4-5-6-8-9-24
Variables Position is property.

Owner is not me.
Property is not mortgaged.
Player is not a computer.
Player can pay rent.

Expected result Balance of player is decreased by rent, Balance of owner increased by rent.

22
23

24

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 19

Path 6 1-2-10-11-12-13-24
Path 7 1-2-10-11-12-14-24
Path 8 1-2-10-11-12-14-15-24

Path 6 1-2-10-11-12-13-24
Variables Position is Luxury Tax.

Player is computer.
Expected result Player is debited $75.

Path 7 1-2-10-11-12-14-24
Variables Position is Luxury Tax.

Player is human.
Player cannot pay tax.

Expected result Player must make money first.

Path 8 1-2-10-11-12-14-15-24
Variables Position is Luxury Tax.

Player is human.
Player can pay tax.

Expected result Player is debited $75.

Path 9 1-2-10-16-17-18-20-21-24
Path 10 1-2-10-16-17-18-19-20-21-24
Path 11 1-2-10-16-17-18-20-22-24
Path 12 1-2-10-16-17-18-20-22-23-24
Path 13 1-2-10-16-17-18-19-20-22-24
Path 14 1-2-10-16-17-18-19-20-22-23-24

Path 9 1-2-10-16-17-18-20-21-24
Variables Position is Income Tax.

Player is computer.
Player assets are more then $200.

Expected result Player is debited $200.

Path 10 1-2-10-16-17-18-19-20-21-24
Variables Position is Income Tax.

Player is computer.
Player assets are less then $200.

Expected result Player is debited 10% of is total assets value.

Path 11 1-2-10-16-17-18-20-22-24
Variables Position is Income Tax.

Player is human.
Player assets are more then $200.
Player cannot pay tax.

Expected result Player must make money first.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 20

Path 12 1-2-10-16-17-18-20-22-23-24
Variables Position is Income Tax.

Player is human.
Player assets are more then $200.
Player can pay tax.

Expected result Player is debited $200.

Path 13 1-2-10-16-17-18-19-20-22-24
Variables Position is Income Tax.

Player is human.
Player assets are less then $200.
Player cannot pay tax.

Expected result Player must make money first.

Path 14 1-2-10-16-17-18-19-20-22-23-24
Variables Position is Income Tax.

Player is human.
Player assets are less then $200.
Player can pay tax.

Expected result Player is debited 10% of is total assets value.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 21

Path diagram for function: payRent

1

10

2

16 11 3

4

5

6

87

9

12

13 14

15

24

17

18

19

20

21

22
23

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 22

5.1.3 Function canBuy
Tests will be conducted on the canBuy function which is suppose to return true if the player can buy a specified
property X, and false if cannot buy a specified property X. The function takes the cellId argument, which is the cell
id of the cell the player is interested in.

5.1.3.1 Black Box Testing

Every test case will be on a cell, and if the cell is a property then the owner is set to nothing and the balance is
sufficient. If those conditions are false, every test case result will be false.

Test Case 1: Pass an argument that is under the lower bound for the variable cellId.
(cellId = -1)

Test Case 2: Pass an argument that is on the lower bound for the variable cellId.
(cellId = 0)

Test Case 3: Pass an argument that is between the bound.
(cellId = 1)

Test Case 4: Pass an argument that is exactly on the upper bound of cellId.
 (cellId = 39)

Test Case 5: Pass an argument that is more than the upper bound of cellId.
(cellId = 40)

The expected result is the answers to the question can the player buy this property.

Tester name Patrice Michaud Test date November 29, 2003
Class name Player Method name canBuy File name Player.cls
Variable name cellId Lower bound 0 Upper bound: 39

less than lower bound Value: -1

on lower bound Value: 0

between the bounds Value: 1

on the upper bound Value: 39

greater than upper bound Value: 40

Test case less than lower

bound
on lower bound between the

bounds
on the upper
bound

greater than
upper bound

Expected
output

false false true true false

Actual output false false true true false
Bug found? No No No No No

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 23

5.1.3.2 White Box Testing

Basis Path Testing

Public Function canBuy(cellId As Integer) As Boolean
‘Determine if you can buy or not
 canBuy = False ‘set to false
 If TypeOf bBoard.getCell(cellId) Is Property Then ‘is property
 Dim pProp As Property
 Set pProp = bBoard.getCell(cellId)
 If pProp.getPrice < Balance And pProp.getOwners Is Nothing Then
 ‘if you have enough money and property not owned
 canBuy = True
 End If
 End If
End Function

Path 1 1-2-7
Path 2 1-2-3-4-7
Path 3 1-2-3-4-5-7
Path 4 1-2-3-5-6-7

Path 1 1-2-7
Variables cellId is not a property.
Expected result Cannot buy.

Path 2 1-2-3-4-7
Variables cellId is a property.

Player balance is less then the price of the property.
Expected result Cannot buy.

Path 3 1-2-3-4-5-7
Variables cellId is a property.

Player balance is more then the price of the property.
The property is already owned.

Expected result Cannot buy.

Path 4 1-2-3-5-6-7
Variables cellId is a property.

Player balance is more then the price of the property.
The property is not owned.

Expected result Can buy the property.

2

4 5

1

3

6

7

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 24

Path diagram for function: canBuy

1

2

3

4

5

7

6

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 25

5.1.4 Function buyProperty
Test will be conduct on the buyProperty function, which is supposed to do the necessary transaction to buy a
property. The function takes no argument, because it uses the current position of the player. There is an integration
of the previously tested function canBuy.

5.1.4.1 White Box Testing

Basis Path Testing

Public Sub buyProperty()
 ‘buy the property you’re on
 If Me.canBuy(position) Then
 ‘if you can buy then
 Dim pProp As Variant
 Set pProp = bBoard.getCell(position)
 Dim iPrice As Integer
 iPrice = pProp.getProp.getPrice
 debit iPrice
 Me.newlyOwn pProp ‘set as own
 End If
End Sub

Path 1 1-3
Path 2 1-2-3

Path 1 1-3
Variables Player cannot buy.
Expected result Nothing.

Path 2 1-2-3
Variables Player can buy.
Expected result Buy the property.

Debit the price of the property .
Set as newly owned with the function newlyOwn.

1

2

3

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 26

Path diagram for function: buyProperty

1

2

3

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 27

5.1.5 Function canBuild
Tests will be conducted on the canBuild function, which is supposed to return true if the player can build on a
specified property, and false if cannot build on a specified property. The function take a cellId argument, which is
the cell id of the cell the player is interested in building on.

5.1.5.1 Black Box Testing
Every test case will be on a cell, and if the cell is a street then the player is the owner, the balance is sufficient, there
are less then four hotels, the player own the whole district and the property is not mortgaged. If one of those
conditions is false, then every tests cases are supposed to be false.

Test Case 1: Pass an argument that is under the lower bound for the variable cellId.
(cellId = -1)

Test Case 2: Pass an argument that is on the lower bound for the variable cellId.
(cellId = 0)

Test Case 3: Pass an argument that is between the bound.
(cellId = 1)

Test Case 4: Pass an argument that is exactly on the upper bound of cellId.
 (cellId = 39)

Test Case 5: Pass an argument that is more than the upper bound of cellId.
(cellId = 40)

The expected result is the answer to the question cans the player build on this property.

Tester name Patrice Michaud Test date November 29, 2003
Class name Player Method name canBuild File name Player.cls
Variable name cellId Lower bound 0 Upper bound: 39

less than lower bound Value: -1

on lower bound Value: 0

between the bounds Value: 1

on the upper bound Value: 39

greater than upper bound Value: 40

Test case less than lower

bound
on lower bound between the

bounds
on the upper
bound

greater than
upper bound

Expected
output

false false true true false

Actual output false false true true false
Bug found? No No No No No

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 28

5.1.5.2 White Box Testing

Basis Path Testing

Public Function canBuild(cellId As Integer) As Boolean
 ‘Determine if you can buil or not
 canBuild = False ‘set to false
 If TypeOf bBoard.getCell(cellId) Is Street Then
 Dim sStreet As Street
 Set sStreet = bBoard.getCell(cellId)
 If Me Is sStreet.getProp.getOwners Then ‘if you are the owner

 Dim iDist As Integer
 iDist = (sStreet.getDistId / 10) – 1

If sStreet.getHotelCost <= Balance
And ownDist(iDist)
And sStreet.getHotelCount < 4
And sStreet.getProp.isMortgaged2 = False Then

 ‘If you have enough money, there is less then 4 hotels
 ‘you own the district, the street is not mortgaged
 canBuild = True
 End If
 End If
 End If
End Function

Path 1 1-2-11
Path 2 1-2-3-4-11
Path 3 1-2-3-4-5-6-11
Path 4 1-2-3-4-5-6-7-11
Path 5 1-2-3-4-5-6-7-8-11
Path 6 1-2-3-4-5-6-7-8-9-11
Path 7 1-2-3-4-5-6-7-8-9-10-11

Path 1 1-2-11
Variables cellId is not a street.
Expected result Cannot build.

Path 2 1-2-3-4-11
Variables cellId is a street.

Player is not the owner.
Expected result Cannot build.

Path 3 1-2-3-4-5-6-11

1
2

3

4
5

6

7

8

9

10

11

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 29

Variables cellId is a street.
Player is the owner.
Player balance is less then the cost of a hotel.

Expected result Cannot build.

Path 4 1-2-3-4-5-6-7-11
Variables cellId is a street.

Player is the owner.
Player balance is more then the cost of a hotel.
Player doesn’t own the whole district.

Expected result Cannot build.

Path 5 1-2-3-4-5-6-7-8-11
Variables cellId is a street.

Player is the owner.
Player balance is more then the cost of a hotel.
Player does own the whole district.
Street already has four hotels.

Expected result Cannot build.

Path 6 1-2-3-4-5-6-7-8-9-11
Variables cellId is a street.

Player is the owner.
Player balance is more then the cost of a hotel.
Player does own the whole district.
Street has less then four hotels.
Street is mortgaged.

Expected result Cannot build.

Path 7 1-2-3-4-5-6-7-8-9-10-11
Variables cellId is a street.

Player is the owner.
Player balance is more then the cost of a hotel.
Player does own the whole district.
Street has less then four hotels.
Street is not mortgaged.

Expected result Can build a hotel on the street.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 30

Path diagram for function: canBuild

1

2

3

4

5

6

7

8

9

10

11

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 31

5.1.6 Function doTrade
Test will be conduct on the doTrade function, which is supposed to trade a property for a certain amount of money.
The function takes a cellId argument, which is the cell id of the cell the player is interested in trading for. The
function also takes an amount argument, which is the amount the players agreed on for the property.

5.1.6.1 Black Box Testing

Every test case takes cellId and amount as arguments.

Name of tester Patrice Michaud Test date December 1, 2003
Class name Player Name of method doTrade Filename Player.cls
v: (1st variable name) cellId v: Lower bound 0 v: Upper bound 39
w: (2nd variable name) amount w: Lower bound 0 w: Upper bound n

v1: 1st variable less than lower bound Value v1: -1

v2: 1st variable on lower bound Value v2: 0

v3: 1st variable between the bounds Value v3: 1

v4: 1st variable on the upper bound Value v4: 39

v5: 1st variable greater than upper bound Value v5: 40

w1: 2nd variable less than lower bound Value w1: -1

w2: 2nd variable on lower bound Value w2: 0

w3: 2nd variable between the bounds Value w3: 5

Variable w1
Test case v1 ~ w1 v2 ~ w1 v3 ~ w1 v4 ~ w1 v5 ~ w1
Expected output nothing nothing nothing nothing nothing
Actual output nothing nothing nothing nothing nothing
Bug found? No No No No No
Variable w2
Test case v1 ~ w2 v2 ~ w2 v3 ~ w2 v4 ~ w2 v5 ~ w2
Expected output nothing nothing Trade the cell

for 0$
Trade the cell
for 0$

nothing

Actual output nothing nothing Trade the cell
for 0$

Trade the cell
for 0$

nothing

Bug found? No No No No No
Variable w3
Test case v1 ~ w3 v2 ~ w3 v3 ~ w3 v4 ~ w3 v5 ~ w3
Expected output nothing nothing Trade the cell

for 5$
Trade the cell
for 5$

nothing

Actual output nothing nothing Trade the cell
for 5$

Trade the cell
for 5$

nothing

Bug found? No No No No No

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 32

5.1.6.2 White Box Testing

Basis Path Testing

Public Sub doTrade(cellId As Integer, amount As Integer)

 If TypeOf bBoard.getCell(cellId) Is Property And amount >= 0 Then
 ‘if cell is property, and amount is more then 0
 Dim pProp As Variant
 Set pProp = bBoard.getCell(cellId)
 pProp.getProp.getOwners.noMoreOwn pProp
 pProp.getProp.getOwners.credit amount
 Me.debit amount
 Me.newlyOwn pProp
 End If
End Sub

Path 1 1-4
Path 2 1-2-4
Path 3 1-2-3-4

Path 1 1-4
Variables cellId is not a property.
Expected result No trade.

Path 2 1-2-4
Variables cellId is a property.

Amount is less then 0.
Expected result No trade.

Path 3 1-2-3-4
Variables cellId is a property.

Amount is more then 0.
Expected result Trade amount of dollars for the property.

Credit amount to the ex-owner.
Set no more own for the ex-owner.
Set player newly own.
Debit amount for the player.

1
2

3

4

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 33

Path diagram for function: doTrade

1

2

3

4

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 34

5.2 Integration Testing
Integration Testing is a type of testing in which software is combined and tested to confirm that they interact
according to their requirements. Integration testing can continue progressively until the entire system has been
integrated.

5.2.1 The testing order
Integration testing begins after each unit is tested individually. To save time, we do integration testing in the
following order:

• Firstly, we divide the integration into several steps, and we call each of them a specific integration test.
• Secondly, for each integration test, we design several test cases. In each test case, exactly one new

component is analyzed.
• Thirdly, for each required component we test the integration between one and another.

For example, we first test the player class followed by the Game Start window.

5.2.1.1 Integration test component and order
Consider the implementation and unit testing order below. We divide the integration testing into the following six
components:

• Game Start Window;
• Main Window;
• JFL Window;
• Cell Info Window;
• Trade Window;
• Game End Window.

5.2.1.2 Prerequisite unit testing for each integration test
Integration testing has to be done after a sufficient amount of unit tests have been performed. For each integration
test, we list the prerequisite unit tests.

1. Game Start Window
• Player
For the game start window we do not test all the functions of the player class, only the constructors
require testing.

2. Main Window
• Board, Player, Dice, JFLDeck, JFLCard, Cell, Go, Go to jail, Olympic park, Jail, JFL, Income

Tax, Luxury Tax, Property, Street, Utility, and Metro.
All the components should be tested before doing main window testing.

3. JFL Window
• JFLDeck and JFLCard
The functions of both these classes should be tested.

4. Cell Info Window
• Street, Utility, and Metro.
All functions of these property cells should be tested before doing “cell info window”, since cell info
window does not only display cell information. It also displays some other functions like trade, build
hotel.

5. Trade Window
• Player, board, Street, Utility, Metro.

6. Game End Window
Note, for the end game testing, there is no prerequisite unit testing. Logically, it should be done after all
other integration testing is done.

5.2.2 Test method
We will perform the integration testing by using the Sandwich method because this method is a combination of

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 35

bottom-up and top-down integration testing. We can start integration as early as possible in the software
development phase.
For integration testing, the only way of testing integration for each case is to add one component and test it to see if
it works with other existing components.

5.2.3 Game Start Window
Only two cases are designed for the game-starting window.

Test Case 1 Initialize the window
Test Case Description To test if the window can initialize normally.

This test case should be done when the icon of the executable file is clicked.
Test result Ok.

Test Case 2 Add the player objects
Test Case Description After selecting tokens and input names, click the add player button to test if

the player object can work well in this window.
Test result Ok.

Test Case 3 Call the main window
Test Case Description Click the “let’s start game” button to test if this window can call the main

window.
Test result Ok.

5.2.4 Main Window
There are three types of the test cases. Type one is an integrated class object. The second type is to call the other
windows. The third type is closing the window. In all, there are 22 test cases for the main window test, which is the
main playing area or board.

Test Case 1 Initialize the main window
Test Case Description Test by:

• Click “let’s start game” of the start game window to see if the main
window can be initialized normally.

Test result Ok.

Test Case 2 Add the board object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 3 Add the player object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 4 Add dice object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 5 Add the JFLCard object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 36

Test Case 6 Add the JFLDeck object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 8 Add Go cell object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 9 Add Go To Jail cell object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 10 Add Olympic park cell object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 11 Add the Gail cell object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 12 Add JFL cell object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 13 Add the Income Tax cell object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 14 Add the Luxury Tax cell object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 15 Add street cell object
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 16 Add utility cell object
Test Case Description This test should be done automatically when the main window loads.
Test result

Test Case 17 Add Metro cell object
Test Case Description This test should be done automatically when the main window loads.
Expected Results

Test Case 18 Call JFL Window
Test Case Description This test should be done automatically when the main window loads.
Test result Ok.

Test Case 19 Call Cell Info Window
Test Case Description Click following cells:

• Street

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 37

• Utilities
• Metros

Before rolling dices or after rolling dices.
Test result Ok.

Test Case 20 Call Trade Window
Test Case Description Click each of the following cells:

• An owned cell: owner is himself (should not call trade window)
• An owned cell: owner is other player(should call trade window if the

player has enough money.)
• An unowned cell. (Should not call trade window.)

Test result Ok.

Test Case 21 Call Game End Window
Test Case Description This test should be done automatically if there is a winner.
Test result Ok.

Test Case 23 Close this window
Test Case Description Testing by:

• Click exit in the file menu.
• Click to close the window.

Test result Ok.

5.2.5 JFL Window

Test Case 1 Initialize the window
Test Case Description When a player lands on JFL cell, this window should be displayed.
Test result Ok.

Test Case 2 Add JFLDeck object
Test Case Description This test should be done automatically when the window displays.
Test result Ok.

Test Case 1 Add JFLCard
Test Case Description This test should be done automatically when the window displays.
Test result Ok.

Test Case 2 Call the main window and closing this window
Test Case Description Test by:

• Click the “ok” button;
• Close the window directly; or
• Closing automatically when the player is a computer.

Test result Ok.

5.2.6 Cell Info Window
Note that only one cell object can be added once.

Test Case 1 Initial this window
Test Case Description When a property cell (utility, metro, and street) is clicked.
Test result Ok.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 38

Test Case 2 Add street cell object
Test Case Description This case should be done automatically when the window is displayed
Test result Ok.

Test Case 3 Add utility cell object
Test Case Description This case should be done automatically when the window is displayed
Test result Ok.

Test Case 4 Add Metro cell object
Test Case Description This case should be done automatically when the window is displayed
Test result Ok.

Test Case 5 Call JFL Window
Test Case Description This case should be done automatically when the window is displayed
Test result Ok.

Test Case 6 Close this window and back to the main window.
Test Case Description Tested by:

• Click “ok” button,
• Click to close the window.

Test result Ok.

5.2.7 Trade Window
This window is initialized with the player object and the object that is being traded, either a street, metro or utility.
Once the trade has been completed, the window is closed and control is returned to main window. Only one type of
object can be traded at a time.

Test Case 1 Initial the trade window
Test Case Description Tested when a property cell that is owned by another player is clicked.
Test result Ok.

Test Case 2 Add player objects
Test Case Description The initiator and the property owner are players should be automatically

added.
Test result Ok.

Test Case 3 Add street cell object
Test Case Description Click a street cell(that is owned by another player).
Test result Ok.

Test Case 4 Add utility cell object
Test Case Description Click a street cell(that is owned by another player).
Test result Ok.

Test Case 5 Add Metro cell object
Test Case Description Click a street cell(that is owned by another player).
Test result Ok.

Test Case 6 Close this window and back to the main window.
Test Case Description Tested by:

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 39

• Click “ok” button,
• Click to close the window.

Test result Ok.

5.2.8 Game End Window
To test the game end window, the only option that can be selected is the “start another game”, which starts a new
game. The end game window closes and the start game window opens.

Test Case 1 Close this window and back to the game start window.
Test Case Description Test by:

Click the “start another game” button
Test result Ok.

Test Case 2 Close this window and game over.
Test Case Description Test by:

Click “end game” button.
Test result Ok.

5.3 Function Testing
This section is concerned with testing the functions (or requirements) of the software. This is a critical aspect of the
testing effort, as it ensures that the software meets the requirements, and thus ensures acceptance by the users. For
completeness, each requirement should be associated with a set of test cases, some with valid data, and some with
invalid data. Despite time restrictions, we have included all the major product functions as well as test cases for each
one. In fact, one of the benefits of having this section as complete as possible is that the implementation team can
consult this list of test cases to ensure that they have properly implemented the functions, and that the software
works both in the normal cases and exceptional cases.

The following sections are devoted to the major functions that were selected as testing targets. Each section lists and
describes the different test cases that are important to check.

5.3.1 Start Game
Test Case Add a Human Player
Test Case Description Add a human player to the list of players – normal case.
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter a player name
3. Select the Human button
4. Select a token
5. Click on Add Player

Output
(Expected Results)

• The player’s name is added to the list of players (without a # sign)
• The player’s token appears beside the player’s name in the list of players
• The selected token is disabled (disappears) from the available tokens

Test Case Add a Computer player
Test Case Description Add a computer player to the list of players – normal case.
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter a player name
3. Select the Computer button
4. Select a token
5. Click on Add Player

Output
(Expected Results)

• The player’s name is added to the list of players
• A # sign appears beside the player’s name, indicating that it’s a computer player

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 40

• The player’s token appears beside the player’s name in the list of players
• The selected token is disabled (disappears) from the available tokens

Test Case Delete a Human Player
Test Case Description Delete a human player from the list of players – normal case
Input
(Steps to produce test)

1. Open the Start Game window
2. Select a human player from the list of players
3. Click on Delete Player

Output
(Expected Results)

• The player’s name disappears from the list of players
• The player’s token disappears from the list of players
• The player’s token is enabled (re-appears) in the available tokens

Test Case Delete a Computer Player
Test Case Description Delete a computer player from the list of players – normal case
Input
(Steps to produce test)

1. Open the Start Game window
2. Select a computer player (name starts with #) from the list of players
3. Click on Delete Player

Output
(Expected Results)

• The player’s name disappears from the list of players
• The player’s token disappears from the list of players
• The player’s token is enabled (re-appears) in the available tokens

Test Case Blank Name
Test Case Description Add a player with a blank name – abnormal case
Input
(Steps to produce test)

1. Open the Start Game window
2. Leave the player name blank (or clear it if it has some text)
3. Click on add player

Output
(Expected Results)

• An error message appears indicating that a name must be provided

Test Case Blank Token
Test Case Description Add a player with a blank name – abnormal case
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter a player name
3. Select a player type
4. Do not select a token
5. Click on add player

Output
(Expected Results)

• An error message appears indicating that a token must be selected

Test Case Duplicate Names
Test Case Description Add a player with a name that already exists – abnormal case
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter the name of a player that has already been added to the list of players
3. Click on add player

Output
(Expected Results)

• An error message appears indicating that the player has already been added

Test Case Duplicate Tokens
Test Case Description Two players cannot have the same token
Input
(Steps to produce test)

1. Open the Start Game window
2. Add a player by entering a name, type and token, then click add player
3. Enter a different name

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 41

4. Do not change the player type
5. Do not click on any token

Output
(Expected Results)

• An error message appears indicating that a token must be selected

Comments In this test case, we are attempting to have two players with the same token. This
could happen (would be a bug) if after selecting a token and adding a player, we add
another player without selecting a token. Perhaps the system remembers the token
selection done previously and erroneously adds another player with the same token.

Test Case Cancel Start Game
Test Case Description A user decides not to start the game
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter the name, type and token of a player
3. Click on the Quit or Cancel button

Output
(Expected Results)

• The Start Game window disappears
• The application stops executing with no errors

Test Case Start Game with 0 Players
Test Case Description Start the game with no players added – abnormal case
Input
(Steps to produce test)

1. Open the Start Game window
2. Click on Let’s Start

Output
(Expected Results)

• An error message appears indicating that there must be at least 2 players

Test Case Start Game with 1 Player
Test Case Description Start the game with 1 player – abnormal case
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter a player name
3. Select a player type
4. Select a player token
5. Click on Let’s Start

Output
(Expected Results)

• The added player’s info appears in the player list
• An error message appears indicating that there must be at least 2 players

Test Case Start Game with 2 Players
Test Case Description Start the game with 2 players added.
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter the first player’s name, type and token
3. Enter the second player’s name, type and token
4. Click on Let’s Start

Output
(Expected Results)

• The Start Game window disappears
• The Game Board window appears
• The info in the player’s list matches the players’ info that was entered

Test Case Start Game with 8 Players
Test Case Description Start the game with 8 players added.
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter the name type and token of 8 players
3. Click on Let’s Start

Output
(Expected Results)

• The Start Game window disappears
• The Game Board window appears
• The info in the player’s list matches the players’ info that was entered

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 42

Test Case Add more than 8 Players
Test Case Description Add more than 8 players – abnormal case
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter the name type and token of 8 players
3. Enter the name type and token of a 9th player
4. Click on Add Player

Output
(Expected Results)

• An error message appears indicating that a 9th player cannot be added
• The player is not added to the list of players
• The token that was selected does not disappear

Test Case Random Player Order
Test Case Description When the game is started, the order of the players is randomized
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter the name type and token of 2-8 players
3. Click on Let’s Start
4. Take note of the player’s order
5. Select Exit from the File menu
6. Redo steps 1-4, following the exact same steps done previously
7. Take note of the player’s order

Output
(Expected Results)

• The Start Game window disappears
• The Game Board window appears
• The info in the player’s list matches the players’ info that was entered
• The order of the players in the player’s list is randomized, and is not the same as

the order in which the players were added.
• If the application is closed and restarted, the way the player’s order is

randomized is not the same
Notes Here, we test the randomization of the player’s order by testing it once, then re-

starting the application and testing it again. This is important to ensure that the
random (pseudo-random) function is working properly, and does not behave in a
predictable manner.

Test Case Standard Cash Distribution
Test Case Description When a game is started, each player is given 1500$
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter the name type and token of 2-8 players
3. Click on Let’s Start
4. Take note of the balance of each player

Output
(Expected Results)

• Each player has exactly 1500$

Test Case JFL Deck Shuffled
Test Case Description When a game is started, the JFL deck is shuffled properly
Input
(Steps to produce test)

1. Open the Start Game window
2. Enter the name type and token of 2-8 players
3. Click on Let’s Start
4. Play the game, taking note of the sequence of JFL cards that are withdrawn
5. Select Exit from the File menu
6. Redo steps 1-3, following the exact same steps done previously
7. Play the game, taking note of the sequence of JFL cards that are withdrawn

Output
(Expected Results)

• The sequence of JFL cards that are withdrawn is random and changes every time
the application is restarted.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 43

Notes Here, we test the randomization of the deck shuffling by testing it once, then re-
starting the application and testing it again. This is important to ensure that the
random (pseudo-random) function is working properly, and does not behave in a
predictable manner.

5.3.2 Roll Dice

Test Case Dice rolls are random
Test Case Description The values of the dice rolls are truly random, and not predictable.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, taking note of the values of the dice rolls (individually for

each die)
3. Exit the game.
4. Start another game in the exact same manner as done previously.
5. Take note of the values of the dice rolls.

Output
(Expected Results)

• The values of the dice rolls are truly random and the sequence is not repeated.

Test Case If Roll Doubles, Roll again
Test Case Description A player who rolls doubles is allowed to roll again.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player rolls a double on the dice.
3. Try to end turn.
4. Roll the dice again.
5. End Turn.

Output
(Expected Results)

• The player who rolled doubles is not allowed to end turn until he has rolled the
dice again.

Test Case Token is moved properly
Test Case Description To ensure the token is moved properly on the cells.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns taking note of the values of the dice rolls and the number of

steps the player’s token is moved.
Output
(Expected Results)

• The player’s token is moved the number of steps according to the value of the
dice rolls.

• No other token is moved (other player’s tokens)

5.3.3 Pass Go

Test Case Pass Go, Collect 200$
Test Case Description If the player has passed the Go square, the player collects 200$.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player passes the Go square (makes a full turn around

the board)
Output
(Expected Results)

• The player who passes Go collects 200$

Test Case GoToJail does not collect 200$
Test Case Description If the player is sent to jail, the player does not collect 200$ for passing Go.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player lands on the GoToJail cell.

Output
(Expected Results)

• The player’s token is moved to the Jail cell
• The player does not collect 200$.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 44

5.3.4 Pay Rent

Test Case Land on other-player-owned property, pay rent
Test Case Description If a player lands on a property owned by another player, he pays rent to the owner.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, buying all the properties that the players land on.
3. Keep playing until a player lands on a property owned by another player.
4. Take note of the change in balance of the current player and the owner of the

cell.
5. Click on the cell that the player has landed on, and take note of the rent amount.

Output
(Expected Results)

• The balance of player who lands on the cell is decreased by the rent amount.
• The balance of the owner of the cell is increased by the rent amount.

Test Case Land on un-owned property, don’t pay rent
Test Case Description If a player lands on an un-owned property, the player does not pay rent.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player lands on an un-owned property.

Output
(Expected Results)

• The player’s balance remains the same.
• The player is given the option to buy the property.

Test Case Land on property owned by player, don’t pay rent
Test Case Description If a player lands on a property that he owns himself, he doesn’t pay rent.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy all the properties they land on.
3. Keep playing until a player lands on a cell that he owns himself.

Output
(Expected Results)

• The player does not pay rent. His balance remains the same.

Test Case Rent amount paid for 0 hotels
Test Case Description If a player lands on a property owned by another player, with 0 hotels, he pays rent.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, buying all the properties that the players land on.
3. Keep playing until a player lands on a property owned by another player.
4. Take note of the change in balance of the current player and the owner of the

cell.
5. Click on the cell that the player has landed on, and take note of the rent amount.

Output
(Expected Results)

• The balance of player who lands on the cell is decreased by the rent amount for 0
hotels.

• The balance of the owner of the cell is increased by the rent amount for 0 hotels.

Test Case Rent amount paid for 1 hotel
Test Case Description If a player lands on a property owned by another player, with 1 hotel, he pays rent.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, buying all the properties that the players land on.
3. Start trading properties to force a player into owning a whole district.
4. Build 1 hotel on each property of that district.
5. Keep playing until a player lands on a one of the properties in that district.
6. Take note of the change in balance of the current player and the owner of the

cell.
7. Click on the cell that the player has landed on, and take note of the rent amount.

Output
(Expected Results)

• The balance of player who lands on the cell is decreased by the rent amount for 1
hotel.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 45

• The balance of the owner of the cell is increased by the rent amount for 1 hotel.

Test Case Rent amount paid for 2 hotels
Test Case Description If a player lands on a property owned by another player, with 2 hotels, he pays rent.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, buying all the properties that the players land on.
3. Start trading properties to force a player into owning a whole district.
4. Build 2 hotels on each property of that district.
5. Keep playing until a player lands on a one of the properties in that district.
6. Take note of the change in balance of the current player and the owner of the

cell.
7. Click on the cell that the player has landed on, and take note of the rent amount.

Output
(Expected Results)

• The balance of player who lands on the cell is decreased by the rent amount for 2
hotels.

• The balance of the owner of the cell is increased by the rent amount for 2 hotels.

Test Case Rent amount paid for 3 hotels
Test Case Description If a player lands on a property owned by another player, with 3 hotels, he pays rent.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, buying all the properties that the players land on.
3. Start trading properties to force a player into owning a whole district.
4. Build 3 hotels on each property of that district.
5. Keep playing until a player lands on a one of the properties in that district.
6. Take note of the change in balance of the current player and the owner of the

cell.
7. Click on the cell that the player has landed on, and take note of the rent amount.

Output
(Expected Results)

• The balance of player who lands on the cell is decreased by the rent amount for 3
hotels.

• The balance of the owner of the cell is increased by the rent amount for 3 hotels.

Test Case Rent amount paid for 4 hotels
Test Case Description If a player lands on a property owned by another player, with 4 hotels, he pays rent.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, buying all the properties that the players land on.
3. Start trading properties to force a player into owning a whole district.
4. Build 4 hotels on each property of that district.
5. Keep playing until a player lands on a one of the properties in that district.
6. Take note of the change in balance of the current player and the owner of the

cell.
7. Click on the cell that the player has landed on, and take note of the rent amount.

Output
(Expected Results)

• The balance of player who lands on the cell is decreased by the rent amount for 4
hotels.

• The balance of the owner of the cell is increased by the rent amount for 4 hotels.

Test Case Land on mortgaged property, don’t pay rent
Test Case Description If a player lands on a mortgaged property, he doesn’t pay rent.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, buying all the properties that the players land on.
3. Start trading properties to force a player into owning a whole district.
4. Mortgage each property in that district.
5. Keep playing until a player lands on a one of the properties in that district.
6. Take note of the balance of the current player and the owner of the cell.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 46

Output
(Expected Results)

• The balance of the player who lands on the cell is not changed.
• The balance of the owner of the cell is not changed.

5.3.5 Buy Property

Test Case Buy a property, cash is deducted, owner status is changed
Test Case Description When a player buys a property, the price of the property is deducted and the owner

status token is updated.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, until a player lands on an un-owned property.
3. Take note of the current balance of the player.
4. Take note of the price of the property.
5. Buy the property.
6. Take note of the ending balance of the player.

Output
(Expected Results)

• The balance of the player is decreased by the price amount of the property.
• The token of the player is displayed at the top left corner of the cell, indicating

that he owns this property.

Test Case Can only buy property after rolling dice
Test Case Description To ensure that a player can only buy a property after having rolled the dice.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, until a player lands on an un-owned property.
3. Do not buy the property.
4. Play the other player’s turns, until the current turn comes back to this player.
5. Before rolling the dice, click on the cell that the player is on.

Output
(Expected Results)

• The Cell Info window pops-up and does not have a “Buy It” button.
• The player is not allowed to buy a property, unless he has already rolled the dice.

Test Case Can only buy property landed on
Test Case Description To ensure that a player can only buy a property he “lands” on (ie: has rolled the dice

and landed on that property).
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, until a player lands on an un-owned property.
3. Do not buy the property.
4. Play the other player’s turns, until the current turn comes back to this player.
5. Before rolling the dice, click on the cell that the player is on.
6. Take note of the options on the Cell Info pop-up window.
7. Roll the dice
8. Click on an un-owned cell, other than the one the player has landed on.
9. Take note of the options on the Cell Info pop-up window.

Output
(Expected Results)

• In both cases, the Cell Info window pops-up and does not have a “Buy It” button.
• The player is not allowed to buy a property, unless he has already rolled the dice

and landed on that property.

Test Case Can only buy un-owned property
Test Case Description A player cannot buy an un-owned property.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy all the properties they land on.
3. Keep playing until a player lands on a property owned by another player.
4. Click on the cell the player has landed on.
5. Take note of the options on the Cell Info pop-up window.
6. Click on another cell that is owned by another player.
7. Take note of the options on the Cell Info pop-up window.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 47

Output
(Expected Results)

• In both cases, the Cell Info window pops-up and does not have a “Buy It” button.
• The player is not allowed to buy a property that is owned by another player.

Test Case Can only buy property if enough money
Test Case Description A player cannot buy a property if he does not have enough money to buy it.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Keep playing until a player lands on an un-owned property, but does not have

enough money to buy it.
Output
(Expected Results)

• The player is not allowed to buy the property, since he would then have a
negative balance, and might have to declare bankruptcy or mortgage properties.

5.3.6 Build/Sell Hotel

Test Case Build 1 hotel
Test Case Description Build 1 hotel on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 1 hotel.
6. Take note of the change in balance of the player.
7. Take note of the status of the cell.

Output
(Expected Results)

• The player’s balance is decreased by the cost of the hotel.
• A hotel icon is displayed at the top right corner of the cell.

Test Case Build 2 hotels
Test Case Description Build 2 hotels on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 2 hotels.
6. Take note of the change in balance of the player.
7. Take note of the status of the cell.

Output
(Expected Results)

• The player’s balance is decreased by the cost of 2 hotels.
• 2 hotel icons are displayed at the top right corner of the cell.

Test Case Build 3 hotels
Test Case Description Build 3 hotels on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 3 hotels.
6. Take note of the change in balance of the player.
7. Take note of the status of the cell.

Output
(Expected Results)

• The player’s balance is decreased by the cost of 3 hotels.
• 3 hotel icons are displayed at the top right corner of the cell.

Test Case Build 4 hotels
Test Case Description Build 4 hotels on a property owned by player
Input 1. Start the game with 2-8 players.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 48

(Steps to produce test) 2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 4 hotels.
6. Take note of the change in balance of the player.
7. Take note of the status of the cell.

Output
(Expected Results)

• The player’s balance is decreased by the cost of 4 hotels.
• 4 hotel icons are displayed at the top right corner of the cell.

Test Case Build more than 4 hotels
Test Case Description Build more than 4 hotels on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 4 hotels.
6. Take note of the status of the buy hotel button.

Output
(Expected Results)

• After having already purchased 4 hotels, the buy hotel button is disabled,
preventing the user from buying more than 4 hotels.

Test Case Build a hotel on a property owned by another player
Test Case Description To ensure that a player cannot build hotels on a property owned by another player.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is one of the other players’ turn to play, click on one of the cells in the

district that is owned by the other player.
5. Take note of the options given to the player.

Output
(Expected Results)

• The player is not allowed to build a hotel on that property, since another player
owns it.

Test Case Build a hotel with not enough money
Test Case Description To ensure that a player is not allowed to build a hotel if he does not have enough

money to build it.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district. Try to trade for small

amount of money to force that player’s balance to be as low as possible (but not
negative).

4. When it is that player’s turn to player, click on one of the cells in the district he
owns, and try to build a hotel.

Output
(Expected Results)

• The player is not allowed to build a hotel since he does not have enough money
to build it.

Test Case Sell 1 hotel
Test Case Description Sell 1 hotel on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 4 hotels.
6. On the player’s next turn, click on the same cell, and click on the Sell Hotel

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 49

button once.
7. Take note of the change in balance of the player.

Output
(Expected Results)

• The player’s balance is increased by the cost of the hotel.
• The number of hotel icons appearing on the cell is decreased to 3.

Test Case Sell 2 hotels
Test Case Description Sell 2 hotels on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 4 hotels.
6. On the player’s next turn, click on the same cell, and click on the Sell Hotel

button twice.
7. Take note of the change in balance of the player.

Output
(Expected Results)

• The player’s balance is increased by the cost of 2 hotels.
• The number of hotel icons appearing on the cell is decreased to 2.

Test Case Sell 3 hotels
Test Case Description Sell 3 hotels on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 4 hotels.
6. On the player’s next turn, click on the same cell, and click on the Sell Hotel

button three times.
7. Take note of the change in balance of the player.

Output
(Expected Results)

• The player’s balance is increased by the cost of 3 hotels.
• The number of hotel icons appearing on the cell is decreased to 1.

Test Case Sell 4 hotels
Test Case Description Sell 4 hotels on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 4 hotels.
6. On the player’s next turn, click on the same cell, and click on the Sell Hotel

button four times.
7. Take note of the change in balance of the player.

Output
(Expected Results)

• The player’s balance is increased by the cost of 4 hotels.
• The number of hotel icons appearing on the cell is decreased to 0.

Test Case Sell More than hotels built
Test Case Description Sell 4 hotels on a property owned by player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is that player’s turn to play, click on one of the cells in the district.
5. Buy 4 hotels.
6. On the player’s next turn, click on the same cell, and click on the Sell Hotel

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 50

button five times.
Output
(Expected Results)

• The player’s balance is increased by the cost of 4 hotels.
• The number of hotel icons appearing on the cell is decreased to 0.
• On the fifth attempt to sell a hotel, either the “Sell Hotel” button is disabled or an

error message appears indicating that there are no more hotels to sell.

Test Case Sell hotel on a property owned by another player
Test Case Description To ensure that a player cannot sell hotels on a property owned by another player.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. When it is one of the other players’ turn to play, click on one of the cells in the

district that is owned by the other player.
5. Take note of the options given to the player.

Output
(Expected Results)

• The player is not allowed to sell a hotel on that property, since another player
owns it.

5.3.7 Mortgage/Un-Mortgage

Test Case Mortgage a property – Valid Case
Test Case Description Mortgage a property owned by player, whole district is owned, no hotels
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. Ensure that there are no hotels built on any of the properties in the district.
5. When it is that player’s turn to play, click on one of the cells in the district.
6. Take note of the mortgage value of the property.
7. Click on the mortgage button to mortgage the property.
8. Take note of the change in balance of the player.

Output
(Expected Results)

• The player is allowed to mortgage the property.
• The player’s balance is increased by the mortgage value.
• The “Mortgaged” icon appears at the top left corner of the cell on the board.

Test Case Mortgage a property owned by player, whole district is owned, other property in

district has hotels
Test Case Description Mortgage a property owned by player, whole district is owned, no hotels
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Start trading properties, until a player owns a district.
4. Build a hotel on one of the properties in the district.
5. When it is that player’s turn to play, click on one of the cells in the district that

does not have a hotel.
6. Click on the mortgage button to mortgage the property.
7. Take note of what happens next.

Output
(Expected Results)

• The player is allowed to mortgage the property.
• The player’s balance is increased by the mortgage value.
• The “Mortgaged” icon appears at the top left corner of the cell on the board.

Test Case Mortgage a property, whole district is not owned
Test Case Description Mortgage a property owned by player, whole district is not owned
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing the players to buy the properties they land on.
3. Pick a player to test with.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 51

4. When it is that player’s turn to play, click on one of the cells that he owns, but
make sure that he does not own the district.

5. Click on the mortgage button to mortgage the property.
Output
(Expected Results)

• The player is allowed to mortgage the property.
• The player’s balance is increased by the mortgage value.
• The “Mortgaged” icon appears at the top left corner of the cell on the board.

Test Case Mortgage a property that has hotels
Test Case Description Mortgage a property owned by player, but has hotels build on it.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, until a player lands on an un-owned property.
3. Buy that property.
4. Build a hotel on it.
5. Try to mortgage the property.

Output
(Expected Results)

• The player is not allowed to mortgage the property.
• Either the mortgage button is disabled or an error message appears indicating that

all hotels must be sold before mortgaging the properties.

Test Case Mortgage a property not owned
Test Case Description Mortgage a property that is not owned by anyone.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, until a player lands on an un-owned property.
3. Try to mortgage the property.

Output
(Expected Results)

• The player is not allowed to mortgage the property.
• Either the mortgage button is disabled or an error message appears indicating that

all hotels must be sold before mortgaging the properties.

Test Case Mortgage a property owned by another player
Test Case Description To ensure a player cannot mortgage a property owned by another player
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing players to buy the properties they land on.
3. Pick a player to test with.
4. Click on a cell that is owned by another player.
5. Try to mortgage the property.

Output
(Expected Results)

• The player is not allowed to mortgage the property.
• Either the mortgage button is disabled or an error message appears indicating that

all hotels must be sold before mortgaging the properties.

Test Case Un-Mortgage a property
Test Case Description Un-Mortgage a property that is mortgaged, owned by player (pay mortgage+10%)
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Play turns until the player lands on an un-owned property.
4. Buy the property.
5. Take note of the mortgage value.
6. Mortgage the property.
7. Un-Mortgage the property.

Output
(Expected Results)

• The player’s balance is increased by the mortgage value + 10%.

Test Case Un-Mortgage a property that is not mortgaged, owned by player
Test Case Description Un-Mortgage a property that is mortgaged, owned by player (pay mortgage+10%)

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 52

Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Play turns until the player lands on an un-owned property.
4. Buy the property.
5. Try to Un-Mortgage the property.

Output
(Expected Results)

• The player is not allowed to un-mortgage the property.
• Either the un-mortgage button is disabled or an error message appears indicating

that the property is not mortgaged.

Test Case Un-Mortgage a property that is mortgaged, owned by another player
Test Case Description To ensure that a player cannot un-mortgage a mortgaged property owned by another

player.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing players to buy the properties they land on.
3. Force the players to mortgage the properties they own.
4. Pick a player to test with.
5. Click on a cell that is owned by another player.
6. Try to un-mortgage the property.

Output
(Expected Results)

• The player is not allowed to un-mortgage the property.
• Either the mortgage button is disabled or an error message appears indicating that

a player cannot un-mortgage the property of another player.

Test Case Un-Mortgage a property that is not mortgaged, owned by another player
Test Case Description To ensure that a player cannot un-mortgage an un-mortgaged property owned by

another player.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing players to buy the properties they land on.
3. Pick a player to test with.
4. Click on a cell that is owned by another player.
5. Try to un-mortgage the property.

Output
(Expected Results)

• The player is not allowed to un-mortgage the property.
• Either the mortgage button is disabled or an error message appears indicating that

a player cannot un-mortgage the property of another player.

Test Case Un-Mortgage a property that is not owned
Test Case Description To ensure that a player cannot un-mortgage a property that is not owned.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play a few turns until a player lands on an un-owned property.
3. Try to un-mortgage the property.

Output
(Expected Results)

• The player is not allowed to un-mortgage the property.
• Either the mortgage button is disabled or an error message appears indicating that

a player cannot un-mortgage a property that is not owned.

5.3.8 Tax

Test Case Land on Income Tax, pay (smallest of 200$ and value of assets) to bank
Test Case Description To ensure that the correct income tax is calculated and paid.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play a few turns until a player lands on the Income Tax cell.
3. Take note of the player’s balance change.

Output
(Expected Results)

• The player’s balance is decreased by the smallest of 200$ and the value of his
assets (properties + hotels + money)

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 53

Test Case Land on Luxury Tax, pay 75$ to bank
Test Case Description To ensure that the correct luxury tax is paid.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play a few turns until a player lands on the Luxury Tax cell.
3. Take note of the player’s balance change.

Output
(Expected Results)

• The player’s balance is decreased by the amount of 75$.

5.3.9 JFL Cards

Test Case Land on JFL Card, picks a JFL Card
Test Case Description To ensure that a JFL card is picked when a player lands on a JFL cell.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player lands on a JFL Cell.
3. Take note of what happens.
4. Repeat steps 2-3 until all the JFL cells on the board have had a player land on

them.
Output
(Expected Results)

• Every time a player lands on a JFL cell, a JFL card is displayed.

Test Case JFL Cards are shuffled
Test Case Description To ensure that the order that the JFL Cards appear in is randomized.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until several JFL Cards have been picked.
3. Take note of the sequence of JFL Cards.
4. Exit the game.
5. Restart the game with the parameters (number of players, players’ names and

tokens).
6. Play several turns until several JFL Cards have been picked.
Take note of the sequence of JFL Cards.

Output
(Expected Results)

• The sequence of JFL Cards should be different, after restarting the game,
indicating that the sequence is truly randomized.

Test Case Pay Card
Test Case Description If the JFL card is a pay card, the player pays the amount indicated by the card.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a Pay JFL Card is picked.
3. Take note of the change in balance of the player.

Output
(Expected Results)

• The player’s balance is decreased by the amount indicated by the card.

Test Case Collect Card
Test Case Description If the JFL card is a collect card, the player collects the amount indicated by the card.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a Collect JFL Card is picked.
3. Take note of the change in balance of the player.

Output
(Expected Results)

• The player’s balance is increased by the amount indicated by the card.

Test Case Advance Card
Test Case Description If the JFL card is an advance card, token is moved, and appropriate action is taken

when landed on cell.
Input 1. Start the game with 2-8 players.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 54

(Steps to produce test) 2. Play several turns until an Advance JFL Card is picked.
3. Take note of the movement of the player’s token.

Output
(Expected Results)

• The player’s token is moved forward according to the number of steps indicated
by the card.

• Appropriate action is taken according to the cell the player lands on.

Test Case GoBack Card
Test Case Description If the JFL card is a GoBack Card, token is moved, and appropriate action is taken

when landed on cell
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a GoBack JFL Card is picked.
3. Take note of the movement of the player’s token.

Output
(Expected Results)

• The player’s token is moved back according to the number of steps indicated by
the card.

• Appropriate action is taken according to the cell the player lands on.

Test Case GOJFC Card
Test Case Description If the JFL card is a GOJFC Card, the player keeps card and can use it later
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a GOJFC JFL Card is picked.
3. Keep playing until the player is sent to jail.
4. Click on the Use Get Out of Jail Free Card

Output
(Expected Results)

• When a player obtains the GOJFC, an icon appears indicating that he has it.
• When a player is in jail, has the GOJFC and uses it, he gets out of jail.
• When a player uses the GOJFC, the icon that indicates that he has the card

disappears.

Test Case GOJFC Card removed from deck
Test Case Description If a player gets the GOJFC Card, the card is removed from deck
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a GOJFC JFL Card is picked.
3. Do not used the GOJFC. Force the player who has it to keep the card.
4. Play several turns, taking note of the JFL cards that are picked.
5. Keep playing until the sequence of JFL cards repeats itself.

Output
(Expected Results)

• The sequence of JFL Cards should not contain the GOJFC, since the player who
picked it keeps it and does not use it.

Test Case GoToJail Card
Test Case Description GoToJail Card, player goes to jail
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a GoToJail JFL Card is picked.

Output
(Expected Results)

• The player’s token is moved to the jail status.

5.3.10 Jail

Test Case Visiting Jail
Test Case Description If a player land on the Jail cell, the player is “just visiting”
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player’s token lands on the Jail cell.

Output
(Expected Results)

• The player’s token should be placed in the “Just Visiting” portion of the jail cell.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 55

Test Case Roll Doubles 3 times
Test Case Description If a player rolls doubles 3 times, goes to jail
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player rolls doubles 3 times in a row (on the same turn).

Output
(Expected Results)

• The player is sent to jail.
• The player’s token is moved to the “In Jail” portion of the jail cell.
• The player is not allowed to roll the dice again.

Test Case Land on GoToJail
Test Case Description If a player lands on the GoToJail cell, he goes to jail
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player lands on the GoToJail cell.

Output
(Expected Results)

• The player is sent to jail.
• The player’s token is moved to the “In Jail” portion of the jail cell.
• The player is not allowed to roll the dice again.

Test Case In Jail Roll Doubles
Test Case Description If a player is in jail and rolls doubles, he gets out of jail and does not roll again
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player goes to jail and rolls doubles while in jail.

Output
(Expected Results)

• The player gets out of jail.
• The player’s token is moved according to the value of the dice roll.

Test Case Pay 50 Get Out of Jail
Test Case Description If a player is in jail, he can pay 50$ and get out of jail on 1st, 2nd, or 3rd turn.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns until a player goes to jail.
3. On his next turn.
4. Click the “Pay 50 to get out of jail” button.

Output
(Expected Results)

• The player gets out of jail.
• The player’s token is moved according to the value of the dice roll.
• The player’s balance is decreased by 50$

5.3.11 Trade

Test Case Offer Trade, Accept Trade
Test Case Description A player makes a trade offer to an owner, and the owner accepts the trade.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing players to buy the properties they land on.
3. Pick a player to test with.
4. On that player’s turn to player, click on a property that is owned by another

player.
5. Click the Trade button.
6. Enter a trade amount.
7. Click the “Accept Trade” button.

Output
(Expected Results)

• The player’s balance is decreased by the trade amount.
• The owner’s balance is increased by the trade amount.
• The status of the cell (token at top-left corner) is updated … the new owner’s

token is displayed instead of the old owner’s.

Test Case Offer Trade, Reject Trade
Test Case Description A player makes a trade offer to an owner, and the owner rejects the trade.
Input 1. Start the game with 2-8 players.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 56

(Steps to produce test) 2. Play several turns, forcing players to buy the properties they land on.
3. Pick a player to test with.
4. On that player’s turn to player, click on a property that is owned by another

player.
5. Click the Trade button.
6. Enter a trade amount.
7. Click the “Reject Trade” button.

Output
(Expected Results)

• The player and owner’s balances are not changed.
• The status of the cell (token at top-left corner) is not changed.

Test Case Offer Trade, Counter Offer, Accept Trade
Test Case Description A player makes a trade offer to an owner, the owner makes a counter offer and the

player accepts the counter offer.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing players to buy the properties they land on.
3. Pick a player to test with.
4. On that player’s turn to player, click on a property that is owned by another

player.
5. Click the Trade button.
6. Enter a trade amount.
7. Click the “Counter Offer” button.
8. Enter a counter offer amount (different from the trade amount).
9. Click the “Accept Trade” button.

Output
(Expected Results)

• The player’s balance is decreased by the counter offer amount.
• The owner’s balance is increased by the counter offer amount.
• The status of the cell (token at top-left corner) is updated … the new owner’s

token is displayed instead of the old owner’s.

Test Case Offer Trade, Counter Offer, Reject Trade
Test Case Description A player makes a trade offer to an owner, the owner makes a counter offer and the

player rejects the counter offer.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Play several turns, forcing players to buy the properties they land on.
3. Pick a player to test with.
4. On that player’s turn to player, click on a property that is owned by another

player.
5. Click the Trade button.
6. Enter a trade amount.
7. Click the “Counter Offer” button.
8. Enter a counter offer amount (different from the trade amount).
9. Click the “Reject Trade” button.

Output
(Expected Results)

• The player and owner’s balances are not changed.
• The status of the cell (token at top-left corner) is not changed.

Test Case Offer Trade on an un-owned property
Test Case Description To ensure that a trade cannot be made on an un-owned property.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. On that player’s turn to player, click on a property that is un-owned.
4. Try to make a Trade.

Output
(Expected Results)

• The player is not allowed to make a trade.
• Either the “Trade” button is disabled or an error message appears indicating that

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 57

a trade cannot be made on an un-owned property.

Test Case Offer Trade on a self-owned property
Test Case Description To ensure that a trade cannot be made on a property that is owned by the player

himself.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Buy the first property that the player lands on.
4. Click on that property.
5. Try to make a Trade.

Output
(Expected Results)

• The player is not allowed to make a trade.
• Either the “Trade” button is disabled or an error message appears indicating that

a trade cannot be made on a property owned by the player himself.

5.3.12 End Turn

Test Case End Turn
Test Case Description To ensure that when a player clicks end turn, the control is passed to the next player.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Take note of the sequence of the players.
3. Play several turns, until control is passed back to the first player, taking note of

the “Current Player” indicator.
Output
(Expected Results)

• The “Current Player” indicator indicates the player who’s turn it is to play.

Test Case End Turn before rolling dice
Test Case Description To ensure that a player cannot end turn before rolling the dice.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Try to click the “End Turn” button before rolling the dice.

Output
(Expected Results)

• The player is not allowed to pass control to the next player, until he has rolled the
dice.

• Either the “End Turn” button is disabled or an error message appears indicating
that the player must roll the dice first.

Test Case End Turn with a negative balance
Test Case Description To ensure that a player cannot end turn if his balance is negative.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Play several turns, forcing all players except the test player to buy the properties

they land on.
4. Keep playing turns, until the test player gets a negative balance.
5. Click “End Turn”

Output
(Expected Results)

• The player is not allowed to pass control to the next player, until he brought his
balance to be positive or declared bankruptcy.

• Either the “End Turn” button is disabled or an error message appears indicating
that the player must have a positive balance before ending the turn.

5.3.13 Bankruptcy

Test Case Declare bankruptcy with balance >= 0
Test Case Description To ensure that a player cannot declare bankruptcy if he has a positive balance.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Try to declare bankruptcy.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 58

Output
(Expected Results)

• The player is not allowed to declare bankruptcy, since he has a positive balance.
• Either the “Declare Bankruptcy” button is disabled or an error message appears

indicating that the player cannot declare bankruptcy unless he has a negative
balance.

Test Case Declare bankruptcy with debt to a player
Test Case Description If a player declares bankruptcy with a debt to a player, his properties and cash

(negative) are transferred to the player he is in debt to.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Play several turns, forcing all players to buy the properties they land on.
4. For the test player, to buy only two properties.
5. Keep playing turns, until the test player gets a negative balance due to him

landing on another player’s property and having to pay rent.
6. Click “Declare Bankruptcy”
7. Keep playing turns, to ensure that the bankrupt player’s turn is skipped.

Output
(Expected Results)

• The ownership of the player’s properties are transferred to the player he is in debt
to.

• The player’s balance (negative balance) is transferred to the player he is in debt
to.

• The player is withdrawn from the game and does not get to play a turn.

Test Case Declare bankruptcy with debt to bank
Test Case Description If a player declares bankruptcy with a debt to the bank, his properties become un-

owned and his cash disappears (goes to the bank).
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Play several turns, forcing all players except the test player to buy the properties

they land on.
4. Keep playing turns, until the test player gets a negative balance due to him

picking a Pay JFL card
5. Click “Declare Bankruptcy”
6. Keep playing turns, to ensure that the bankrupt player’s turn is skipped.

Output
(Expected Results)

• The player’s properties become un-owned.
• The player’s balance disappears (goes to the bank).
• The player is withdrawn from the game and does not get to play a turn.

Test Case Declare bankruptcy with debt to player and mortgaged properties
Test Case Description If a player declares bankruptcy with a debt to player, his mortgaged properties are

transferred as mortgaged
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Play several turns, forcing all players to buy the properties they land on.
4. For the test player, to buy only two properties.
5. Mortgage one of the properties.
6. Keep playing turns, until the test player gets a negative balance due to him

landing on another player’s property and having to pay rent.
7. Click “Declare Bankruptcy”
8. Keep playing turns, to ensure that the bankrupt player’s turn is skipped.

Output
(Expected Results)

• The ownership of the player’s un-mortgaged properties are transferred to the
player he is in debt to and the property remains un-mortgaged.

• The ownership of the player’s mortgaged properties are transferred to the player

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 59

he is in debt to and the property remains mortgaged.
• The player’s balance (negative balance) is transferred to the player he is in debt

to.
• The player is withdrawn from the game and does not get to play a turn.

Test Case Declare bankruptcy with debt to bank and mortgaged properties
Test Case Description If a player declares bankruptcy with a debt to the bank, his mortgaged properties

become un-owned and un-mortgaged.
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Pick a player to test with.
3. Play several turns, forcing all players to buy the properties they land on.
4. For the test player, to buy only two properties.
5. Mortgage one of the properties.
6. Keep playing turns, until the test player gets a negative balance due to him owing

the bank some money.
7. Click “Declare Bankruptcy”
8. Keep playing turns, to ensure that the bankrupt player’s turn is skipped.
9. Keep playing turns until another player buys the property that was mortgaged

and became un-owned.
Output
(Expected Results)

• The ownership of the player’s un-mortgaged properties are transferred to the
player he is in debt to and the property remains un-mortgaged.

• The ownership of the player’s mortgaged properties are transferred to the player
he is in debt to and the property remains mortgaged.

• The player’s balance (negative balance) is transferred to the player he is in debt
to.

• The player is withdrawn from the game and does not get to play a turn.

5.3.14 End Game

Test Case End Game
Test Case Description Select End Game from menu, should exit game properly, even if balance < 0
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Keep playing until the balance of a player becomes negative.
3. Select the “End Game” option from the menu.

Output
(Expected Results)

• The game ends, even if a player has a negative balance.

5.3.15 Game Winner

Test Case Game Winner
Test Case Description If 1 player left, game winner should be declared
Input
(Steps to produce test)

1. Start the game with 2-8 players.
2. Keep playing until only one player remains in the game.

Output
(Expected Results)

• The “Game Winner” window appears, displaying the name of the winner.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 60

5.4 User Interface Testing
To test the User Interface, each functionality described in the design document will be verified to see if it has been
implemented correctly, if it responds normally and also if no errors occur during the process between the user and
the game.

A schema will be used to test (unit), what is the purpose of the test (what is tested), what are the inputs (from the
user for instance), what is the expected result and also what is the effective (real result).

5.4.1.1 Start Panel

Interface Start Panel

What is tested? Adding players

Inputs (requested, given by the
program)

The user fills the “Nickname” text box, chooses a token, chooses the type of
the player (human or computer) by clicking the adequate button and then
click add player to add the current player to the list.

Expected result When a user clicks on add player, the system must check the inputs validity.

If the nickname field is left blank, an error message (“You must choose a
username”) should appear.

If no token is chosen, an error message (“You must choose a token”) should
appear.

When a username is given and a token chosen, after clicking “Add Player”,
the chosen token should disappear.

One different token per player.

Effective result After choosing one token, giving a nickname and clicking on “Add Player”,
the player is added to the players’ list.

When the field is left blank, if you click on the “Add Player”, there is an
error message “You must enter a name for this player”.

If no token is chosen, the button “Add Player” is not visible. So you cannot
add a player without selecting a token. No error message.

One different token per player.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 61

When a token is assigned to a player, and the player is added to the game,
then the token disappear.

Interface Start Panel

What is tested? Selection of a player type

Inputs (requested, given by the
program)

The user clicks on the buttons “Human” or “Computer” to choose the type of
the player.

Expected result When a button, which status is up, is clicked, it should be down (to show that
it is currently selected).

When a player whose type is Computer is added, the name of the player
should be prefixed by the character #.

Effective result When a button is up and is clicked, then its status is down.

When a player whose type is Computer is added, its nickname is not prefixed
by the character #, also the name given by the user is changed for “Computer
number”.

When the type Computer is selected, the text box allowing to enter a
nickname is disabled.

Interface Start Panel

What is tested? Adding players - The number of players – Starting a game

Inputs (requested, given by the
program)

The user chooses several players, when he has finished, he clicks on “Let’s
Start” to start a game.

Expected result It should not be possible to start a game without at least 2 players, and more
than 8 players.

The players’ list must indicate all the players created.

If the user try to start a game without creating 2 players, or with creating
more than 8 players, an error message should appear (“You must have
between 2 to 8 players to start a game”).

When a game is started (click on “Let’s start”), the game board must be
loaded with the created players, and the start panel should be closed.

Effective result The user must at least create 2 players in order to make the button “Let’s
start” (to start a game) visible.

No possibility to create more than 6 players and less than 2 players. If less
than 2 players the button “Let’s start” is invisible. If there are 6 players, the
button “Add player” is invisible. Normally (in the design document), these
buttons should have been enabled and an error message provided.

The players’ list indicates all the players created.

No possibility to create more than 6 players (should be 8).

Clicking on “Let’s start” closes the start panel interface and launches the
Game board interface with the created players.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 62

5.4.1.2 Game board

Interface Game board

What is tested? Moving the window

Inputs (requested, given by the
program)

User clicks on the title bar of the window to move it elsewhere on the screen.

Expected result The window should be moved and placed where the user wants.

Effective result As expected.

Interface Game board

What is tested? Players list

Inputs (requested, given by the
program)

No inputs needed

Expected result The players list should list each player (what is the player’s token, what is its
name, and what is its amount of money in the bank).

When a player is playing, its nickname should be highlighted.

Effective result Each players (up to 6, normally should have been up to 8) are listed correctly
in the list (token + nickname + bank credit).

When a user is playing, it is highlighted (through a bar under its nickname).

Interface Game board

What is tested? Players list, changing the amount of money

Inputs (requested, given by the
program)

No user interaction directly needed.

Paying a fine, taxes, rent.

Mortgaging or unmortgaging a property.

Passing though the “Go” cell.

Collecting a rent or money.

Finalising a trade with another user.

Expected result The amount of money should be changed for the concerned player(s).

Effective result As expected.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 63

Interface Game board

What is tested? Message Area

Inputs (requested, given by the
program)

No user interaction is need.

Actions performed during the game.

Expected result For each action accomplished during the game, an explicit message should
appear in this area.

For instance, if the user runs double, it should be indicated that the user has
run doubles and can throw dice again.

Different type of messages:

. Run doubles

. You have landed on …

. You must pay …. / You have paid ….

. Go to jail

. The trade offer has been rejected

Effective result As expected.

Interface Game board

What is tested? Now playing panel

Inputs (requested, given by the
program)

No user interaction is needed.

Ending a turn, the next player must play.

Expected result This interface indicates who is currently playing.

When a player has finished its turn, this interface should be reloaded and
should indicate the new player who has to play.

During trading, a player makes an offer to a player B, when the player B
receives the offer, B must know it’s it turn to play. When B replies, it’s
player A time to play. The “Now Playing” interface should reflect these

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 64

states.

Effective result When a turn it’s finished, the hand goes to the next player and the “Now
playing” panel is updated in consequence.

Nevertheless, the panel is not updated during the trading process.

Interface Game board

What is tested? Rolling dice

Inputs (requested, given by the
program)

Mouse Click on the Roll Dice button.

Expected result The dice must be rolled.

The token must move to the adequate cell.

The button must be disabled and end turn must be enabled (if no double).

If double, normally the end turn button is still disabled and roll dice enabled.

Effective result The dice are rolled.

The token moves to the adequate cell.

The button “Roll Dice” is disabled, and “End Turn” is enabled.

If the player runs double, then a click on “End Turn” is needed before
running the dice again.

Interface Game board

What is tested? Ending a turn

Inputs (requested, given by the
program)

Mouse click on the “End Turn” button.

Expected result The hand goes to the next player.

Roll Dice button is enabled for the next player.

It should not be possible to end a turn when actions are incomplete.

Effective result The hand goes to the next player.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 65

Roll Dice button is enabled for the next player.

BUT

If you click on End Turn while a title deed card is opened, and then you
close the title deed, the game freezes.

Interface Game board

What is tested? Landing on a cell.

Inputs (requested, given by the
program)

No user input needed.

The token moves to a cell.

Expected result If the cell is a property (street or metro or utility):

. free: title deed card appears and the player has the possibility to buy it.

. belongs to the player: nothing.

. belongs to another player and is not mortgaged (and contains hotels or not):
money is collected automatically (if sufficient founds)

. belongs to another player and is mortgaged: nothing

If the cell is a JFL:

. the JFL card appears.

If the cell is Jail:

. nothing

If the cell is Go:

. nothing

If the cell is Olympic Park:

. nothing

If the cell is Go To Jail:

. the token moves to the Jail Cell

If the cell is a tax:

. a tax card appears and the money is automatically collected

Effective result If the cell is a property (street or metro or utility):

. free: title deed card appears and the player has the possibility to buy it.

. belongs to the player: nothing.

. belongs to another player and is not mortgaged (and contains hotels or not):
first you have to pay the rent (see below – Title deed section), then the
money is collected.

. belongs to another player and is mortgaged: nothing

If the cell is a JFL:

. the JFL card appears.

If the cell is Jail:

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 66

. nothing

If the cell is Go:

. nothing

If the cell is Olympic Park:

. nothing

If the cell is Go To Jail:

. the token moves to the Jail Cell

If the cell is a tax:

. a tax card appears and the player has to click on “Pay Rent”

Interface Game board

What is tested? Clicking on a cell

Inputs (requested, given by the
program)

Mouse click on a cell

Expected result If the cell is a property (street or metro or utility):

. the corresponding title deed card appears

If the cell is not a proprerty:

. a card containing information concerning the cell (the purpose of the cell,
what will happened if you land on it, etc.)

If the cell contains a token on it, and the player clicks on the token, the
system should act as if there was no token on it.

Effective result If the cell is a property (street or metro or utility):

. the corresponding title deed card appears

If the cell is not a proprerty:

. nothing

If a token is on the cell, and the user clicks on the token, then nothing
appears.

Interface Game board

What is tested? Several players on the same cell.

Inputs (requested, given by the
program)

No user interaction needed.

Several token are placed on the same cell.

Expected result The cell should indicate which players are on it.

Each token has a little square, with the same colour. When several token are
on the same cell, these little squares from the different players should be
visible on the cell.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 67

Effective result

 2 players on the same cell. Only one appears.

When 2 or several players are on the same cell, nothing indicates that several
players are on it.

Sometimes it works, sometimes it bugs.

Interface Game board

What is tested? Getting out of jail

Inputs (requested, given by the
program)

The user s in jail and it’s its turn to play.

Expected result User has several choices:

. Clicking on Roll Dice to run double and get out. If double are run, the
player gets out of jail automatically.

. Clicking on “Pay $50 to get out of jail” to get out of jail immediately

. Clicking on “Use Your JFL get out of jail card” (if the user has this in card
in its inventory)

Effective result As expected.

Interface Game board

What is tested? Owning a property.

Inputs (requested, given by the A player has bought a property.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 68

program)

Expected result The player token (the little one) is placed on the top of the property.

Effective result As expected.

Interface Game board

What is tested? Mortgaging/Unmortgaging a property.

Inputs (requested, given by the
program)

A player has mortgaged a property.

A player has unmortgaged a property.

Expected result It the player has mortgaged a property, the “M” icon is placed on the top of
the property.

It the player has unmortgaged a property, the “M” disappears.

Effective result As expected.

Interface Game board

What is tested? Building hotels / Selling hotels.

Inputs (requested, given by the
program)

A player has build or sold a hotel.

Expected result It the player has build a hotel, a hotel icon is placed on the top of he cell.

It the player has sold a hotel, a hotel icon is removed from the top of the cell.

Effective result As expected.

Interface Game board

What is tested? Finishing the game.

Declaring bankruptcy.

Inputs (requested, given by the
program)

The player has no money left and cannot collect money in anyway.

The only alternative is to press “Declare Bankruptcy”.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 69

Expected result The player presses “Declare Bankruptcy”.

Its name is stroked from the players list.

All its mortgaged properties return to the bank.

The player cannot play anymore.

Effective result As expected, the name is not stroked, but “Bankrupt” is written in the
amount for the money.

5.4.1.3 Title deed cards

Interface Title deed

What is tested? Buying a property

Inputs (requested, given by the
program)

Player lands on a cell.

Expected result The corresponding title deed card appears.

Two choices are offered:

. Buy It: to buy the property

. Forget It!: to cancel the proposal.

When the choice is made, the title deed disappears.

If the property has been bought, then the token is placed on the top of the cell
on the Game board.

Effective result As expected.

Interface Title deed card

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 70

What is tested? Getting information on a free title deed.

Inputs (requested, given by the
program)

Clicking on a vacant property.

Expected result The corresponding title deed pop-ups and the player can click on the button
“OK” to close it and return to the game.

Effective result The title deed pop-ups but no button to close it.

The user must click on the top-right corner cross to close it.

Interface Title deed

What is tested? Mortgaging / Unmortgaging a property

Inputs (requested, given by the
program)

Player clicks on the cell of one of its property.

No hotel on it.

Expected result The title deed appears, and the player has 2 choices:

. if the property is not mortgaged, a Mortgage button is on. By clicking it the
title deed closes itself, the corresponding amount of money is collected, and
the “M” icon is placed on the cell on the game board.

. if the property is mortgaged, an Unmortgage button is on the card. By

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 71

pressing it the title deed closes itself, the amount of money is debited, and
the “M” icon is removed from the cell on the game board.

. A OK button to close the card and do nothing.

Effective result As expected.

Interface Title deed

What is tested? Trading a property.

Inputs (requested, given by the
program)

Player clicks on the cell owned by another player.

Expected result The title deed appears, and the player has 2 choices:

. a trade button to trade this property. If the player clicks on it, then the
trading card appears (see below, trading cards).

. A OK button to close the card and do nothing.

Effective result As expected.

Interface Title deed

What is tested? Buying and selling hotels

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 72

Inputs (requested, given by the
program)

Player clicks on the cell of one of its properties.

Player owns all the properties of the district.

Expected result The title deed appears, and the player has several choices

. If enough money, a “buy hotel” button. By pressing it, the money is debited
from the bank account, the title deed disappears, and a hotel icon is placed on
the cell on the game board.

. Not enough money and no hotel on the property: mortgage and ok button
only.

. If hotels on a property, a “sell button” is enabled. By clicking on it, the
money is collected from the bank, the title deed disappears, and a hotel icon
is removed on the cell on the game board.

. A mortgage button if no hotel on the cell.

. A OK button to close the card and do nothing.

. If hotels on any property of the district, it should not be possible to
mortgage a property without hotels. The player should sell to the bank all the
hotels first.

It should not be possible to build several hotels on a property if the other
properties contain no hotel.

Effective result As expected

BUT

It is possible to mortgage a property while the district still contains hotels.

It is possible to buy several hotels on a property, even if the other properties
of the district contain no hotel.

Interface Title deed

What is tested? Paying the rent

Inputs (requested, given by the
program)

Player lands on a property owned by another player, and no mortgaged.

The corresponding card appears, and a button “Pay Rent” allows to pay the
rent.

Expected result The player clicks on “Pay Rent”, the money is debited from its account, and
collected to the owner’s.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 73

The card is closed.

Effective result As expected

BUT

The name of the button “Pay Rent” has been changed for “Pay xx” where xx
represents the rent to pay.

5.4.1.4 Metro / Utility card
 Same comportment as the title deed cards, except the fact that it is not possible to build and sell hotels on it.

5.4.1.5 Trading cards

Interface Trading card

What is tested? Making a proposal to buy a property

Inputs (requested, given by the
program)

Player clicks on the desired cell. The cell must not contain hotels.

The title deed appears, and the player presses on “Trade”.

The player then indicates an amount of money for the property.

Expected result The player proposes an amount of money for the property.

By clicking on “I want it”, the proposal is sent to the owner of the desired
street. The trading card disappears, the other players has the hand.

If the amount of money is not valid, an error message should appear.

By pressing “Forget it”, the proposal is cancelled.

Effective result As expected.

BUT

If the amount of money is invalid (not filled, or incorrectly filled), the
program crashes.

Interface Trading card

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 74

What is tested? Accepting or refusing a trading.

Inputs (requested, given by the
program)

A player has sent a proposal through the Trading Card.

The receiver is the owner of the property.

The player can give an amount of money.

Expected result The receiver has several choice:

. Clicking on “Done Deal Buddy”: in that case, the trading is made. Bank
accounts are debited and credited, the trading card disappears, and the token
of the new owner is placed on the cell. The hand gets back to the initial
trader.

. Indicating a new amount of money in the adequate text box and click “I
want more”. Then the hand goes back to the initial trader and the counter
offer card appears. The amount of money must be valid, if not, an error
message should appear.

. “Forget it”, to close the window and go on playing.

Effective result As expected.

BUT

Nothing happens when clicking on “I want more” except that the amount of
money is changed on the card.

Interface Trading card – When counter-offering.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 75

What is tested? Accepting or refusing a counter-offer.

Inputs (requested, given by the
program)

The owner of the desired cell has given an amount of money and has pressed
on “I want more”

Expected result The hand gets back to the initial player.

The counter-offering card appears.

If the player presses on “Forget it”, the trade is cancelled, the card is closed
and the game goes on.

If the player clicks on “I want it”, then the trading is made. Bank accounts
are debited and credited, the counter-offering card disappears, and the token
of the new owner is placed on the cell.

Effective result Functionality not implemented / not working.

5.4.1.6 JFL (Just For Laughs) Cards

Interface Just For Laughs

What is tested? The viewing of a JFL card.

Inputs (requested, given by the
program)

The player lands on a JFL cell.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 76

Expected result A JFL card appears.

The player clicks on the “OK” button to close it and the action described on
the JFL is executed.

If the card is a “Get out of jail card”, when the player will go to jail, the
button “Use your Get Out Of Jail card” will be available.

Is the card gives money, the money is collected to the bank account.

If the card asks for money, the money is debited from the bank account.

If the card is “Do nothing”, nothing is done.

If the card is “Go to Jail”, the player goes to jail.

If the card tells to move to a certain place or to a certain number of cells, the
token is moved to the good location.

Effective result As expected.

The card is automatically closed after 1 second.

5.4.1.7 Luxury tax / Income tax

Interface Luxury tax / Income tax

What is tested? Paying a fine.

Inputs (requested, given by the
program)

The players lands on an Income Tax or Luxury Tax.

Expected result The corresponding card appears.

The player then clicks on “Pay Rent”, the money is taken from its account
and the card is closed.

Effective result As expected.

5.4.1.8 Winner interface
Interface Winner interface

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 77

What is tested? End of the game

Inputs (requested, given by the
program)

All users except one have declared bankruptcy.

Expected result The winner interface is loaded.

The name and the token of the winner appear in the Montreal Metro front
page.

Effective result As expected.

Interface Winner interface

What is tested? Starting a new game or quitting the game.

Inputs (requested, given by the
program)

The winner clicks on “Start a new game”

The winner clicks on “Exit Game”

Expected result By pressing “Start a new game”, the winner interface is closed, and a new
start panel (reset) appears.

By pressing “Exit”, the game is closed.

Effective result As expected.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 78

5.4.1.9 File menu
Interface Board game

What is tested? Menu bar

Inputs (requested, given by the
program)

Player clicks on the menu.

Player moves the mouse pointer to an option an click on it to select it.

Expected result The file menu was designed in this way:

File ->

 New Game (to start a new game)

 Exit (to quit the program)

About (information concerning the team)

Effective result The file menu is like that:

File ->

 Sound ->

 Mute : to mute the sounds of the application

 Enable : to enable the sounds

 Voice ->

 Mute: to mute the voice (not tested)

 Enable: to enable the voice (not tested)

 Exit

Help ->

 About: information concerning the team

5.5 Performance Profiling
In order to test the performance of the application, we will test and evaluate the response time of the game. Due to
the nature of the application (game), this is mostly concerned with the response time of the token movements and
the AI. Therefore, we will be testing two dimensions.

First, the speed of the token movements should be measured and analyzed to ensure that it is slow-enough for the
user to know what is going on, but fast enough so that the game does not become unexciting.

Second, the response of the decisions made by AI should be measured and analyzed to ensure that if a human player
is playing against one or several computer players, the response is slow-enough for the user to know what the
computer player is doing, but fast enough so that the game does not become dull unexciting.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 79

5.5.1 Token Movements

Test Case Move 2 steps
Test Case Description To ensure that if the token is moved by 2 steps, the movement is noticeable
Input
(Steps to produce test)

6. Start a game with 2-8 players
7. Player several turns until the value on the dice roll is 1-1 (value is 2)
8. Measure the time it takes for the token to move.

Output
(Expected Results)

• The token movement time is in the neighborhood of 1 second.

Test Case Move 6 steps
Test Case Description To ensure that if the token is moved by 6 steps, the movement is noticeable
Input
(Steps to produce test)

1. Start a game with 2-8 players
2. Player several turns until the value on the dice roll is 6.
3. Measure the time it takes for the token to move.

Output
(Expected Results)

• The token movement time is in the neighborhood of 2 seconds.

Test Case Move 12 steps
Test Case Description To ensure that if the token is moved by 12 steps, the movement is noticeable
Input
(Steps to produce test)

1. Start a game with 2-8 players
2. Player several turns until the value on the dice roll is 12.
3. Measure the time it takes for the token to move.

Output
(Expected Results)

1. The token movement time is in the neighborhood of 3 seconds.

5.5.2 AI Response

Test Case Computer player lands on owned-property
Test Case Description To ensure that if a computer player lands on a property owned by another

player, the time taken by the computer to make a decision is within acceptable
range.

Input
(Steps to produce test)

1. Start a game with 2-8 players, and at least 1 computer player.
2. Player several turns until the computer player lands on a property owned

by another player.
3. Measure the time it takes for the computer player to make a decision and

pay the rent.
Output
(Expected Results)

2. The response time is in the neighborhood of 1 second.

Test Case Computer player lands on un-owned property
Test Case Description To ensure that if a computer player lands on an un-owned property, the time

taken by the computer to make a decision is within acceptable range.
Input
(Steps to produce test)

1. Start a game with 2-8 players, and at least 1 computer player.
2. Player several turns until the computer player lands on an un-owned

property.
3. Measure the time it takes for the computer player to make a decision and

buy the property.
Output
(Expected Results)

3. The response time is in the neighborhood of 1 second.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 80

Test Case AI does a trade with an AI player
Test Case Description To ensure that if a compute player decides to trade with another computer

player, the time to make a decision is within an acceptable range.
Input
(Steps to produce test)

1. Start a game with 2-8 players, and at least 2 computer players.
2. Play several turns until a computer player decides to make a trade offer

with another computer player.
3. Measure the time it takes for the computer player to make a decision and

accept or reject the trade.
Output
(Expected Results)

4. The response time is in the neighborhood of 2 seconds.

5.6 Load Testing
Load testing is normally concerned with testing the system beyond the limits it was designed for. However, due to
restrictions we have placed on the number of players (8 players) that can participate in one game, we cannot, for
instance, test to see if the game works with 9 players. Therefore, we will be testing the game as close as possible to
the limits it was designed for. In fact, we will attempt to simulate a fully loaded board, where all the properties are
owned, and each property has the maximum number of hotels built on it. In this scenario, we will re-evaluate the
game’s functionalities and response times.

Test Case Fully Loaded Board – Functionality
Test Case Description To ensure that if the board is fully loaded, the game is still functioning

correctly.
Input
(Steps to produce test)

1. Start a game with 8 players, and at least 1 computer player.
2. Play many turns, forcing players to buy the properties they land on.
3. Do not build any hotels until all the properties are owned.
4. Start trading properties until every player owns a district.
5. Start building hotels until all the properties have 4 hotels build on them.
6. Play several turns, until all Functions mentioned in section 5.3 (Function

Testing) have been properly tested.
Output
(Expected Results)

• The functions tested work as expected (see section 5.3).

Test Case Fully Loaded Board – AI
Test Case Description To ensure that if the board is fully loaded, the AI response time is acceptable.
Input
(Steps to produce test)

1. Start a game with 8 players, and at least 1 computer player.
2. Play many turns, forcing players to buy the properties they land on.
3. Do not build any hotels until all the properties are owned.
4. Start trading properties until every player owns a district.
5. Start building hotels until all the properties have 4 hotels build on them.
6. Play several turns, and measure the time it takes for the computer player

to play his turn.
Output
(Expected Results)

• The response time is in the range of 2-3 seconds.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 81

5.7 Configuration Testing
Configuration testing is concerned with testing the application under different environment configurations the users
may have. For the Montrealopoly game, we will be focusing on testing the game under different versions of the
Microsoft Windows ™ operating system. As per the requirements document, this includes Windows 95, Windows
98, Windows Me, Windows 2K and Windows XP, but excludes Windows NT.

In order to simulate these different client environments, we will be using awell-known software emulation software
called Virtual PC ™. This software (similar to the VMWare product series) emulates the hardware of a personal
computer and allows you to install and test different operating systems simultaneously. For example, your main
operating system may be Windows XP, but using Virtual PC will allow you to run several other operating systems
as “children” of your main OS.

In order to test the Montrealopoly game under several different operating systems, we will be using Virtual PC to
emulate these environments and then test the game under them.

Test Case Windows 95
Test Case Description To ensure that the game runs properly under Windows 95.
Input
(Steps to produce test)

1. Install Virtual PC
2. Create a new PC called Windows 95
3. Install Windows 95 on that virtual PC
4. Copy the Montrealopoly game and all files needed to execute it.
5. Re-test the function test cases that were detailed in section 5.3 (Function

Testing)
6. Re-test the user interface test cases that were detailed in section 5.4 (User

Interface Testing)
7. Re-test the installation test cases that were detailed in section 5.8

(Installation testing)
Output
(Expected Results)

• The test cases’ expected results are as described in section 5.3.

Test Case Windows 98
Test Case Description To ensure that the game runs properly under Windows 98.
Input
(Steps to produce test)

1. Install Virtual PC
2. Create a new PC called Windows 98
3. Install Windows 98 on that virtual PC
4. Copy the Montrealopoly game and all files needed to execute it.
5. Re-test the function test cases that were detailed in section 5.3 (Function

Testing)
6. Re-test the user interface test cases that were detailed in section 5.4 (User

Interface Testing)
7. Re-test the installation test cases that were detailed in section 5.8

(Installation testing)
Output
(Expected Results)

• The test cases’ expected results are as described in section 5.3.

Test Case Windows Me
Test Case Description To ensure that the game runs properly under Windows Me.
Input
(Steps to produce test)

1. Install Virtual PC
2. Create a new PC called Windows Me
3. Install Windows Me on that virtual PC
4. Copy the Montrealopoly game and all files needed to execute it.
5. Re-test the function test cases that were detailed in section 5.3 (Function

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 82

Testing)
6. Re-test the user interface test cases that were detailed in section 5.4 (User

Interface Testing)
7. Re-test the installation test cases that were detailed in section 5.8

(Installation testing)
Output
(Expected Results)

• The test cases’ expected results are as described in section 5.3.

Test Case Windows 2K
Test Case Description To ensure that the game runs properly under Windows 2K.
Input
(Steps to produce test)

1. Install Virtual PC
2. Create a new PC called Windows 2K
3. Install Windows 2K on that virtual PC
4. Copy the Montrealopoly game and all files needed to execute it.
5. Re-test the function test cases that were detailed in section 5.3 (Function

Testing)
6. Re-test the user interface test cases that were detailed in section 5.4 (User

Interface Testing)
7. Re-test the installation test cases that were detailed in section 5.8

(Installation testing)
Output
(Expected Results)

• The test cases’ expected results are as described in section 5.3.

Test Case Windows XP
Test Case Description To ensure that the game runs properly under Windows XP.
Input
(Steps to produce test)

8. Install Virtual PC
9. Create a new PC called Windows XP
10. Install Windows XP on that virtual PC
11. Copy the Montrealopoly game and all files needed to execute it.
12. Re-test the function test cases that were detailed in section 5.3 (Function

Testing)
13. Re-test the user interface test cases that were detailed in section 5.4 (User

Interface Testing)
14. Re-test the installation test cases that were detailed in section 5.8

(Installation testing)
Output
(Expected Results)

• The test cases’ expected results are as described in section 5.3.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 83

5.8 Installation Testing
After having completed the implementation, the application will be packaged by the well-known InstallShield
software. This generated package is an application by itself. When this application is executed, it installs the
Montrealopoly game into a location that can be specified by the user. In this section, we will focus on testing this
installation package. Most importantly, the package should be compatible with the different operating systems it is
required to support and should copy/provide the necessary .dll (dynamic link libraries) files for the game to work
properly.

Test Case Install – Normal
Test Case Description To ensure that the game installs properly under normal conditions (the game

has never been installed before, there is enough disk space and the user has
enough privileges to install).

Input
(Steps to produce test)

1. Run the installer (setup.exe).
2. Install the application into the default directory.
3. Start a game with 2-8 players.
4. Verify the location of the installed application.
5. Test the game music.
6. Test the sound effects.
7. Test the text-to-speech effects.

Output
(Expected Results)

• The game music, sound effect and test-to-speech are working correctly.
This is an indication that the .dll files have been installed properly.

• The game’s executable and other necessary files are installed in the
default directory.

Test Case Install – Normal – Override Directory
Test Case Description To ensure that the game installs properly under normal conditions (the game

has never been installed before, there is enough disk space and the user has
enough privileges to install), but the user overrides the default directory.

Input
(Steps to produce test)

1. Run the installer (setup.exe).
2. Install the application, but override the default directory.
3. Start a game with 2-8 players.
4. Verify the location of the installed application.
5. Test the game music.
6. Test the sound effects.
7. Test the text-to-speech effects.

Output
(Expected Results)

• The game music, sound effect and test-to-speech are working correctly.
This is an indication that the .dll files have been installed properly.

• The game’s executable and other necessary files are installed in the
directory that was specified by the user.

Test Case Install – Insufficient Disk Space
Test Case Description To ensure that the installer detects and handles an insufficient disk space

problem correctly.
Input
(Steps to produce test)

1. Create a large temporary file to use up the disk space of the hard drive.
2. Leave a little bit of space, but not enough to install the game.
3. Run the installer (setup.exe).
4. Try to install the application.

Output
(Expected Results)

• The installer displays an error message indicating that there is insufficient
disk space.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 84

Test Case Install – Already Installed
Test Case Description To ensure that the installer works properly if the application is already

installed.
Input
(Steps to produce test)

1. Install the game.
2. Delete some of the files from the installation directory.
3. Install the game again.

Output
(Expected Results)

• The installer replaces the deleted files.

Test Case Install – Already Installed – Game Running
Test Case Description To ensure that the installer works properly if the application is already

installed and the game is running.
Input
(Steps to produce test)

1. Install the game.
2. Start the game with 2-8 players.
3. Try to install the game again.

Output
(Expected Results)

• The installer detects that the game is already running and displays an
error message indicating that.

Test Case Install – Not Enough Privileges
Test Case Description To ensure that the installer does not allow a user with low privileges to install

the application.
Input
(Steps to produce test)

1. Create a user with low privileges (this can be the Guest user in XP)
2. Try to install the game.

Output
(Expected Results)

• The installer detects that the user doesn’t have enough privileges and
displays and error message indicating that.

Test Case Un-Install – Normal
Test Case Description To ensure that once the game is installed, it can be un-installed.
Input
(Steps to produce test)

1. Install the game.
2. Un-install the game using the Add/Remove Programs option in the

Control Panel.
Output
(Expected Results)

• All files in the installation directory are removed.

Test Case Un-Install – Game Running
Test Case Description To ensure that if the game is running, it can’t be un-installed.
Input
(Steps to produce test)

1. Install the game.
2. Start the game with 2-8 players.
3. Try to un-install the game using the Add/Remove Programs option in the

Control Panel.
Output
(Expected Results)

• The un-installer detects that the game is running and displays an error
message indicating that.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 85

6. Testing Workflow
In this section, we will describe, in detail, the procedures and guidelines that are to be followed during the testing
effort. This will outline the flow of the testing activities implicated, and allow us to easily manage the bugs that are
found, resulting in a smooth testing phase.

6.1 Workflow Overview

Some of the goals of this testing phase are to test for: correctness of algorithms, correctness of implementation, good
GUI and proper performance level.

6.1.1 Test Plan & Software Engineering process
First, let us make clear the relationship between the test plan and the software engineering process of our project. As
shown in the next diagram, the relationships are:

l We use the detailed design document to produce the unit-testing plan.
l We use the detailed design document to produce the integration-testing plan.
l After the system is integrated, we test the system’s features by using the requirements document.
l Finally, we use the systems specifications to ensure that the implemented system follows them.

Requirements &
 Specification

System
 Specification

High-level
Design

Detailed
Design

Accetance test plan System test plan

Installation test &
Maintenance

Acceptance
test System test

Test plan & SE process

Integration test plan

Integration
test Unit test

Unit test plan

6.1.2 Static and Dynamic Verification

Static and dynamic testing was performed during the implementation phase of the project. The implementation team
did the static verification by doing desk checking on their code. Dynamic testing was done by the programmers and
the testers to find bugs when the system was executing.

Static VerificationProgrammer Coding

Dynamic VerificationTester & programmer
Testing

Static & Dynamic Verification

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 86

6.1.3 Work Flow of a Test

Test cases

Test plan

Test report

Test results

Test data

Design test cases/ test
cases generating

Compare: test results
v.s. expect results

Test data preparations

Run program with test
data

Work Flow of a Test

As the diagram shows, for each target test item, there are tests. For each test, the workflow will be:

l Design test cases and generate test cases. The output of this step is the test cases.
Note: optimization is required to minimize the number the test cases that are required.

l Test data preparation is the second step. The test data can be prepared by the detailed test
documentation. The output of this step is the test data.

l Run the program with the test data is the next step. The output of this step is the test results.
l The last step is to compare the test results with the expected results. The output of this step will be the

bug reports, modification, suggestions, etc.
This diagram applies to most of the tests, specifically the unit tests, integration tests, and system tests.

6.2 Incident Logs and Change Requests
To manage changes in the testing process, several templates for bug management, unit testing and integration testing
were created. These templates help improve the traceability of the testing. An Internet based file manager was setup
to store all the files and templates that the members of Team Redmond could use to share files and view the bug list.
A mailing list was also setup in order to facilitate communications between group members.

6.2.1 Managing changes: the file manager and group e-mail list
Managing change is very important in all phases of software engineering processes. To facilitate this, a file manager
was setup in order to allow team members to upload their files and access other team member’s files. Everything
that the group required was stored on the file manager, from templates and documentations to source code and
executables of the game. To coordinate communications between team members, a mailing list was setup in order to
keep all group members up to date on the current events of the project.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 87

6.2.2 Bug Workflow
As the diagram shows, there is a standard workflow for fixing bugs and there are interactions between the tester, bug
master and coder. Each of them has a clearly defined responsibility when it comes to bug management. The bug
master keeps a master bug list of all the bugs that have been submitted and updates their status. The tester is
responsible for testing the game and filling out the bug template when a bug is found and sending it to the bug
master. The coder is responsible for fixing the bugs and notifying the bug master when they have been fixed. The
tester will then retest the game to ensure that the bug has been properly fixed and do appropriate regression testing
to ensure that no other bugs have been created as a result of this bug fix.

Bug found

The Work Flow of Fixing a Bug

Write bug report
(see bug report template)

Send bug report to “bugmaster”

Verify the bug.
Inform tester if impossible to

verify the bug

Responsibility of the tester
Responsibility of the

bugmaster

Tester tries to find a bug
Decide whose code needs to be

changed

Look into the buglist.
Inform tester if already

mentioned

Responsibility of the coder

Trace the bug back to the root

Update the buglist on the
filemanager

Eliminate the bug and keep
track of all changes made

Send fixed code back to the
bugman for verification

Send bug report to the entire
coding team

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 88

6.2.3 Bug Report Template

This is the bug report template that is used by the testers to report a bug.

Bug # Title:
Bug
Date:

 Submitted
by:

 Assigned
to:

 Status: Open Status
Date:

Description

This bug was caused by…

Screen shot (optional)

How to use it:

The Bug Master keeps this template. When a bug is found, the tester fills out the bug form and e-mails it to the Bug
Master at bugs@maverick.to. The Bug Master will then verify the bug, add it to the master bug list and e-mail the
implementation team about it. Whenever a bug is assigned to a member of the implementation team, the member
will e-mail the Bug Master, who will then update the master bug list with who is working on the bug. Once the bug
has been fixed, the member will e-mail the Bug Master again with the new status of the bug. The Bug Master will
then notify the tester that the bug has been fixed and the tester can then test it again.

The bug list fields must be filled out in the following way:

l Bug #: Leave blank, filled in by the Bug Master.
l Title: Title of the bug.
l Bug Date: Date bug discovered.
l Submitted By: Person who submitted the bug
l Assigned To: Leave blank, filled in by the member who is working on the bug.
l Status:

n Open: All bugs have this initial status.
n Confirmed: Bug has been assigned to someone.
n Closed: Bug has been fixed.

l Status Date: Date the status was changed.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 89

6.2.4 Master Bug List

The bug master is in charge of maintaining the master bug list. It contains all the bugs that have been submitted and
the bug master updates the statuses of the bug whenever one is fixed. Below is a sample master bug list.

Date Status
Submitted
By Bug description

1 Dec. 1 Open Alex
on the Income and Luxury tax cards, maybe change pay rent
for pay tax

2 Dec. 1 Open Alex
the games crashes when you don't close a title deed and you
go on playing

Master Bug List

6.2.5 Responsibilities of the tester, bug master and coder

6.2.5.1 Responsibilities of the tester
The procedure starts with the testing effort, which means that each tester of the testing team tries to find bugs. If a
bug is found he fills out the bug report template and sends it to the bug master.

6.2.5.2 Responsibilities of the bug master
The bug master is responsible for tracking all the bugs that have been submitted and is the link between the coders
and testers. Once a bug is received, the bug master tries to reproduce the bug and if it is reproducible and is not a
duplicate bug, it is added to the master bug list. The bug master assembles all the bugs into a master bug list and
keeps track of their status. The master bug list is on the file manager, which the programmers can view to see what
bugs need to be fixed.

6.2.5.3 Responsibilities of the coder
The leader of the implementation team decides which programmer is to fix the bug and notifies him. The
programmer then looks at the bug list and attempts to fix the bug. Once the bug has been fixed, the programmer then
notifies the bug master that the bug has been fixed and that the bug’s status can now be changed.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 90

6.2.6 Black box testing template

Unit testing is the activity that verifies each module in isolation. For each test items of unit testing, both black box
and white box testing was performed. Several templates for black box testing were made including some for
boundary value analysis and equivalence partitioning.

6.2.6.1 One variable boundary value analysis method

The first template is for one variable black box testing which can be used to test a class or a method of a class.

Black box testing template for 1 variable (BVA)
Tester name Test date
Class name Method name File name
Variable name Lower bound Upper bound:

less than lower bound Value:

on lower bound Value:

between the bounds Value:

on the upper bound Value:

greater than upper bound Value:

Test Case less than lower

bound
on lower bound between the

bounds
on the upper
bound

greater than
upper
bound

Expected
output

Actual output
Bug found?

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 91

6.2.6.2 Two variables boundary value analysis method
The two-variable template considers all the possible combinations of two variables. This table can be expanded to
multiple variables template.

Black box testing template for 2 variables (BVA)
Name of tester Testdate
Class name Name of method Filename
v: (1st variable name) v: Lower bound v: Upper bound
w: (2nd variable name) w: Lower bound w: Upper bound

v1: 1st variable less than lower bound Value v1:

v2: 1st variable on lower bound Value v2:

v3: 1st variable between the bounds Value v3:

v4: 1st variable on the upper bound Value v4:

v5: 1st variable greater than upper bound Value v5:

w1: 2nd variable less than lower bound Value w1:

w2: 2nd variable on lower bound Value w2:

w3: 2nd variable between the bounds Value w3:

w4: 2nd variable on the upper bound Value w4:

w5: 2nd variable greater than upper bound Value w5:

Variable w1

Testcase v1 ~ w1 v2 ~ w1 V3 ~ w1 v4 ~ w1 v5 ~ w1
Expected output

Actual output
Bug found?
Variable w2

Testcase v1 ~ w2 v2 ~ w2 V3 ~ w2 v4 ~ w2 v5 ~ w2
Expected output

Actual output
Bug found?
Variable w3

Testcase v1 ~ w3 v2 ~ w3 V3 ~ w3 v4 ~ w3 v5 ~ w3
Expected output

Actual output
Bug found?
Variable w4

Testcase v1 ~ w4 v2 ~ w4 v3 ~ w4 v4 ~ w4 v5 ~ w4
Expected output

Actual output
Bug found?
Variable w5

Testcase v1 ~ w5 v2 ~ w5 v3 ~ w5 v4 ~ w5 v5 ~ w5
Expected output

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 92

Actual output
Bug found?

6.2.6.3 Equivalence Partition Testing
Different from boundary analysis method template, equivalence-partitioning template just considers the valid classes
and invalid classes of variables.

Black box testing template for one/multiple variable (EP)
Tester name Test date

Class name Method name File name
Variable name Lower bound Upper bound:

Variable name

Valid class 1

Valid class 2

Invalid class 1

Invalid class 2

Testcase 1 2 3 4 5

Expected
output

Actual output
Bug found?

Note: this template user equivalent partition method.
 It is similar to do the multiple variables testing by adding the variables and valid/invalid classes’ cells.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 93

6.2.7 White box testing template

White box testing template
Test ID Tester name: Test date
Class name: Method name: VB File name
Code segment that is marked with step number

Path diagram

Test method: Number of test case

Test case ID 1 2
Test cases
name

Content to
test

Expect result

Test result

Find bug

Path 1 1-2-10-16-17-18-20-22-24
Variables

Expected
result

Bug description:

Note:
 0 suggest that each table for one code segment of one test method.
 1 test method includes path test, branch test, condition testing, loop testing.
 2 you may have many test case, just add them.
 3 if you want to test more than one method, just add them.
 4 if a bug is fixed, this table can also be used for testing the bug fixing result.
 5 the size of the table can be changed.
 6 the basis path test method can also be used.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 94

6.2.8 Integration test
For integration testing, testing consists of testing groups of components incrementally together. Defining the order
of integration is of prime importance.

6.2.8.1 Method

The make sure that each component is tested once, we use a method as the diagram shows. First, we test two
components that produce several test cases. Then more components are added to the system. This will generate new
test cases.

T e s t c a s e 1

T e s t c a s e 2

T e s t c a s e 3

C o m p o n e n t A

C o m p o n e n t B

T e s t c a s e 1

T e s t c a s e 2

T e s t c a s e 3

C o m p o n e n t A

C o m p o n e n t B

T e s t c a s e 4
C o m p o n e n t C

I n t e g r a t i o n T e s t C a s e G e n e ra t i on
I n c r e m e n t C o m p o n e n t

T w o c o m p o n e n ts

T h r e e c o m p o n e n ts (in c r e m e n t o n e)

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 95

6.2.8.2 Integration test template

Integration testing template
Test ID Tester name: Test date
Test name

Requirement:
Specification
Scenario:

Relevant
information

VB File names
Classes involved
Unit test status (y/n)
Other test components
involved

Relevant test
components

Unit test status (y/n)
Test method Sandwich integration
Item description

Test cases number

Test case ID
Test cases name

Test case description
(why this test case
designed?)

Expect result

Content to test (what
to test exactly?)

Testing procedure
(How to test)

Bugs Found

Bug ID Bug processor Status
Bug description:

Test result/suggestion

Verifier name Verifying Date

Note:
 0 each test item is suggested has a table.
 1 test method includes Sandwich integration only.
 2 you may have many test case, just add them.
 3 if a bug is fixed, this table can also be used for testing the bug fixing result.
 4 the size of the table can be changed.

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 96

7. Iteration Milestones
The following are the milestones that were set in this iteration.

8. Team Members Log Sheets

8.1 Stefan Thibeault

Date Task Duration
28/10/2003 Meeting - initial kick-off meeting 2 hours
15/11/2003 Meeting - to discuss document template, what to include/exclude 6 hours
22/11/2003 Individual – worked on document 4 hours
27/11/2003 Individual – worked on document 5 hours
01/12/2003 Tested the game 2 hours
02/12/2003 Meeting – worked on bugs, document 6 hours
03/12/2003 Individual – worked on Document / tested game 8 hours
04/12/2003 Individual – Finalized Document 6 hours
 Total: 45 Hours

8.2 Robert Hanna

Date Task Duration
28/10/2003 Meeting - initial kick-off meeting 2 hours
15/11/2003 Meeting - to discuss document template, what to include/exclude 6 hours
18/11/2003 Individual – Product Functions 3 hours
30/11/2003 Individual – Game Testing 2 hours
02/12/2003 Individual – Product Functions (continued…) 5 hours
02/12/2003 Meeting – worked on bugs, document 6 hours
04/12/2003 Individual – Section 5.4 – 5.7 4 hours
04/12/2003 Individual – help with document finalization 5 hours
 Total: 33 hours

Milestone Days Who 5 13 15 20 22 27 28 29 30 1 2 3 4 5
General

Test Plan Template Creation 1d ALL

Test Plan Document 19d ALL

Phase 3 deliverables

Testing

Testing & QA 6d ALL

Implementation

Code 30d Programmers

Build 1 5d Programmers
Build 2 6d Programmers

Build 3 6d Programmers

Build 4 4d Programmers

Release Candidate 2d Programmers

Final Montrealopoly Game 1d Programmers

November December

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 97

8.3 Simon Lacasse

Date Task Duration
28/10/2003 Meeting - initial kick-off meeting 2 hours
03/11/2003 Prototype 1 8 hours
05/11/2003 Prototype 1 Implementation 6 hours
12/11/2003 Prototype 1 Validation (Team Meeting) 2 hours
20/11/2003 Prototype 2 8 hours
22/11/2003 Prototype 2 Implemenation 12 hours
23/11/2003 Prototype 2 Validation 12 hours
25/11/2003 Visual Design Implementation 12 hours
26/11/2003 Sound Implementation 12 hours
27/11/2003 Visual and Module Integration 6 hours
29/11/2003 Debugging 10 hours
02/12/2003 Meeting – worked on bugs, document 6 hours
03/12/2003 Final debugging 10 hours
04/12/2003 Voice Implementation 1 hours
 Total: 103 hours

8.4 Alexandre Bosserelle

Date Task Duration
28/10/2003 Meeting - initial kick-off meeting 2 hours
18/11/2003 Individual – User interface testing 8 hours
02/12/2003 Individual – Web Page Design for the Montrealopoly website 1 hour
02/12/2003 Individual – Target Test Items (Section 3) 0.5 hours
02/12/2003 Meeting – worked on bugs, document 6 hours
04/12/2003 Individual – Updated section 5.4 2 hours
 Total: 19.5 hours

8.5 Eugena Zolorova

Date Task Duration
01/12/2003 Individual – Section 1 5 hours
 Total: 5 hours

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 98

8.6 Zhi Zhang

Date Task Duration
28/10/2003 Meeting - initial kick-off meeting 2 hours
15/11/2003 Meeting - to discuss document template, what to include/exclude 6 hours
22/11/203 Individual – worked on document 8 Hours
28/11/2003 Individual – worked on document 8 Hours
02/12/2003 Meeting – worked on bugs, document 6 hours
03/12/2003 Completed integration testing 8 hours
04/12/2003 Completed section 6 8 hours
 Total: 46 hours

8.7 Xin Xi

Date Task Duration
 Did not participate in this phase 0
 Total: 0

8.8 Patrice Michaud

Date Task Duration
28/10/2003 Meeting - initial kick-off meeting 2 hours
05/11/2003 Board Class and Board initialisation 6 hours
07/11/2003 Street, Utility, Metro 1 hours
13/11/2003 Other Cell 1 hours
14/11/2003 Basic Player Class 3 hours
16/11/2003 CellInfoWindow and advance player class 3 hours
18/11/2003 Jail 9 hours
19/11/2003 Trading between human and trading card 3 hours
21/11/2003 JFLCard JFLDeck JFLCardWindow 3 hours
22/11/2003 Tax card with calculate assets 3 hours
25/11/2003 AI basic move 2 hours
28/11/2003 AI advance (automakemoney, autotrade) 4 hours
30/11/2003 Various enhancements 3 hours
01/12/2003 Misc. bug fixes 12 hours
02/12/2003 Meeting – worked on bugs, document 6 hours
 Total: 61 hours

8.9 Hu Shan Liu

Date Task Duration
28/10/2003 Meeting - initial kick-off meeting 2 hours
12/111/2003 Implemented JFL Queue 6 hours
 Total: 8 Hours

Montrealopoly Version: 1.2
Master Test Plan Date: 12/4/2003

Concordia University Team Redmond, 2003 Page 99

8.10 Jens Witkowski

Date Task Duration
28/10/2003 Meeting - initial kick-off meeting 2 hours
15/11/2003 Meeting - to discuss document template, what to include/exclude 2 hours
24/11/2003 Individual – section 6 (Testing Workflow) 3 hours
03/11/2003 Individual – updated section 6 (Testing Workflow) 3 hours
 Total: 10 hours

