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• Integer variable declaration:

where x is the address of x, which is a (unique) label generated during the parse 
and stored in the symbol table.

• To load or change the content of an integer variable:

where x is the label of variable x, r1 is the register containing the value of 
variable x and r0 is assumed to contain 0 (offset).

Variable declarations and value access/assignment 
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x res 4

lw r1,x(r0)
sw x(r0),r1

int x;
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• Array of integers variable declaration:

• Accessing elements of an array of integers, using offsets:

Variable declarations and access
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a res 16

int a[4];

addi r1,r0,8
lw r2,a(r1)
sw x(r0),r2

x = a[2];

a+(0*sizeof(int))a[0] (int)

a[1] (int)

a[2] (int)

a[3] (int)

a+(1*sizeof(int))

a+(2*sizeof(int))

a+(3*sizeof(int))

a
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• Multidimensional arrays of integers:

• To access specific elements, a more elaborated offset calculation needs to be 

implemented, and the offset value be put in a register before accessing. 

Variable declarations and access
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a[0][0] (int)

a[0][1] (int)

a[0][2] (int)

a[1][0] (int)

a[1][1] (int)

a[1][2] (int)

a[2][0] (int)

a[2][1] (int)

a[2][2] (int)

a+((0*sizeof(int)*col) + 0*sizeof(int))

a+((0*sizeof(int)*col) + 1*sizeof(int))

a+((0*sizeof(int)*col) + 2*sizeof(int))

a+((1*sizeof(int)*col) + 0*sizeof(int))

a+((1*sizeof(int)*col) + 1*sizeof(int))

a+((1*sizeof(int)*col) + 2*sizeof(int))

a+((2*sizeof(int)*col) + 0*sizeof(int))

a+((2*sizeof(int)*col) + 1*sizeof(int))

a+((2*sizeof(int)*col) + 2*sizeof(int))

a[0][3] (int) a+((0*sizeof(int)*col) + 3*sizeof(int))

a[1][3] (int) a+((1*sizeof(int)*col) + 3*sizeof(int))

a[2][3] (int) a+((2*sizeof(int)*col) + 3*sizeof(int))

a res 48

int a[3][4];
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• For arrays of elements of aggregate type, each element takes more than one 

memory cell. 

• The offset calculation needs to take into account to size of each element.

• For example, assuming a float takes 8 bytes (2 words):   

Variable declarations and access
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a+(0*sizeof(float))
a[0] (float)

a[1] (float)

a[2] (float)

a[3] (float)

a+(1*sizeof(float))

a+(2*sizeof(float))

a+(3*sizeof(float))
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• For an object variable declaration, each data member is stored contiguously in 

the order in which it is declared. 

• The offsets are calculated according to the total size of the data members 

preceding the member to access.

Variable declarations and access
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class MyClass{
int x;
float b[3]
int y;

}

Myclass a;

a res 32

a+(sizeof(x))
b[0] (float)

b[1] (float)

b[2] (float)

ax (int)

y (int) a+(sizeof(x))+(sizeof(b))

x = a.b[2]…
a + (offset of x) + (offset of b[2])
a + (sizeof(x))   + sizeof(float)*2)

addi r1,r0,4
addi r1,r1,16
lw r2,a(r1)
sw x(r0),r2
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Arithmetic operations
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a+b
lw r1,a(r0)
lw r2,b(r0)
add r3,r1,r2

t1  res 4 
sw t1(r0),r3

a+8
lw r1,a(r0)
addi r2,r1,8

t2  res 4
sw t2(r0),r2

a*b
lw r1,a(r0)
lw r2,b(r0)
mul r3,r1,r2

t3  res 4
sw t3(r0),r3

a*8
lw r1,a(r0)
muli r2,r1,8

t4  res 4
sw t4(r0),r2
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Relational operators
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a==b
lw r1,a(r0)
lw r2,b(r0)
ceq r3,r1,r2

t5  res 4
sw t5(r0),r3

a==8
lw r1,a(r0)
ceqi r2,r1,8

t6  res 4
sw t6(r0),r2



Concordia University Department of Computer Science and Software Engineering

Logical operators

Joey Paquet, 2000-2018

9COMP 442/6421 – Compiler Design

a and b
lw r1,a(r0)
lw r2,b(r0)

t7       res 4
bz r1, zero1
bz r2, zero1
addi r1,r0,1
j endand1

zero1    addi r3,r0,0
endand1  sw t7(r0),r0

not a
lw r1,a(r0)
not r2,r1

t8      res 4
bz r2,zero2
addi r1,r0,1
sw t8(r0),r1
j endnot1

zero2   sw t8(r0),r0
endnot1

• The Moon machine’s and, or and not operators are bitwise operators. 

• In order to have a logical operators, we need to code them with the assumption 

that false is 0 and anything else is true. 
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Expressions
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a+b*c
lw r1,a(r0)  [1]
lw r2,b(r0)  [2]
lw r3,c(r0)  [3]
mul r4,r2,r3 [4]

t8 res 4        [4]
sw t8(r0),r4 [4]
lw r5,t8(r0) [5]
add r6,r1,r5 [5]

t9 res 4        [5]
sw t9(r0),r6 [5] 

• Each operator’s code generation in the previous examples is the result of 

translating a subtree with two leaves as the operands and one intermediate node 

as the operator. 

• For composite expressions, the temporary results become operands of operators 

higher in the tree.   

id (vb)

+

[1: r1]

[2: r2]

*

id (vc)
[3: r3]

[4: t8]

[5: t9]

id (va)
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Assignment operation
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a := b+c;
{code for b+c. yields tn as a result}
lw r1,tn(r0)
sw a(r0),r1

a := 8;
sub r1,r1,r1
addi r1,r1,8
sw a(r0),r1

a := b;
lw r1,b(r0)
sw a(r0),r1
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Conditional statements
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if a>b then a:=b; else a:=0;
[1] [2]  [3]  [4]  [5] [6]

{code for "a>b“, yields tn as a result}[1]
lw r1,tn(r0) [2]
bz r1,else1 [2]
{code for "a:=b”} [3]
j endif1 [4]

else1 [4] {code for "a:=0”} [5]
endif1[6] {code continuation}
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Loop statements
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while a<b  do  a:=a+1;
[1]   [2]  [3] [4]   [5]

gowhile1 [1] {code for "a<b". yields tn as a result}[2]
lw r1,tn(r0) [3]
bz r1,endwhile1 [3]
{code for statblock (a:=a+1)} [4]
j gowhile1 [5]

endwhile1[5] {code continuation}
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• There are two essential parts in translating programs that use functions: 

• translating function definitions.

• translating function calls.

• First, the compiler encounters a function header. It can either be a function 

prototype (if the language has them) or the header of a full function definition.

• In both cases, a record can be created in the appropriate symbol table, and a 

local symbol table can be created if it is a new function.

• In the case of a full definition, the code is generated for the variable declarations 

and statements inside the body of the function, which is preceded by parameter-

passing instructions, and followed by return value passing instructions.  

Translating functions
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• The address field in the symbol table entry of the function contains the address 

(or label) of the first memory cell assigned to the function. 

• This address/label will be used to jump to the function when a function call is 

encountered and translated.

• Function calls raise the need for semantic checking. The number and type of 

actual parameters must match with the information stored in the symbol table 

for that function.

• Once the semantic check is successful, semantic translation can occur for the 

function call.

• For modularity purposes, it is better to have all semantic checks in a separate 

phase that runs prior to the code generation. 

Translating functions
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• The above code assumes that the parameters are passed using registers, and that 

they are eventually stored in memory cells identified with a tag name. 

• Dependent on number of registers available.

• Can only pass a value that fits into a register (or pass an address).

• This is a simple solution, but with severe limitations.  

Function declarations
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int fn ( int a, int b ){ statlist };
[1]    [2]     [3]   [4]    [5]

fnres  res 4 [1]
fnp1   res 4 [2]
fn     sw fnp1(r0),r2 [2]
fnp2   res 4 [3]

sw fnp2(r0),r3 [3]
{code for var. decl. & statement list} [4]
{assuming tn contains return value} [4]
lw r1,tn(r0)
sw fnres(r0),r1
jr r15 [5]
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• fn corresponds to the first instruction in the function.

• fnres contains the return value of fn.

• Parameters are copied to registers at function call and copied in the local 

variables when the function execution begins.

• This limits the possible number of parameters to the number of registers 

available.

• r15 is reserved for linking back to the instruction following the jump at function 

call (see the following slides for function calls).

Function declarations
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• For languages not allowing recursive function calls, only one occurrence of any 

function can be running at any given time if we are using this model.

• In this case, all variables local to the function are statically allocated at compile 

time. The only things there are to manage are: 

• the jump to the function code.

• the passing of parameters upon calling and return value upon completion. 

• the jump back to the instruction following the function call.

Function calls
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Function calls: simples case: no parameters
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fn()
...
{code for calling function}
jl r15,fn                               
{code continuation in the calling function}
...

fn {code for called function}
...
jr r15                                 
...
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• Parameters may be passed using registers.

• In this case, the number of parameters passed cannot exceed the total number 

of registers.

• The return value can also be passed using a register, typically r1.

• Simplistic parameter passing method. Works only in restricted cases.  

Function calls: passing parameters
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Function calls: passing parameters (registers)
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x = fn(p1,p2);
...
{code for the calling function}
lw r2,p1(r0)
lw r3,p2(r0)
jl r15,fn
{assignment: assumes r1 contains return value}
sw x(r0),r1
{code continuation in the calling function}
...

fn {refer to param[i] as ri+1 in fn code}
sw fnp2(r0),r3
sw fnp1(r0),r2
...
{assuming tn contains return value}
lw r1,tn(r0)       
jr r15
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• To avoid the limitation of the allowed number of parameters to the number of 
registers, parameters can be stored statically in a tagged memory cell (one for 
each parameter).

• These methods are only usable for languages where recursive function calls are 
not allowed.

• With recursive function calls, the problem is that several instances of the same 
function can be running at the same time, hence there is a need to store the 
state of each function invocation of the same function. 

• To enable more than one function instance to run at the same time, all the 
variables and parameters of a running function are stored in a stack frame which 
is dynamically allocated on the function call stack.

• This involves the elaboration of a primitive run-time system as part of the 
compiled code. 

• Another problem with multiple function instances is that r15 is used to store the 
return address after a call. If there is more than one consecutive call (i.e. prog
calls f1, then f1 calls f2), then the return address needs to be stored in the 
function call stack frame. 

Function calls: passing parameters: multiple function call instances
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• If multiple call instances is allowed, a function call stack function call stack function call stack function call stack is required: 

• The function call stack is a fixed-size memory area statically reserved.   

• For each function call, a stack frame stack frame stack frame stack frame is created on the function call stack. 

• The stack frame contains the values of all the local variables declared in the function.

• The size of a stack frame is the sum of the sizes of all the function’s local variables.  

• The location of the top of the stack is managed by adding/subtracting stack frame sizes 

as an accumulated offset from the initial address of the stack. 

• Then, when the functions’ code uses its local variables, it refers to them as stored on 

the current function’s stack frame.

• When the function returns, its stack frame is “removed”, i.e. the function call stack 

offset is decremented by its function call stack frame size.  

Function calls: function call stack and stack frames
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fstack+sizeof(program)

f2()

f1()

fstack+sizeof(program)+sizeof(f1)

(int) x

(int) y

(int) b

(float) a[0]

(float) a[1]

program

fstack

(int) a

(float) b
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• Function stack frames also need to contain space necessary to store values used 

in the function call mechanism, i.e. not only the local variables, but also: 

• The address stored in r15r15r15r15 by jljljljl as the function is called.

• The return value in a place predictable by the calling function. From the perspective of 

the calling function, the return value is always stored at: 

• fstack + sizeof(myblock) + sizeof(typeof(return value))

• The parameters in a place predictable by the calling function. 

• e.g. for f1’s parameters:

• fstack + sizeof(myblock) + sizeof(typeof(return value)) 
+ 4 + sizeof(typeof(parameter1)) + sizeof(typeof(parameter1))

• fstack + sizeof(myblock) + sizeof(typeof(return value)) 
+ 4 + sizeof(typeof(parameter1)) 
+ sizeof(typeof(parameter1))

Function calls: function call stack
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int f1(int p1, int p2){
int m1;
m1 = 5;
p1 = p1 * m1;
p2 = p2 * m1;
return(p1 + p2);

}
program{

int a;
int b;
int c;
int d;
int x;
a = 1;
b = 2;
c = 3;
d = 4;
x = a + f1(b,c) * d;
put(x);

} // result = 101

fstack+sizeof(program)

f1()

program

(int) p1

(int) p2

(int) x

(int) d

(int) c

(int) b
(int) a

fstack(0)

jl/jr addr
return val

(int) m
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• For code generation the most important thing is to proceed in stages. Do not try 

to resolve all code generation in a single batch. 

• The first step is to compute the size of all variables involved in the compiled program. 

• These can be stored in the symbol tables. 

• Memory also needs to be reserved for intermediate results, and literal values used in 

the compiled program. 

• Then you can compute the offset of each element in a reserved block. 

Function calls: function call stack: compute variables/block sizes and offsets
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=====================================================
| table: global           scope size: 0             |
=====================================================
| func      | program   | void                      |
|    =====================================================
|    | table: program          scope size: 40            |
|    =====================================================
|    | var       | a         | int       | 4     | 0     |
|    | var       | b         | int       | 4     | 4     |
|    | var       | c         | int       | 4     | 8     |
|    | litval    | t1        | int       | 4     | 12    |
|    | litval    | t2        | int       | 4     | 16    |
|    | litval    | t3        | int       | 4     | 20    |
|    | tempvar   | t4        | int       | 4     | 24    |
|    | tempvar   | t5        | int       | 4     | 28    |
|    | litval    | t6        | int       | 4     | 32    |
|    | tempvar   | t7        | int       | 4     | 36    |
|    =====================================================
=====================================================

program{
int a;
int b;
int c;
a = 1;
put(a);
b = 2;
put(b);
c = 3;
put(c);
a = a + b c;
put(a + 6);

} // result = 13
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Function calls: function call stack: compute variables/block sizes and offsets
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=====================================================
| class     | class1                                |
|    =====================================================
|    | table: class1           scope size: 12            |
|    =====================================================
|    | var | float1    | float     | 8     | 0     |
|    | var | int1      | int | 4     | 8     |
|    =====================================================
| | func | int | func1                     |
|    =====================================================
|    | table: func1            scope size: 216           |
|    =====================================================
|    | param | int235    | int | 120   | 0     |
|    | param | float4    | float     | 80    | 120   |
|    | var | float7    | float     | 8     | 200   |
|    | tempvar | t1        | int | 4     | 208   |
|    | tempvar | t2        | int | 4     | 212   |
|    | litval | t3        | int | 4     | 216   |
|    =====================================================
| | func | program   | void                      |
|    =====================================================
|    | table: program          scope size: 856           |
|    =====================================================
|    | var | int532    | int | 120   | 0     |
|    | var | float101  | class1    | 120   | 120   |
|    | var | float3    | float     | 8     | 240   |
|    | var | int3      | int | 4     | 248   |
|    | tempvar | t7        | int | 4     | 252   |
|    | litval | t8        | int | 4     | 256   |
|    | tempvar | t9        | int | 4     | 260   |
|    | tempvar | t10       | int | 4     | 264   |
|    | tempvar | t11       | int | 4     | 268   |
|    | tempvar | t12       | int | 4     | 272   |
|    | tempvar | t13       | int | 4     | 276   |
|    =====================================================
=====================================================

class class1{
float float1;
int int1;

}

int func1(int int235[2][3][5], float float4[10]){
float float7;
a=a+b*3;

}

program{
int int532[5][3][2];
class1 class110[10];
float float3;
int int3;
a=a+b*c;
x=a+b*c;
a=x+z*y
}
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• Some function calls interact with the operating system, e.g. when a program 

does input/output

• In these cases, there are several possibilities depending on the resources offered 

by the operating system, e.g.: 

• treatment via special predefined ASM operations/subroutines

• access to the OS via calls or traps

• In the Moon processor, we have two special operators: putc and getc

• They respectively output some data to the screen and input data from the 

keyboard

• They are used to directly translate get() and put() statements (see the Moon 

manual)

• There are also a variety of libraries provided with the Moon code:

• lib.m: read/write strings to console/from keyboard, string/integer 

conversion, string operations

• util.m:  read/write integer to console/from keyboard, string operations.   

get and put: calling the operating system
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• Suggested sequence: 

• variable declarations (integers first)

• expressions (one operator at a time)

• assignment statement

• put and get statements

• conditional statement

• loop statement

• Tricky parts: 

• function calls

• expressions involving arrays (offset calculation)

• floating point numbers

• recursive function calls

• expressions involving access to object members (offset calculations)

• calls to member functions (access to object’s data members) 

Code generation: suggested sequence
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• You will not fail the project if you did not implement code generation for all 

aspects of the language.

• But, you might fail if your compiler is not working at all.

• This is why you should proceed in stages and make sure each successive stage is 

correct before going further.

• Be careful to not break what was previously working. 

• This is the main reason why you should have numerous tests in place, ideally 

organized in automated regression testing. Unit testing is a good way to achieve 

that.

• Make sure you have a compiler that works properly for a subset of the problem.

• For the parts that you did not implement, think of a solution. You may get some 

marks if you are able to clearly explain how to do what is missing during your 

project demonstration.

Hints for final stages leading to the project demonstration
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