
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Code generation

Joey Paquet, 2000-2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Integer variable declaration:

where x is the address of x, which is a (unique) label generated during the parse
and stored in the symbol table.

• To load or change the content of an integer variable:

where x is the label of variable x, r1 is the register containing the value of
variable x and r0 is assumed to contain 0 (offset).

Variable declarations and value access/assignment

Joey Paquet, 2000-2018

2COMP 442/6421 – Compiler Design

x res 4

lw r1,x(r0)
sw x(r0),r1

int x;

Concordia University Department of Computer Science and Software Engineering

• Array of integers variable declaration:

• Accessing elements of an array of integers, using offsets:

Variable declarations and access

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design

a res 16

int a[4];

addi r1,r0,8
lw r2,a(r1)
sw x(r0),r2

x = a[2];

a+(0*sizeof(int))a[0] (int)

a[1] (int)

a[2] (int)

a[3] (int)

a+(1*sizeof(int))

a+(2*sizeof(int))

a+(3*sizeof(int))

a

Concordia University Department of Computer Science and Software Engineering

• Multidimensional arrays of integers:

• To access specific elements, a more elaborated offset calculation needs to be

implemented, and the offset value be put in a register before accessing.

Variable declarations and access

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

a[0][0] (int)

a[0][1] (int)

a[0][2] (int)

a[1][0] (int)

a[1][1] (int)

a[1][2] (int)

a[2][0] (int)

a[2][1] (int)

a[2][2] (int)

a+((0*sizeof(int)*col) + 0*sizeof(int))

a+((0*sizeof(int)*col) + 1*sizeof(int))

a+((0*sizeof(int)*col) + 2*sizeof(int))

a+((1*sizeof(int)*col) + 0*sizeof(int))

a+((1*sizeof(int)*col) + 1*sizeof(int))

a+((1*sizeof(int)*col) + 2*sizeof(int))

a+((2*sizeof(int)*col) + 0*sizeof(int))

a+((2*sizeof(int)*col) + 1*sizeof(int))

a+((2*sizeof(int)*col) + 2*sizeof(int))

a[0][3] (int) a+((0*sizeof(int)*col) + 3*sizeof(int))

a[1][3] (int) a+((1*sizeof(int)*col) + 3*sizeof(int))

a[2][3] (int) a+((2*sizeof(int)*col) + 3*sizeof(int))

a res 48

int a[3][4];

Concordia University Department of Computer Science and Software Engineering

• For arrays of elements of aggregate type, each element takes more than one

memory cell.

• The offset calculation needs to take into account to size of each element.

• For example, assuming a float takes 8 bytes (2 words):

Variable declarations and access

Joey Paquet, 2000-2018

5COMP 442/6421 – Compiler Design

a+(0*sizeof(float))
a[0] (float)

a[1] (float)

a[2] (float)

a[3] (float)

a+(1*sizeof(float))

a+(2*sizeof(float))

a+(3*sizeof(float))

Concordia University Department of Computer Science and Software Engineering

• For an object variable declaration, each data member is stored contiguously in

the order in which it is declared.

• The offsets are calculated according to the total size of the data members

preceding the member to access.

Variable declarations and access

Joey Paquet, 2000-2018

6COMP 442/6421 – Compiler Design

class MyClass{
int x;
float b[3]
int y;

}

Myclass a;

a res 32

a+(sizeof(x))
b[0] (float)

b[1] (float)

b[2] (float)

ax (int)

y (int) a+(sizeof(x))+(sizeof(b))

x = a.b[2]…
a + (offset of x) + (offset of b[2])
a + (sizeof(x)) + sizeof(float)*2)

addi r1,r0,4
addi r1,r1,16
lw r2,a(r1)
sw x(r0),r2

Concordia University Department of Computer Science and Software Engineering

Arithmetic operations

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

a+b
lw r1,a(r0)
lw r2,b(r0)
add r3,r1,r2

t1 res 4
sw t1(r0),r3

a+8
lw r1,a(r0)
addi r2,r1,8

t2 res 4
sw t2(r0),r2

a*b
lw r1,a(r0)
lw r2,b(r0)
mul r3,r1,r2

t3 res 4
sw t3(r0),r3

a*8
lw r1,a(r0)
muli r2,r1,8

t4 res 4
sw t4(r0),r2

Concordia University Department of Computer Science and Software Engineering

Relational operators

Joey Paquet, 2000-2018

8COMP 442/6421 – Compiler Design

a==b
lw r1,a(r0)
lw r2,b(r0)
ceq r3,r1,r2

t5 res 4
sw t5(r0),r3

a==8
lw r1,a(r0)
ceqi r2,r1,8

t6 res 4
sw t6(r0),r2

Concordia University Department of Computer Science and Software Engineering

Logical operators

Joey Paquet, 2000-2018

9COMP 442/6421 – Compiler Design

a and b
lw r1,a(r0)
lw r2,b(r0)

t7 res 4
bz r1, zero1
bz r2, zero1
addi r1,r0,1
j endand1

zero1 addi r3,r0,0
endand1 sw t7(r0),r0

not a
lw r1,a(r0)
not r2,r1

t8 res 4
bz r2,zero2
addi r1,r0,1
sw t8(r0),r1
j endnot1

zero2 sw t8(r0),r0
endnot1

• The Moon machine’s and, or and not operators are bitwise operators.

• In order to have a logical operators, we need to code them with the assumption

that false is 0 and anything else is true.

Concordia University Department of Computer Science and Software Engineering

Expressions

Joey Paquet, 2000-2018

10COMP 442/6421 – Compiler Design

a+b*c
lw r1,a(r0) [1]
lw r2,b(r0) [2]
lw r3,c(r0) [3]
mul r4,r2,r3 [4]

t8 res 4 [4]
sw t8(r0),r4 [4]
lw r5,t8(r0) [5]
add r6,r1,r5 [5]

t9 res 4 [5]
sw t9(r0),r6 [5]

• Each operator’s code generation in the previous examples is the result of

translating a subtree with two leaves as the operands and one intermediate node

as the operator.

• For composite expressions, the temporary results become operands of operators

higher in the tree.

id (vb)

+

[1: r1]

[2: r2]

*

id (vc)
[3: r3]

[4: t8]

[5: t9]

id (va)

Concordia University Department of Computer Science and Software Engineering

Assignment operation

Joey Paquet, 2000-2018

11COMP 442/6421 – Compiler Design

a := b+c;
{code for b+c. yields tn as a result}
lw r1,tn(r0)
sw a(r0),r1

a := 8;
sub r1,r1,r1
addi r1,r1,8
sw a(r0),r1

a := b;
lw r1,b(r0)
sw a(r0),r1

Concordia University Department of Computer Science and Software Engineering

Conditional statements

Joey Paquet, 2000-2018

12COMP 442/6421 – Compiler Design

if a>b then a:=b; else a:=0;
[1] [2] [3] [4] [5] [6]

{code for "a>b“, yields tn as a result}[1]
lw r1,tn(r0) [2]
bz r1,else1 [2]
{code for "a:=b”} [3]
j endif1 [4]

else1 [4] {code for "a:=0”} [5]
endif1[6] {code continuation}

Concordia University Department of Computer Science and Software Engineering

Loop statements

Joey Paquet, 2000-2018

13COMP 442/6421 – Compiler Design

while a<b do a:=a+1;
[1] [2] [3] [4] [5]

gowhile1 [1] {code for "a<b". yields tn as a result}[2]
lw r1,tn(r0) [3]
bz r1,endwhile1 [3]
{code for statblock (a:=a+1)} [4]
j gowhile1 [5]

endwhile1[5] {code continuation}

Concordia University Department of Computer Science and Software Engineering

• There are two essential parts in translating programs that use functions:

• translating function definitions.

• translating function calls.

• First, the compiler encounters a function header. It can either be a function

prototype (if the language has them) or the header of a full function definition.

• In both cases, a record can be created in the appropriate symbol table, and a

local symbol table can be created if it is a new function.

• In the case of a full definition, the code is generated for the variable declarations

and statements inside the body of the function, which is preceded by parameter-

passing instructions, and followed by return value passing instructions.

Translating functions

Joey Paquet, 2000-2018

14COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The address field in the symbol table entry of the function contains the address

(or label) of the first memory cell assigned to the function.

• This address/label will be used to jump to the function when a function call is

encountered and translated.

• Function calls raise the need for semantic checking. The number and type of

actual parameters must match with the information stored in the symbol table

for that function.

• Once the semantic check is successful, semantic translation can occur for the

function call.

• For modularity purposes, it is better to have all semantic checks in a separate

phase that runs prior to the code generation.

Translating functions

Joey Paquet, 2000-2018

15COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The above code assumes that the parameters are passed using registers, and that

they are eventually stored in memory cells identified with a tag name.

• Dependent on number of registers available.

• Can only pass a value that fits into a register (or pass an address).

• This is a simple solution, but with severe limitations.

Function declarations

Joey Paquet, 2000-2018

16COMP 442/6421 – Compiler Design

int fn (int a, int b){ statlist };
[1] [2] [3] [4] [5]

fnres res 4 [1]
fnp1 res 4 [2]
fn sw fnp1(r0),r2 [2]
fnp2 res 4 [3]

sw fnp2(r0),r3 [3]
{code for var. decl. & statement list} [4]
{assuming tn contains return value} [4]
lw r1,tn(r0)
sw fnres(r0),r1
jr r15 [5]

Concordia University Department of Computer Science and Software Engineering

• fn corresponds to the first instruction in the function.

• fnres contains the return value of fn.

• Parameters are copied to registers at function call and copied in the local

variables when the function execution begins.

• This limits the possible number of parameters to the number of registers

available.

• r15 is reserved for linking back to the instruction following the jump at function

call (see the following slides for function calls).

Function declarations

Joey Paquet, 2000-2018

17COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• For languages not allowing recursive function calls, only one occurrence of any

function can be running at any given time if we are using this model.

• In this case, all variables local to the function are statically allocated at compile

time. The only things there are to manage are:

• the jump to the function code.

• the passing of parameters upon calling and return value upon completion.

• the jump back to the instruction following the function call.

Function calls

Joey Paquet, 2000-2018

18COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Function calls: simples case: no parameters

Joey Paquet, 2000-2018

19COMP 442/6421 – Compiler Design

fn()
...
{code for calling function}
jl r15,fn
{code continuation in the calling function}
...

fn {code for called function}
...
jr r15
...

Concordia University Department of Computer Science and Software Engineering

• Parameters may be passed using registers.

• In this case, the number of parameters passed cannot exceed the total number

of registers.

• The return value can also be passed using a register, typically r1.

• Simplistic parameter passing method. Works only in restricted cases.

Function calls: passing parameters

Joey Paquet, 2000-2018

20COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Function calls: passing parameters (registers)

Joey Paquet, 2000-2018

21COMP 442/6421 – Compiler Design

x = fn(p1,p2);
...
{code for the calling function}
lw r2,p1(r0)
lw r3,p2(r0)
jl r15,fn
{assignment: assumes r1 contains return value}
sw x(r0),r1
{code continuation in the calling function}
...

fn {refer to param[i] as ri+1 in fn code}
sw fnp2(r0),r3
sw fnp1(r0),r2
...
{assuming tn contains return value}
lw r1,tn(r0)
jr r15

Concordia University Department of Computer Science and Software Engineering

• To avoid the limitation of the allowed number of parameters to the number of
registers, parameters can be stored statically in a tagged memory cell (one for
each parameter).

• These methods are only usable for languages where recursive function calls are
not allowed.

• With recursive function calls, the problem is that several instances of the same
function can be running at the same time, hence there is a need to store the
state of each function invocation of the same function.

• To enable more than one function instance to run at the same time, all the
variables and parameters of a running function are stored in a stack frame which
is dynamically allocated on the function call stack.

• This involves the elaboration of a primitive run-time system as part of the
compiled code.

• Another problem with multiple function instances is that r15 is used to store the
return address after a call. If there is more than one consecutive call (i.e. prog
calls f1, then f1 calls f2), then the return address needs to be stored in the
function call stack frame.

Function calls: passing parameters: multiple function call instances

Joey Paquet, 2000-2018

22COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• If multiple call instances is allowed, a function call stack function call stack function call stack function call stack is required:

• The function call stack is a fixed-size memory area statically reserved.

• For each function call, a stack frame stack frame stack frame stack frame is created on the function call stack.

• The stack frame contains the values of all the local variables declared in the function.

• The size of a stack frame is the sum of the sizes of all the function’s local variables.

• The location of the top of the stack is managed by adding/subtracting stack frame sizes

as an accumulated offset from the initial address of the stack.

• Then, when the functions’ code uses its local variables, it refers to them as stored on

the current function’s stack frame.

• When the function returns, its stack frame is “removed”, i.e. the function call stack

offset is decremented by its function call stack frame size.

Function calls: function call stack and stack frames

Joey Paquet, 2000-2018

23COMP 442/6421 – Compiler Design

fstack+sizeof(program)

f2()

f1()

fstack+sizeof(program)+sizeof(f1)

(int) x

(int) y

(int) b

(float) a[0]

(float) a[1]

program

fstack

(int) a

(float) b

Concordia University Department of Computer Science and Software Engineering

• Function stack frames also need to contain space necessary to store values used

in the function call mechanism, i.e. not only the local variables, but also:

• The address stored in r15r15r15r15 by jljljljl as the function is called.

• The return value in a place predictable by the calling function. From the perspective of

the calling function, the return value is always stored at:

• fstack + sizeof(myblock) + sizeof(typeof(return value))

• The parameters in a place predictable by the calling function.

• e.g. for f1’s parameters:

• fstack + sizeof(myblock) + sizeof(typeof(return value))
+ 4 + sizeof(typeof(parameter1)) + sizeof(typeof(parameter1))

• fstack + sizeof(myblock) + sizeof(typeof(return value))
+ 4 + sizeof(typeof(parameter1))
+ sizeof(typeof(parameter1))

Function calls: function call stack

Joey Paquet, 2000-2018

24COMP 442/6421 – Compiler Design

int f1(int p1, int p2){
int m1;
m1 = 5;
p1 = p1 * m1;
p2 = p2 * m1;
return(p1 + p2);

}
program{

int a;
int b;
int c;
int d;
int x;
a = 1;
b = 2;
c = 3;
d = 4;
x = a + f1(b,c) * d;
put(x);

} // result = 101

fstack+sizeof(program)

f1()

program

(int) p1

(int) p2

(int) x

(int) d

(int) c

(int) b
(int) a

fstack(0)

jl/jr addr
return val

(int) m

Concordia University Department of Computer Science and Software Engineering

• For code generation the most important thing is to proceed in stages. Do not try

to resolve all code generation in a single batch.

• The first step is to compute the size of all variables involved in the compiled program.

• These can be stored in the symbol tables.

• Memory also needs to be reserved for intermediate results, and literal values used in

the compiled program.

• Then you can compute the offset of each element in a reserved block.

Function calls: function call stack: compute variables/block sizes and offsets

Joey Paquet, 2000-2018

25COMP 442/6421 – Compiler Design

===
| table: global scope size: 0 |
===
| func | program | void |
| ===
| | table: program scope size: 40 |
| ===
	var	a	int	4	0
	var	b	int	4	4
	var	c	int	4	8
	litval	t1	int	4	12
	litval	t2	int	4	16
	litval	t3	int	4	20
	tempvar	t4	int	4	24
	tempvar	t5	int	4	28
	litval	t6	int	4	32
	tempvar	t7	int	4	36
===					
===

program{
int a;
int b;
int c;
a = 1;
put(a);
b = 2;
put(b);
c = 3;
put(c);
a = a + b c;
put(a + 6);

} // result = 13

Concordia University Department of Computer Science and Software Engineering

Function calls: function call stack: compute variables/block sizes and offsets

Joey Paquet, 2000-2018

26COMP 442/6421 – Compiler Design

===
| class | class1 |
| ===
| | table: class1 scope size: 12 |
| ===
| | var | float1 | float | 8 | 0 |
| | var | int1 | int | 4 | 8 |
| ===
| | func | int | func1 |
| ===
| | table: func1 scope size: 216 |
| ===
	param	int235	int	120	0
	param	float4	float	80	120
	var	float7	float	8	200
	tempvar	t1	int	4	208
	tempvar	t2	int	4	212
	litval	t3	int	4	216
===					
	func	program	void		
===					
	table: program scope size: 856				
===					
	var	int532	int	120	0
	var	float101	class1	120	120
	var	float3	float	8	240
	var	int3	int	4	248
	tempvar	t7	int	4	252
	litval	t8	int	4	256
	tempvar	t9	int	4	260
	tempvar	t10	int	4	264
	tempvar	t11	int	4	268
	tempvar	t12	int	4	272
	tempvar	t13	int	4	276
===					
===

class class1{
float float1;
int int1;

}

int func1(int int235[2][3][5], float float4[10]){
float float7;
a=a+b*3;

}

program{
int int532[5][3][2];
class1 class110[10];
float float3;
int int3;
a=a+b*c;
x=a+b*c;
a=x+z*y
}

Concordia University Department of Computer Science and Software Engineering

• Some function calls interact with the operating system, e.g. when a program

does input/output

• In these cases, there are several possibilities depending on the resources offered

by the operating system, e.g.:

• treatment via special predefined ASM operations/subroutines

• access to the OS via calls or traps

• In the Moon processor, we have two special operators: putc and getc

• They respectively output some data to the screen and input data from the

keyboard

• They are used to directly translate get() and put() statements (see the Moon

manual)

• There are also a variety of libraries provided with the Moon code:

• lib.m: read/write strings to console/from keyboard, string/integer

conversion, string operations

• util.m: read/write integer to console/from keyboard, string operations.

get and put: calling the operating system

Joey Paquet, 2000-2018

27COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Suggested sequence:

• variable declarations (integers first)

• expressions (one operator at a time)

• assignment statement

• put and get statements

• conditional statement

• loop statement

• Tricky parts:

• function calls

• expressions involving arrays (offset calculation)

• floating point numbers

• recursive function calls

• expressions involving access to object members (offset calculations)

• calls to member functions (access to object’s data members)

Code generation: suggested sequence

Joey Paquet, 2000-2018

28COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• You will not fail the project if you did not implement code generation for all

aspects of the language.

• But, you might fail if your compiler is not working at all.

• This is why you should proceed in stages and make sure each successive stage is

correct before going further.

• Be careful to not break what was previously working.

• This is the main reason why you should have numerous tests in place, ideally

organized in automated regression testing. Unit testing is a good way to achieve

that.

• Make sure you have a compiler that works properly for a subset of the problem.

• For the parts that you did not implement, think of a solution. You may get some

marks if you are able to clearly explain how to do what is missing during your

project demonstration.

Hints for final stages leading to the project demonstration

Joey Paquet, 2000-2018

29COMP 442/6421 – Compiler Design

