
 1

Concordia University 
Department of Computer Science  

and Software Engineering 
 

Advanced program design with C++ 
COMP 345 --- Fall 2013 

 

Individual assignment #3 
 
Deadline:   Friday, November 22nd, 2013 
Evaluation:   5% of final mark 
Late submission:  not accepted 
Teams:   this is an individual assignment 

 

Problem statement  
 
This is an individual assignment. It is divided into three distinct parts. Each individual student is expected to select 
one of these parts as his/her assignment. Each part is about the development of a part of the topic presented as 
the team project. Even though it is about the development of a part of your team project, each assignment has to 
be developed independently of the others and is not to be presented as an integrated part of the team project. 
Each member of your team is free to choose to do any part, and is expected to follow a different design approach 
than the other team members that have selected the same assignment topic. Note that the following descriptions 
describe the baseline of the assignment, and are related to the project description (see the course web page for a 
full description of the team project). 
 
Part 1: Character builder 
 
Implement a Builder pattern for the Character class to create characters (player character or enemy character) of 
various levels (fighter class only), and enabling various types of fighter style to be chosen.  
 
Ability scores generation method: Any character has the same 6 ability scores (Strength, Intelligence, Dexterity, 
Constitution, Wisdom, Charisma). Upon creation of the character, the values associated with each ability score is 
randomly determined. For the generation of ability scores, for each ability score, roll 4d6 and selects the 3 highest 
dice values. After all 6 scores have been generated, they are assigned to an ability depending on the type of 
fighter that this character is: (1) a “bully”  uses brute strength to destroy his enemies, (2) a “nimble” favors 
dexterity and better armor class to evade blows, (3) a “tank” favors survival by more hit points through a high 
constitution score. Create one Concrete Builder for each of these three types of fighter.  
 

Type of fighter Ability scores in decreasing order of importance  
Bully Strength, Constitution, Dexterity, Intelligence, Charisma, Wisdom 
Nimble Dexterity, Constitution, Strength, Intelligence, Charisma, Wisdom 
Tank Constitution, Dexterity, Strength, Intelligence, Charisma, Wisdom 

 
Level-dependent characteristics: As a character goes up levels, the following are increasing: (1) his hit points go 
up by (1d10+constitution modifier), (2) his attack bonus goes up by one, and his number of attacks per round 
increase by one every five levels, according to the following table:  
 

level 1 att/round  level 2 att/round  level 3 att/round  level 4 att/round 
1 +1 6 +6/+1 11 +11/+6/+1 16 +16/+11/+6/+1 
2 +2 7 +7/+2 12 +12/+7/+2 17 +17/+12/+7/+2 
3 +3 8 +8/+3 13 +13/+8/+3 18 +18/+13/+8/+3 
4 +4 9 +9/+4 14 +14/+9/+4 19 +19/+14/+9/+4 
5 +5 10 +10/+5 15 +15/+10/+5 20 +20/+15/+10/+5 



 2

 
Part 2: Map builder 
 
Implement a Builder pattern for the Map class. One of your Concrete Builders should allow to create an “arena” 
map. The arena map is a 9X9 map surrounded by walls with the entry point in the middle of the top row, the exit 
point in the middle of the bottom row, a chest in the middle of the map, and an opposing character blocking the 
way to the exit point (see figure below). The arena map has a “level” whose value will determine the number and 
magical strength of the items found in the chest (see “chest builder” below), as well as the level of the opposing 
character to be defeated in order to exit the map.  
 

    ↑     
    �     
         
         
    $     
         
         
    ☺     
    ↑     

 
 
Part 3: Chest builder 
 
Implement a Builder pattern for the Chest class. A chest contains magic items usable by a character. Upon 
opening the chest, the character can select items in the chest and put them in his own inventory. Items can be of 
the following types: helmet, armor, shield, bracers, ring, belt, boots, sword, bow. Each item has a +1 to +5 
modifier that can affect the character in different ways as listed below. Create a Concrete Builder that creates a 
chest with a random number of randomly-generated items and another Concrete Builder that creates a chest that 
contains items whose number and strength varies according to the level of the character who opens it.   
 
 

Item May increase either 
Helmet Intelligence, Wisdom, Armor class 
Armor Armor class 
Shield Armor class 
Bracers Armor class, Strength 
Ring Armor class, Strength, Constitution, Wisdom, Charisma 
Belt Constitution, Strength 
Boots Armor class, Dexterity  
Sword, Bow Attack bonus, Damage bonus 

 



 3

Assignment submission requirements and procedure 
 
You are expected to submit a group of C++ files implementing a solution to one of the problems stated above 
(Part 1, 2 or 3). Your code must include a driver that allows the marker to compile and execute your code on a 
standard lab computer. The driver should use the Builder pattern to create character/map/chest objects and 
somehow demonstrate that the code conforms to the above-mentioned specifications, as well as following the 
applicable d20 game rules, and that the Builder pattern is correctly implemented. The use of unit testing such as 
cppUnit is not mandatory but encouraged. Along with your submitted code, you have to explain your analysis and 
design. Briefly explain the game rules involved in the creation of you assignment, citing external sources for 
specific game rules. Briefly describe the design you adopted as a solution. The design description can be backed-
up, for example, by doxygen-generated documentation, regular code comments, or a simple diagram. The focus 
of this course being the coding aspect of software development, you are discouraged to submit extensive 
documentation.      

 
You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment 
Submission system under the category “programming assignment 3”. Late assignments are not accepted. The file 
submitted must be a .zip file containing all your code. You are allowed to use any C++ programming environment 
as long as they are available in the labs. No matter what programming environment you are using, you are 
responsible to give proper compilation and usage instructions to the marker in a README file to be included in 
the zip file.     
 

Evaluation Criteria  
 
Solution:  
 Clarity and correctness of statement of game rules involved:  5 pts  
 Compliance of solution with stated problem:                20 pts 

Simplicity and appropriateness of the solution:       5 pts 
Clarity of design description:          5 pts      

Programming style:  
Code readability: naming conventions, clarity:       5 pts     
Coding style: .h and .cpp files, use of comments:   5 pts     

Relevance of driver and presented results:         5 pts 
Total                    50 pts 
 


