
ratio letter
100.00% 1 Part 1 : Player Strategy Pattern
10.00% 1.1 Knowledge/Correctness of Game Rules
5.00% A 1.1.1 Students were fully aware and did not have any misconception about Warzone game rules during the presentation

5.00% A 1.1.2 Code is implementing game mechanics that is according the Warzone game and the assignment description

60.00% 1.2 Compliance of solution with Stated Problem
6.67% A 1.2.1 The Human player uses user interaction to implement all decisions available in the game (all kinds of orders, play cards).

6.67% A 1.2.2 The Benevolent player deploys on its weaker territories.

6.67% A 1.2.3 The Aggressive player strategy uses all its available armies to attack when possible

6.67% A 1.2.4 The Aggressive player strategy always deploys on its strongest territory

6.67% A 1.2.5 The Neutral player strategy cannot issue orders

6.67% A 1.2.6 The solution to implement the player strategies is using the structure and behavior of the strategy pattern.

6.67% A 1.2.7 All classes implement a correct copy constructor, assignment operator, and stream insertion operator.

6.67% A 1.2.8 Absence of memory leaks.

6.67% A 1.2.9 All data members of user-defined class type are pointers

10.00% 1.3 Modularity of Solution
1.67% A 1.3.1 The player strategies are implemented in a file duo named PlayerStrategies.cpp/PlayerStrategies.h

1.67% A 1.3.2 Each strategy is implemented as a subclass of a Strategy class, forllowing the Strategy design pattern

1.67% A 1.3.3 The issueOrder() method of the player delegates to the issueOrder() method of the player's Strategy data member

1.67% A 1.3.4 The player contains a data member of type PlayerStrategy.

1.67% A 1.3.5 The Player constains a member function setStrategy() that enables it to change its strategy dynamically at runtime.

1.67% A 1.3.6 The Player class is still in the file duo named Player.cpp/Player.h

10.00% 1.4 Mastery of Language/Tools/Libraries
5.00% A 1.4.1 The program never crashed during the demonstration or code review

5.00% A 1.4.2 Students were very clear in technical discussions during the demonstration

10.00% 1.5 Code readability: name conventions, clarity of code, use of comments
5.00% A 1.5.1 All user-defined classes, methods, free functions, or operators are documented

5.00% A 1.5.2 Code is clear and there is zero presence of commented-out code

100.00% 2 Part 2 : File Reader Adapter
10.00% 2.1 Knowledge/Correctness of Game Rules
5.00% A 2.1.1 Students were fully aware and did not have any misconception about Warzone game rules during the presentation

5.00% A 2.1.2 Code is allowing to read both Domination and Conquest files that enables the game to run using the Warzone game rules

60.00% 2.2 Compliance of solution with Stated Problem
12.00% A 2.2.1 The GameEngine can now read either Domination or Conquest map files and play a game using either of the map files.

12.00% A 2.2.2 The solution to implement the reading of Conquest files is using the structure and behavior of the Adapter pattern.

12.00% A 2.2.3 All classes implement a correct copy constructor, assignment operator, and stream insertion operator.

12.00% A 2.2.4 Absence of memory leaks.

12.00% A 2.2.5 All data members of user-defined class type are pointers

10.00% 2.3 Modularity of Solution
2.50% A 2.3.1 The adapter and adaptee classes are implemented in the pre-existing MapLoader.cpp/MapLoader.h file duo

2.50% A 2.3.2 There is an adaptee class named ConquesFileReader that implements the reading of Conquest map files.

2.50% A 2.3.3 There is an adapter class names ConquestFileReaderAdapter that contains a member of type ConquestFileReader

2.50% A 2.3.4 The ConquestFileReaderAdapter is a subclass of the original Domination file reader class.

10.00% 2.4 Mastery of Language/Tools/Libraries
5.00% A 2.4.1 The program never crashed during the demonstration or code review

5.00% A 2.4.2 Students were very clear in technical discussions during the demonstration

10.00% 2.5 Code readability: name conventions, clarity of code, use of comments
5.00% A 2.5.1 All user-defined classes, methods, free functions, or operators are documented

5.00% A 2.5.2 Code is clear and there is zero presence of commented-out code

