
Marker:

Programming language features as implemented and tested in the assignment
impl. test.

X X class declarations

X X data member declarations

X X member function declarations

X X inheritance list

X X private/public members

X X free function definitions

X X member function definitions

X X variable declaration block

X X int, float, variable declarations

X X array variable declarations

X X if statement

X X while statement

X X read/write statement

X X return statement

X X assignment statement

X X complex idnest structures involving [] and (), and expressions as array indexes

X X complex expressions involving addop, multop, relop, unaryop, idnest, function calls

Notes %mark ratio letter
0% 100.00%
0% 10.00% 1 Document Section 1 - Attribute grammar 1 : :

0% 0.00% X 1.1 Clarity - presentation of grammar and the problems/transformations 1.1 : X :

0% 0.00% X 1.2 Completeness - all problems with the grammar are listed/explained 1.2 : X :

0% 0.00% X 1.3 Statement of changed specification versus original specifications in the assignment statement (if applicable) 1.3 : X :

0% 10.00% 2 Document Section 2 - Description/rationale of the overall structure of the solution and the roles of the individual components used in the applied solution to the stated problem 2 : :

0% 0.00% X 2.1 Clarity - presentation of the design is clear and understandable 2.1 : X :

0% 0.00% X 2.2 Completeness - all implemented components are mentioned in the design description 2.2 : X :

0% 4.00% 3 Document Section 3 - Description of tools/libraries/techniques used in the analysis/implementation. Description of other tools that might have been used. Justification of why the chosen tools were selected 3 : :

0% 0.00% X 3.1 All tools used in the analysis/implementation are mentioned. 3.1 : X :

0% 0.00% X 3.2 Justification for all tools. 3.2 : X :

0% 40.00% 4 Correct implementation of syntax-directed translation implemented as part of a top-down predictive parser following the grammar given in this handout, which is generating and AST (not a parse tree) data structure that correctly represents any valid program given in input. 4 : :

0% 0.00% X 4.1 class declarations 4.1 : X :

0% 0.00% X 4.2 data member declarations 4.2 : X :

0% 0.00% X 4.3 member function declarations 4.3 : X :

0% 0.00% X 4.4 inheritance list 4.4 : X :

0% 0.00% X 4.5 private/public members 4.5 : X :

0% 0.00% X 4.6 free function definitions 4.6 : X :

0% 0.00% X 4.7 member function definitions 4.7 : X :

0% 0.00% X 4.8 variable declaration block 4.8 : X :

0% 0.00% X 4.9 int, float, variable declarations 4.9 : X :

0% 0.00% X 4.10 array variable declarations 4.10 : X :

0% 0.00% X 4.11 if statement 4.11 : X :

0% 0.00% X 4.12 while statement 4.12 : X :

0% 0.00% X 4.13 read/write statement 4.13 : X :

0% 0.00% X 4.14 return statement 4.14 : X :

0% 0.00% X 4.15 assignment statement 4.15 : X :

0% 0.00% X 4.16 complex idnest structures involving [] and (), and expressions as array indexes 4.16 : X :

0% 0.00% X 4.17 complex expressions involving addop, multop, relop, unaryop, idnest, function calls 4.17 : X :

0% 10.00% 5 Output - outast file: Output of clearly readable AST in a file either in a text file or in dot format file 5 : :

0% 0.00% X 5.1 Clarity - file is clearly readable if it is a text file or is successfully readable by a dot reader to render the AST as a graph 5.1 : X :

0% 0.00% X 5.2 Correctness - the graph is an AST, as opposed to a parse tree. 5.2 : X :

0% 0.00% X 5.3 Completeness - all syntactical constructs' representations are output to a file 5.3 : X :

0% 20.00% 6 Test cases - completeness of testing (in addition to the provided files) 6 : :

0% 0.00% X 6.1 class declarations 6.1 : X :

0% 0.00% X 6.2 data member declarations 6.2 : X :

0% 0.00% X 6.3 member function declarations 6.3 : X :

0% 0.00% X 6.4 inheritance list 6.4 : X :

0% 0.00% X 6.5 private/public members 6.5 : X :

0% 0.00% X 6.6 free function definitions 6.6 : X :

0% 0.00% X 6.7 member function definitions 6.7 : X :

0% 0.00% X 6.8 variable declaration block 6.8 : X :

0% 0.00% X 6.9 int, float, variable declarations 6.9 : X :

0% 0.00% X 6.10 array variable declarations 6.10 : X :

0% 0.00% X 6.11 if statement 6.11 : X :

0% 0.00% X 6.12 while statement 6.12 : X :

0% 0.00% X 6.13 read/write statement 6.13 : X :

0% 0.00% X 6.14 return statement 6.14 : X :

0% 0.00% X 6.15 assignment statement 6.15 : X :

0% 0.00% X 6.16 complex idnest structures involving [] and (), and expressions as array indexes 6.16 : X :

0% 0.00% X 6.17 complex expressions involving addop, multop, relop, unaryop, idnest, function calls 6.17 : X :

0% 6.00% 7 Successful/correct use of tools/libraries/techniques in the analysis/implementation. 7 : :

0% 0.00% X 7.1 The program never crashes or throws exceptions 7.1 : X :

0% 0.00% X 7.2 Tools presented in the labs are used appropriately, or comparable tools are used appropriately 7.2 : X :

Marker instructions
Enter values only in the red cells. Everything else is calculated automatically.

In Column D, enter either A, B, C, or F for each marking element

Enter notes in column A. These notes will be then automatically uploaded on moodle as feedback to the students.

Grading rubric ratio Score ratio Total marks
Designer instructions Document Section 1 - Attribute grammar 5 0.00 0.00 0.00

Add/remove some lines with red cells to add/remove evaluation criteria Document Section 2 - Description/rationale of the overall structure of the solution and the roles of the individual components used in the applied solution to the stated problem5 0.00 0.00 0.00

When you add lines, add them only in the middle of the area, or else the calculation is going to be wrong Document Section 3 - Description of tools/libraries/techniques used in the analysis/implementation. Description of other tools that might have been used. Justification of why the chosen tools were selected2 0.00 0.00 0.00

To add lines, add a new row, then copy into it one of the existing rows. Correct implementation of syntax-directed translation implemented as part of a top-down predictive parser following the grammar given in this handout, which is generating and AST (not a parse tree) data structure that correctly represents any valid program given in input.20 0.00 0.00 0.00

Output - outast file: Output of clearly readable AST in a file either in a text file or in dot format file 5 0.00 0.00 0.00

Test cases - completeness of testing (in addition to the provided files) 10 0.00 0.00 0.00

Successful/correct use of tools/libraries/techniques in the analysis/implementation. 3 0.00 0.00 0.00

Total 50 0.00 0.00

