
 1 

Concordia University 
Department of Computer Science  

and Software Engineering 
 

Advanced program design with C++ 
COMP 345 --- Fall 2016 

 

Individual assignment #2 
 

Deadline:   Sunday, November 6th, 2016 
Evaluation:   5% of final mark 

Late submission:  not accepted 
Teams:   this is an individual assignment 

 

Problem statement  

 

This is an individual assignment. It is divided into four distinct parts. Each individual student is expected to select 
one of these parts as his/her assignment. Each part is about the development of a part of the topic presented as 
the team project. Even though it is about the development of a part of your team project, each assignment has to 

be developed independently of the others and is not to be presented as an integrated part of the team project, or 
include the implementation of one another's aspects. Each member of your team is free to choose to do any part, 
and is expected to follow a different design approach than the other team members that have selected the same 

assignment topic. Note that the following descriptions describe the baseline of the assignment, and are related to 
the project description (see the course web page for a full description of the team project).  
 

Part 1: Character observer 
 
Implement an Observer pattern for the Character class as implemented in assignment 1. Make the Character 

class an Observable class, then implement a Character Observer class that displays the character’s view. You 
may use whatever library or solution you see fit to display the character’s view (GUI or not). Provide a driver class 
that creates a character, plugs a Character Observer to it, then changes some values in the character, triggering 

the re-display of the character view each time a value is changed in the character, using the observer pat tern 
mechanism. 
 

Part 2: Map observer  
 
Implement an Observer pattern for the Map class as implemented in assignment 1. Make the Map class an 

Observable class, then implement a Map Observer class that displays the map’s view. You may use whatever 
library or solution you see fit to display the map’s view (GUI or not). Provide a driver class that creates a map,  
plugs a Map Observer to it, then changes some values in the map (e.g. moving the character on the map),  

triggering the re-display of the map view each time a value is changed in the map, using the observer pattern 
mechanism. 
 

Part 3: Interactive map/campaign editor 
 
Develop a user-interactive C++ component that enables the user to create/edit a maps and connect them in a 

campaign. The maps and campaigns should have the specifications and constraints as stated in the project 
description and the first assignment. Using the map editor, the user should be able to 1) create new maps 2) 
define the adjacency relationships between maps to create campaigns. The editor should allow the user to either 

create a new map/campaign from scratch or load and edit an existing map/campaign previously saved as a file. 
The editor should allow the user to save the edited map/campaign to a file (every map and every campaign 
should be saved as a separate file). Verification of map/campaign validity (as expressed in project description and 

in the first assignment) should be applied before the file is loaded or saved.    
 



 2 

Part 4: Map builder  
 

Use the builder pattern to create a map object by reading it from a file. Create two concrete builders: 1) A 
concrete builder that reads the map as saved. This is going to be used by the map editor. 2) A concrete builder 
that reads a map from a file and adapts its content to a specific level. This is going to be used during game play 

every time a new map is entered by the character. Upon creating the map, this concrete builder will adapt all 
characters on the map to the level given in input (e.g. the level of the character entering the map), as well as 
adapting all items contained in the map.   

 

Assignment submission requirements and procedure 

 

You are expected to submit a group of C++ files implementing a solution to one of the problems stated above 
(Part 1, 2, 3 or 4). Your code must include a driver that allows the marker to compile and execute your code on a 
standard lab computer. The driver should simply create a character, map, item container, or dice object and 

somehow demonstrate that the character, map, item container or dice was created following the above-mentioned 
specifications, as well as following the applicable d20 game rules.  
 

For each part, you must design a CppUnit test suite composed of at least two relevant test cases. The test cases 
you provide must be documented. The header file(s) of your implementation must include in Doxygen 
documentation a statement of: 1) the game rules involved in their respective implementation, 3) a brief description 

of your design, 3) the libraries used in the code, including a rationale for the selection of these libraries. The 
submitted code must include a driver (i.e. a main function) that demonstrates possible uses of the implemented 
code.  The focus of this course being the coding aspect of software development, you are discouraged to submit  

external documentation.           
 
You have to submit your assignment before midnight on the due date using the ENCS Electronic Assignment 

Submission system under the category “programming assignment 2”. Late assignments are not accepted. The file 
submitted must be a .zip file containing all your code. You are allowed to use any C++ programming environment 
as long as they are usable in the labs. No matter what programming environment you are using, you are 

responsible to give proper compilation and usage instructions to the marker in a README file to be included in 
the zip file.     
 

 



 3 

Evaluation Criteria  
 

Analysis:  
 Completeness/correctness of statement of game rules involved (Doxygen) : 5 pts (indicator 4.1) 
Design: 

 Compliance of solution with stated problem and game rules:                 15 pts (indicator 4.4) 
Simplicity and appropriateness of the solution:        7 pts (indicator 4.3) 
Clarity/completeness of Doxygen documentation:        3 pts (indicator 7.3)    

Use of tools: 
 Rationale for selection of tools/libraries used:      2 pts (indicator 5.2) 

Proper use of language/tools/libraries:      3 pts (indicator 5.1) 

Implementation: 
Code readability: naming conventions, clarity, use of comments:     2 pts (indicator 7.3) 
Coding style: .h and .cpp files:         2 pts (indicator 5.1) 

 Relevance of test cases provided:      4 pts (indicator 4.4) 
Relevance of driver and completeness of presented results:       7 pts (indicator 4.4) 

Total                   50 pts (indicator 6.4) 
 


