
Submitted by: 
Marker: 

Notes %mark ratio letter
100% 100.00% 1 Part 1 : Map 1 : 

100% 10.00% 1.1 Knowledge/Correctness of Game Rules 1.1 : 

100% 5.00% A 1.1.1 Students are fully aware of the correct Warzone game rules to implement during the presentation 1.1.1 : 

100% 5.00% A 1.1.2 Code is implementing game mechanics that is fully according the Warzone game 1.1.2 : 

100% 60.00% 1.2 Compliance of solution with Stated Problem 1.2 : 

100% 5.45% A 1.2.1 Territories are associated with players 1.2.1 : 

100% 5.45% A 1.2.2 Territories contain armies 1.2.2 : 

100% 5.45% A 1.2.3 Presence of a Map::validate() method

100% 5.45% A 1.2.4 Map is a collection of Territories, Continents are a subset of the Territories in the graph 

100% 5.45% A 1.2.5 Map can be made to represent any map configuration using a graph data structure with Territories as nodes, and pointers to Territories as edges

100% 5.45% A 1.2.6 All data members of user-defined class type are of pointer type.

100% 5.45% A 1.2.7 Classes declared in header file. Functions implemented in cpp file. Absence of inline functions 1.2.7 : 

100% 5.45% A 1.2.8 All classes implement a correct copy constructor, assignment operator, and stream insertion operator.

100% 5.45% A 1.2.9 Absence of memory leaks. 1.2.9 : 

100% 5.45% A 1.2.10 Driver demonstrates that the Map::validate() method checks that 1) a map is a connected graph 2) a continent is a connected subgraph 3) each country belongs to one and only one continent. 1.2.10 : 

100% 5.45% A 1.2.11 Driver clearly demonstrates that various valid/invalid Domincation maps files can be read, resulting in the creation and validation of different maps 1.2.11 : 

100% 10.00% 1.3 Modularity of Solution 1.3 : 

100% 5.00% A 1.3.1 All is implemented in the file duo named Map.cpp/Map.h, and no other files. 1.3.1 : 

100% 5.00% A 1.3.2 Presence of classes named Territory, Map, and MapLoader; usage of class Player to signify Territory ownership

100% 10.00% 1.4 Mastery of Language/Tools/Libraries 1.4 : 

100% 5.00% A 1.4.1 The program never crashed during the demonstration or code review 1.4.1 : 

100% 5.00% A 1.4.2 Students were very clear in technical discussions during the demonstration 1.4.2 : 

100% 10.00% 1.5 Code readability: name conventions, clarity of code, use of comments 1.5 : 

100% 5.00% A 1.5.1 All user-defined classes, methods, free functions, and operators are documented 1.5.1 : 

100% 5.00% A 1.5.2 Absence of commented-out code 1.5.2 : 

 : 

100% 100.00% 2 Part 2 : Player 2 : 

100% 10.00% 2.1 Knowledge/Correctness of Game Rules 2.1 : 

100% 5.00% A 2.1.1 Students are fully aware of the correct Warzone game rules to implement during the presentation 2.1.1 : 

100% 5.00% A 2.1.2 Code is implementing game mechanics that is fully according the Warzone game 2.1.2 : 

100% 60.00% 2.2 Compliance of solution with Stated Problem 2.2 : 

100% 6.67% A 2.2.1 A player includes a collection of territories - using the Territory class 2.2.1 : 

100% 6.67% A 2.2.2 A player includes a hand of cards - using the Hand class 2.2.2 : 

100% 6.67% A 2.2.3 A player inlcludes a list of orders - using the OrderList class 2.2.3 : 

100% 6.67% A 2.2.4 Player class includes toAttack and toDefend methods that return a list of orders 2.2.4 : 

100% 6.67% A 2.2.5 Player class includes issueOrder method that creates an Order object and places it in the list of orders of the player 2.2.5 : 

100% 6.67% A 2.2.6 All data members of user-defined class type are of pointer type.

100% 6.67% A 2.2.7 Classes declared in header file. Functions implemented in cpp file. Absence of inline functions

100% 6.67% A 2.2.8 All classes implement a correct copy constructor, assignment operator, and stream insertion operator. 2.2.8 : 

100% 6.67% A 2.2.9 Absence of memory leaks. 2.2.9 : 

100% 6.67% A 2.2.10 Driver clearly demonstrates that toAttack and toDefend can be called and return a list of Territories

100% 6.67% A 2.2.11 Driver clearly demonstrates that issueOrder can be called and will result in an order to be placed in the list of orders of the player

100% 6.67% A 2.2.12 Driver that clearly demonstrates that a player stores a hand of cards

100% 6.67% A 2.2.13 Driver that clearly demonstrates that a player stores a list of owned territories

100% 10.00% 2.3 Modularity of Solution 2.3 : 

100% 5.00% A 2.3.1 All is implemented in the file duo named Player.cpp/Player.h 2.3.1 : 

100% 5.00% A 2.3.2 Presence of Player class; usage of classes Hand and OrderList 2.3.2 : 

100% 10.00% 2.4 Mastery of Language/Tools/Libraries 2.4 : 

100% 5.00% A 2.4.1 The program never crashed during the demonstration or code review 2.4.1 : 

100% 5.00% A 2.4.2 Students were very clear in technical discussions during the demonstration 2.4.2 : 

100% 10.00% 2.5 Code readability: name conventions, clarity of code, use of comments 2.5 : 

100% 5.00% A 2.5.1 All user-defined classes, methods, free functions, and operators are documented 2.5.1 : 

100% 5.00% A 2.5.2 Absence of commented-out code 2.5.2 : 

 : 

100% 100.00% 3 Part 3 : Orders list 3 : 

100% 10.00% 3.1 Knowledge/Correctness of Game Rules 3.1 : 

100% 5.00% A 3.1.1 Students are fully aware of the correct Warzone game rules to implement during the presentation 3.1.1 : 

100% 5.00% A 3.1.2 Code is implementing game mechanics that is fully according the Warzone game 3.1.2 : 

100% 60.00% 3.2 Compliance of solution with Stated Problem 3.2 : 

100% 5.45% A 3.2.1 Orders of any subclass can be created by the player and placed sequentially in the list of orders 3.2.1 : 

100% 5.45% A 3.2.2 Orders can be moved in the list using the move() method 3.2.2 : 

100% 5.45% A 3.2.3 Orders can be removed from the list using the remove() method 3.2.3 : 

100% 5.45% A 3.2.4 Orders have an execute() method 3.2.4 : 

100% 5.45% A 3.2.5 All data members of user-defined class type are of pointer type.

100% 5.45% A 3.2.6 Classes declared in header file. Functions implemented in cpp file. Absence of inline functions

100% 5.45% A 3.2.7 All classes implement a correct copy constructor, assignment operator, and stream insertion operator.

100% 5.45% A 3.2.8 Absence of memory leaks.

100% 5.45% A 3.2.9 Driver clearly demonstrates that orders of every kind can be created and placed in an OrdersList object 3.2.9 : 

100% 5.45% A 3.2.10 Driver clearly demonstrates that orders can be moved and deleted using move() and remove() 3.2.10 : 

100% 5.45% A 3.2.11 Driver clearly demonstrates that orders can be valided and executed using validate() and execute() 3.2.11 : 

100% 10.00% 3.3 Modularity of Solution 3.3 : 

100% 5.00% A 3.3.1 All is implemented in the file duo Orders.h/Orders.cpp 3.3.1 : 

100% 5.00% A 3.3.2 Presence of OrderList, and Order classes. Presence of Deploy, Advance, Bomb, Blockade, Airlift, and Negotiate as subclasses of the Order class. 3.3.2 : 

100% 10.00% 3.4 Mastery of Language/Tools/Libraries 3.4 : 

100% 5.00% A 3.4.1 The program never crashed during the demonstration or code review 3.4.1 : 

100% 5.00% A 3.4.2 Students were very clear in technical discussions during the demonstration 3.4.2 : 

100% 10.00% 3.5 Code readability: name conventions, clarity of code, use of comments 3.5 : 

100% 5.00% A 3.5.1 All user-defined classes, methods, free functions, and operators are documented 3.5.1 : 

100% 5.00% A 3.5.2 Absence of commented-out code 3.5.2 : 

 : 

100% 100.00% 4 Part 4 : Cards deck/hand 4 : 

100% 10.00% 4.1 Knowledge/Correctness of Game Rules 4.1 : 

100% 5.00% A 4.1.1 Students are fully aware of the correct Warzone game rules to implement during the presentation 4.1.1 : 

100% 5.00% A 4.1.2 Code is implementing game mechanics that is fully according the Warzone game 4.1.2 : 

100% 60.00% 4.2 Compliance of solution with Stated Problem 4.2 : 

100% 6.00% A 4.2.1 A Deck contains a collection of Cards 4.2.1 : 

100% 6.00% A 4.2.2 A Deck has a method draw() that removes the card from the Deck and returns that card 4.2.2 : 

100% 6.00% A 4.2.3 A Hand contains a collection of Cards 4.2.3 : 

100% 6.00% A 4.2.4 A Card has a play() method, which creates an Order object and places it in the Players' list of orders, removes the card from the Hand, and places it back in the Deck. 4.2.4 : 

100% 6.00% A 4.2.5 All data members of user-defined class type are of pointer type. 4.2.5 : 

100% 6.00% A 4.2.6 Classes declared in header file. Functions implemented in cpp file. Absence of inline functions 4.2.6 : 

100% 6.00% A 4.2.7 All classes implement a correct copy constructor, assignment operator, and stream insertion operator.

100% 6.00% A 4.2.8 Absence of memory leaks.

100% 6.00% A 4.2.9 Driver clearly demonstrates that draw() effectively removes the drawn card from the deck and returns a Card. 

100% 6.00% A 4.2.10 Driver clearly demonstrates that play() creates an Order object and places it in the Players' list of orders, removes the card from the Hand, and places it back in the Deck. 

100% 10.00% 4.3 Modularity of Solution 4.3 : 

100% 5.00% A 4.3.1 All is implemented in the file duo Cards.h/Cards.cpp 4.3.1 : 

100% 5.00% A 4.3.2 Presence of Card, Deck, and Hand classes; usage of classes Player, Order, and OrderList 4.3.2 : 

100% 10.00% 4.4 Mastery of Language/Tools/Libraries 4.4 : 

100% 5.00% A 4.4.1 The program never crashed during the demonstration or code review 4.4.1 : 

100% 5.00% A 4.4.2 Students were very clear in technical discussions during the demonstration 4.4.2 : 

100% 10.00% 4.5 Code readability: name conventions, clarity of code, use of comments 4.5 : 

100% 5.00% A 4.5.1 All user-defined classes, methods, free functions, or operators are documented 4.5.1 : 

100% 5.00% A 4.5.2 Code is clear and there is zero presence of commented-out code 4.5.2 : 

 : 

100% 100.00% 5 Part 5 : Game engine 5 : 

100% 10.00% 5.1 Knowledge/Correctness of Game Rules 5.1 : 

100% 5.00% A 5.1.1 Students are fully aware of the correct Warzone game rules to implement during the presentation 5.1.1 : 

100% 5.00% A 5.1.2 Code is implementing game mechanics that is fully according the Warzone game 5.1.2 : 

100% 60.00% 5.2 Compliance of solution with Stated Problem 5.2 : 

100% 6.00% A 5.2.1 The state of the game is held as a data member of the GameEngine class 5.2.1 : 

100% 6.00% A 5.2.2 Console input is used to get commands from the user 5.2.2 : 

100% 6.00% A 5.2.3 Depending on the command and the state, a transition is made to another state by changing the value held by the state variable. 5.2.3 : 

100% 6.00% A 5.2.4 If the user enter an invalid command for the current state, the command is rejected and an error message is output to the console. 5.2.4 : 

100% 6.00% A 5.2.5 The state transitions are implemented exactly as depicted in the assignment handout. 5.2.5 : 

100% 6.00% A 5.2.6 All data members of user-defined class type are of pointer type. 5.2.6 : 

100% 6.00% A 5.2.7 Classes declared in header file. Functions implemented in cpp file. Absence of inline functions

100% 6.00% A 5.2.8 All classes implement a correct copy constructor, assignment operator, and stream insertion operator.

100% 6.00% A 5.2.9 Absence of memory leaks. 5.2.9 : 

100% 6.00% A 5.2.10 Driver clearly demonstrates that commands can be used to navigate through the different states as depicted in the assignment handout.   5.2.10 : 

100% 10.00% 5.3 Modularity of Solution 5.3 : 

100% 5.00% A 5.3.1 Implemented in a file duo named GameEngine.cpp/GameEngine.h 5.3.1 : 

100% 5.00% A 5.3.2 Presence of GameEngine class 5.3.2 : 

100% 10.00% 5.4 Mastery of Language/Tools/Libraries 5.4 : 

100% 5.00% A 5.4.1 The program never crashed during the demonstration or code review 5.4.1 : 

100% 5.00% A 5.4.2 Students were very clear in technical discussions during the demonstration 5.4.2 : 

100% 10.00% 5.5 Code readability: name conventions, clarity of code, use of comments 5.5 : 

100% 5.00% A 5.5.1 All user-defined classes, methods, free functions, or operators are documented 5.5.1 : 

100% 5.00% A 5.5.2 Code is clear and there is zero presence of commented-out code 5.5.2 : 

Marker instructions
Enter values only in the red cells. Everything else is calculated automatically. 

In Column D, enter either A, B, C, or F for each marking element

Enter notes in column A

If there is an entire part that has been agreed to not be graded, delete one of the columns in the green table (Part 1 to Part 5) Grading rubric ratio Part 1 Part 2 Part 3 Part 4 Part 5 Score ratio Total marks
Knowledge/Correctness of Game Rules 2 2.00 2.00 2.00 2.00 2.00 1.00 2.00

Designer instructions Compliance of solution with Stated Problem 12 12.00 12.00 12.00 12.00 12.00 1.00 12.00

Add/remove some lines with red cells to add/remove evaluation criteria Modularity of Solution 2 2.00 2.00 2.00 2.00 2.00 1.00 2.00

When you add lines, add them only in the middle of the area, or else the calculation is going to be wrong Mastery of Language/Tools/Libraries 2 2.00 2.00 2.00 2.00 2.00 1.00 2.00

To add lines, add a new row, then copy into it one of the existing rows. Code readability: name conventions, clarity of code, use of comments 2 2.00 2.00 2.00 2.00 2.00 1.00 2.00

To remove parts, remove the entire block above, then remove the corresponding column in the green table to the right Total 20 4.00 4.00 4.00 4.00 4.00 20.00
To add more than 5 parts, it's more compilcated...

All notes


