
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Course description

Project description

Introduction to compilation

Joey Paquet, 2000-2019

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Course description

Joey Paquet, 2000-2019

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Instructor’s name: Instructor’s name: Instructor’s name: Instructor’s name: Joey Paquet

• Position: Position: Position: Position: Associate Professor, Department of Computer Science and Software

Engineering

• Teaching topics: Teaching topics: Teaching topics: Teaching topics: Programming languages, Compiler design, Software engineering

and programming methodology

• Research topics: Research topics: Research topics: Research topics: Design and implementation of programming languages, Parallel

and/or distributed computing, Demand-driven computation models, Context-

driven computation models

• Contact information: Contact information: Contact information: Contact information:

• Web: www.cse.concordia.ca/~paquet

• E-mail: paquet@cse.concordia.ca

• Office: EV 3-221

Course description

Joey Paquet, 2000-2019

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• COMP 442/6421 COMP 442/6421 COMP 442/6421 COMP 442/6421 ---- Compiler DesignCompiler DesignCompiler DesignCompiler Design (4 credits)

• Prerequisites (COMP442):Prerequisites (COMP442):Prerequisites (COMP442):Prerequisites (COMP442): COMP 228 or SOEN 228 or COEN 311; COMP 335;

COMP 352 or COEN 352

Prerequisites (COMP6421):Prerequisites (COMP6421):Prerequisites (COMP6421):Prerequisites (COMP6421): COMP 5201, 5361, 5511.

• Compiler organization and implementation. Programming language constructs,

their syntax and semantics. Syntax directed translation, code optimization. Run-

time organization of programming languages. Project. Lectures: three hours per

week. Laboratory: two hours per week.

Calendar description

Joey Paquet, 2000-2019

4COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• TopicTopicTopicTopic

• Compiler organization and implementation.

• Lexical, syntactic and semantic analysis, code generation.

• OutlineOutlineOutlineOutline

• Design and implementation of a simple compiler.

• Lectures related to the project.

• GradingGradingGradingGrading

• Assignments (4) : 40%

• Final Examination : 30%

• Final Project : 30%

• Letter grading schemeLetter grading schemeLetter grading schemeLetter grading scheme

• Only one grading scheme for undergraduate and

graduate.

• Letter grading scheme is based on a normal curve based

on the class average.

Course description

Joey Paquet, 2000-2019

5COMP 442/6421 – Compiler Design

UndergraduateUndergraduateUndergraduateUndergraduate GraduateGraduateGraduateGraduate

A+A+A+A+ A+A+A+A+

AAAA AAAA

AAAA---- AAAA----

B+B+B+B+ B+B+B+B+

BBBB BBBB

BBBB---- BBBB----

C+C+C+C+ CCCC

CCCC CCCC

CCCC---- CCCC

D+D+D+D+ CCCC

DDDD CCCC

DDDD---- CCCC

FFFF FFFF

Concordia University Department of Computer Science and Software Engineering

• Design and coding of a simple compiler

• Individual work

• Divided in four assignments

• Final project is graded at the end of the semester, during a final demonstration

• Testing is VERY important

• A complete compiler is a fairly complex and large program: from 10,000 to

1,000,000 lines of code.

• Programming one will force you to go over your limits.

• It uses many elements of the theoretical foundations of Computer Science.

• It will probably be the most complex program you have ever written.

Project description

Joey Paquet, 2000-2019

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Introduction to compilation

Joey Paquet, 2000-2019

7COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• A compiler is a translation system.

• It translates programs written in a high level language into a lower level language,

generally machine (binary) language.

• The initial source code is essentially a stream of characters.

• The task of the compiler is to figure out its meaning and translate this meaning

into a program that is understandable by the computer, preserving the same

meaning.

Introduction to compilation

Joey Paquet, 2000-2019

8COMP 442/6421 – Compiler Design

source

code
compiler

target

code

Source language Target languageTranslator

Concordia University Department of Computer Science and Software Engineering

• The only language that the processor understands is binary.

• A binary program is segmented into words.

• Every binary instruction word is segmented in portions that each have a different

meaning.

a: Operation: Register addition (from a symbol table or op-code table)

b: First operand: register R1

c: Second operand: register R3

d: Destination: register R15

Introduction to compilation

Joey Paquet, 2000-2019

9COMP 442/6421 – Compiler Design

000100000100111111

a b c d

Concordia University Department of Computer Science and Software Engineering

• Assembly language Assembly language Assembly language Assembly language was the first higher level programming language.

000100000100111111 <=> Add R1,R3,R15

• There is a one-to-one correspondence between lines of assembly code and the

machine code lines.

• A op-code table is sufficient to translate assembly language into machine code.

• Compared to binary, it greatly improved the productivityproductivityproductivityproductivity of programmers. Why?Why?Why?Why?

• Though a great improvement, assembly is not ideal:

• Not easy to write

• Even less easy to read and understand

• Extremely architecture-dependent

Introduction to compilation

Joey Paquet, 2000-2019

10COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• A compiler translates a given high-level language into assembler or machine

code.

Introduction to compilation

Joey Paquet, 2000-2019

11COMP 442/6421 – Compiler Design

X=Y+Z; assign to X the value of

the result of adding Z to Y

L 3,Y Load working register with Y

A 3,Z Add Z to working register

ST 3,X Store the result in X

00001001001011 Load working register with Y

00010010010101 Add Z to working register

00100100101001 Store the result in X

Concordia University Department of Computer Science and Software Engineering

• The problems with assembly led to the development
of the first compilers for higher-level programming
languages. Notable among these is the compiler for
the Fortran language.

• IBM Mathematical ForForForFormula TranTranTranTranslating System, later

popularly know as Fortran.

• Originally developed by a team lead by John BackusJohn BackusJohn BackusJohn Backus at

IBMIBMIBMIBM in the 1950s for scientific and engineering

applications on the IBM704, introduced in 1954.

First compilers: Fortran

Joey Paquet, 2000-2019

12COMP 442/6421 – Compiler Design

John Backus

• General-purpose, proceduralproceduralproceduralprocedural, imperativeimperativeimperativeimperative programming language that is

especially suited to numeric computation and scientific computing.

• Originally designed to improve on the economics of programmingeconomics of programmingeconomics of programmingeconomics of programming, as

programming using low level languages had become to be more costly than

the time it actually saved.

• This was an incredible feat, as the theory of compilation was not available at

the time.

Concordia University Department of Computer Science and Software Engineering

• The solution proposed by Fortran was to design a higher levelhigher levelhigher levelhigher level programming

language enabling scientists to write programs using a mathematical mathematical mathematical mathematical

notation/languagenotation/languagenotation/languagenotation/language.

• Great emphasis was put on the efficiencyefficiencyefficiencyefficiency of the translated machine code, which

is still the case today, explaining why Fortran programs are still considered as a

benchmarkbenchmarkbenchmarkbenchmark for execution speed.

• Emphasis was put on number computationsnumber computationsnumber computationsnumber computations. Only much later was it possible to

have Fortran programs manipulate characters or strings, and eventually objects.

First compilers: Fortran

Joey Paquet, 2000-2019

13COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• FeaturesFeaturesFeaturesFeatures introduced by earlier versions of Fortran:

• Comments

• Assignment statement using complex expressions

• Control structures (conditional, loop)

• Subroutines and functions used similarly to the mathematical notion of function

• Formatting of input/output

• Machine-independent code

• Procedural programming

• Arrays

• Early development of compilers

• Showed the importance/possibility/relevance of higher-level programming languages

• Compiler development tools/techniques

• Optimizing compiler

First compilers: Fortran

Joey Paquet, 2000-2019

14COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• In parallel to that, Noam Chomsky, a linguistlinguistlinguistlinguist, was
investigating on the structure of natural languages.

• His studies led the way to the classification of languages
according to their complexity (aka the Chomsky hierarchy)
using the notion of generative grammar.

• This was used by various theoreticians in the 1960s and
early 1970s to design a fairly complete set of solutions to
the parsing problem.

• These solutions have been used ever since.

• As parsing parsing solutions became well understood and
formally defined, efforts were devoted to the
development of parser generatorsparser generatorsparser generatorsparser generators.

• One of the earliest and still most commonly used parser
generators is YACCYACCYACCYACC (Yet Another Compiler Compiler).

• Developed by Stephen C. Johnson in 1975 at Bell Labs.

• Nowadays, many tools exist that can automate the
generation of compiler parts based on the theoretical
foundations elucidated in the late 1960s and early 1970s.

Paving down the road

Joey Paquet, 2000-2019

15COMP 442/6421 – Compiler Design

Noam Chomsky

Stephen C. Johnson

Concordia University Department of Computer Science and Software Engineering

Compilation vs. interpretation

Joey Paquet, 2000-2019

16COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Programming languages can be implemented (i.e. translated/executed) by any of

the following three general methods:

• CompilationCompilationCompilationCompilation: programs are translated directly into machine language by a compiler, the output of

which is later loaded and executed directly by a computer.

• InterpretationInterpretationInterpretationInterpretation: programs are interpreted (i.e. simultaneously translated and executed) by an

interpreter.

• Compilation/Interpretation HybridCompilation/Interpretation HybridCompilation/Interpretation HybridCompilation/Interpretation Hybrid: programs are first translated into an intermediate

representation by a compiler, the output of which is later executed by and interpreter.

• No matter what model is used, the same language translation steps are applied,

except at different times during the translation or execution.

• Languages that delay much of the checking to run-time are called “dynamic

languages”.

Compilation vs. interpretation

Joey Paquet, 2000-2019

17COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• A compilercompilercompilercompiler is a computer program (or set of programs) that transforms source

code written in a computer language (the source language) into another

computer language (the target language, often having a binary form known as

object code).

• The name "compiler" is primarily used for programs that translate source code

from a high-level programming language to a lower level language (e.g., assembly

language or machine code) before execution timebefore execution timebefore execution timebefore execution time.

Compilation

Joey Paquet, 2000-2019

18COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• An interpreted language is a programming language whose programs are not

directly executed by the host CPU but rather executed (or said to be interpretedinterpretedinterpretedinterpreted)

by a software program known as an interpreterinterpreterinterpreterinterpreter.

• Initially, interpreted languages were compiled line-by-line; that is, each line was

compiled as it was about to be executed, and if a loop or subroutine caused

certain lines to be executed multiple times, they would be retranslated every

time. This has become much less common.

• In this case, all the program analysis phases must be happening at run-time,

which can lead to unnecessary overhead.

Interpretation

Joey Paquet, 2000-2019

19COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Nowadays, most interpreted languages use an intermediate representationan intermediate representationan intermediate representationan intermediate representation, as a

bridge between compilation and interpretation.

• In this case, a compiler may output some form of bytecode or threaded code,

which is then executed by an interpreter. Examples include Python, Java, Perl and

Ruby.

• The intermediate representation can be compiled once and for all (as in Java),

each time before execution (as in Perl or Ruby), or each time a change in the

source is detected before execution (as in Python).

Hybrid compilation/interpretation

Joey Paquet, 2000-2019

20COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The source code of the program is often translated to a form that is more

convenientconvenientconvenientconvenient to interpret, which may be some form of machine language for a

virtual machine (such as Java's bytecode).

• An important and timetimetimetime----consumingconsumingconsumingconsuming part of the source code analysis is done beforebeforebeforebefore

the interpretation starts.

• Some program errorserrorserrorserrors are detected beforebeforebeforebefore execution starts, thus making the

execution more robustrobustrobustrobust.

Hybrid compilation/interpretation

Joey Paquet, 2000-2019

21COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• In the early days of computing, language design was heavily influenced by the

decision to use compilation or interpretation as a mode of execution.

• For example, some compiled languages require that programs must explicitly explicitly explicitly explicitly

state the data typestate the data typestate the data typestate the data type of a variable at the time it is declared or first used while some

interpreted languages take advantage of the dynamicdynamicdynamicdynamic aspects of interpretation to

make such declarations unnecessaryunnecessaryunnecessaryunnecessary.

• Such language issues delay the type binding mechanism to runtype binding mechanism to runtype binding mechanism to runtype binding mechanism to run----timetimetimetime. This does

not mean that other program analysis phases must also be delayed to run-time.

• Theoretically, any language may be compiled or interpreted, so this designation is

applied purely because of common implementation practice and not some

underlying property of a language.

• Many languages have been implemented using both compilers and interpreters,

including Lisp, Pascal, C, Basic, and Python.

Which one is better?

Joey Paquet, 2000-2019

22COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Interpreting a language gives implementations some additional flexibilityflexibilityflexibilityflexibility over

compiled implementations. Features that are often easier to implement in

interpreters than in compilers include (but are not limited to):

• platform independence (Java's byte code, for example)

• reflection and reflective usage of the evaluator

• dynamic typing and polymorphism

• The main disadvantage of interpreting is a slower speedslower speedslower speedslower speed of program execution

compared to direct machine code execution on the host CPU. A technique used

to improve performance is justjustjustjust----inininin----timetimetimetime compilation which converts frequently

executed sequences of interpreted instruction to host machine code.

• Another disadvantage is that, as some part of the analysis/translation is done at

runtime, it results in programs that are more likely to fail at runtime, i.e. the

resulting programs are lest robustrobustrobustrobust. This can be somehow alleviated by proper

testing prior to development.

Which one is better?

Joey Paquet, 2000-2019

23COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Compilation process

Joey Paquet, 2000-2019

24COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The compiler is most often one part of a

translation/linkage system.

• For example in C++, the translation process

involves different tools:

• PreprocessorPreprocessorPreprocessorPreprocessor: translate directives that are

generally about file inclusion or processing of

macros.

• Template metaprocessorTemplate metaprocessorTemplate metaprocessorTemplate metaprocessor: process and

translate template declarations into C++

code which is then fed to the compiler.

• Library compilerLibrary compilerLibrary compilerLibrary compiler: process object files and

generate dynamically linked libraries (dll).

• LinkerLinkerLinkerLinker: take the resulting object files, resolve

their cross-references and generate a unified

executable.

Compiler’s environment

Joey Paquet, 2000-2019

25COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Phases of a compiler

Joey Paquet, 2000-2019

26COMP 442/6421 – Compiler Design

front-end

back-end

target code

intermediate
code

syntax treetoken stream annotated
tree

optimized
target code

source code

target code
generation

high-level
optimization

syntactic
analysis

lexical
analysis

semantic
analysis

low-level
optimization

Concordia University Department of Computer Science and Software Engineering

Front end and Back end

Joey Paquet, 2000-2019

27COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The front end analyzes the source code to build an internal representation of the

program, called the intermediate representationintermediate representationintermediate representationintermediate representation.

• It also manages the symbol tablesymbol tablesymbol tablesymbol table, a data structure mapping each symbol in the

source code to associated information such as type and scope.

• The front-end is composed of: Lexical analysis, Syntactic analysis, Semantic
analysis and High-level optimization.

• In most compilers, most of the front-end is driven by the Syntactic analyzerdriven by the Syntactic analyzerdriven by the Syntactic analyzerdriven by the Syntactic analyzer.

• It calls the Lexical analyzer for tokens and generates an abstract syntax tree when
syntactic elements are recognized.

• The generated tree (or other intermediate representation) is then analyzed and
optimized in a separate process.

• Heavily dependent on the source language compiled.Heavily dependent on the source language compiled.Heavily dependent on the source language compiled.Heavily dependent on the source language compiled.

• Independent from the target machine on which the code is eventually executedIndependent from the target machine on which the code is eventually executedIndependent from the target machine on which the code is eventually executedIndependent from the target machine on which the code is eventually executed.

Front end

Joey Paquet, 2000-2019

28COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The term back end is sometimes confused with code generator because of the

included functionality of generating assembly/machine code. Some literature

uses middle end to distinguish the generic analysis and optimization phases in

the back end from the machine-dependent code generator.

• The back-end is composed of: Code generation and Low-level optimization.

• Uses the intermediate representation intermediate representation intermediate representation intermediate representation generated by the front-end to generate

target machine code, which can then potentially be optimized.

• Heavily dependent on the target machineHeavily dependent on the target machineHeavily dependent on the target machineHeavily dependent on the target machine.

• Independent on the source programming language compiledIndependent on the source programming language compiledIndependent on the source programming language compiledIndependent on the source programming language compiled.

Back end

Joey Paquet, 2000-2019

29COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Compilation process phases

Joey Paquet, 2000-2019

30COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Lexical analysis is the process of converting a sequence of characterscharacterscharacterscharacters into a

sequence of tokenstokenstokenstokens.

• A program or function which performs lexical analysis is called a lexical analyzer,

lexer or scanner.

• A scanner often exists as a single function which is called by the parser, whose

functionality is to extract the next token from the source code.

• The lexical specification of a programming language is defined by a set of rules

which defines the scanner, which are understood by a lexical analyzer generator

such as lex or flex. These are most often expressed as regular expressionsregular expressionsregular expressionsregular expressions.

• The lexical analyzer (either generated automatically by a tool like lex, or hand-

crafted) reads the source code as a stream of characters, identifies the lexemes

in the stream, categorizes them into tokens, and outputs a token stream.

• This is called "tokenizing."

• If the scanner finds an invalid token, it will report a lexical error.

Lexical analysis

Joey Paquet, 2000-2019

31COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Distance = rate * time;

[id, distance], [assignop, =], [id, rate], [multop, *], [id, time], [semi, ;]

Lexical analysis

Joey Paquet, 2000-2019

32COMP 442/6421 – Compiler Design

tokenstokenstokenstokens lexeme exampleslexeme exampleslexeme exampleslexeme examples

keyword while, to, do, int, main

identifier i, max, total, i1, i2

literal 123, 12.34, “Hello”

operator =, +, *, and, >, <

punctuation {, }, [,], ;

Concordia University Department of Computer Science and Software Engineering

• Syntax analysis involves parsingparsingparsingparsing the token sequence to identify the syntactic

structure of the program.

• The parser's output is some form of intermediate representation intermediate representation intermediate representation intermediate representation of the program's

structure, typically a parse treeparse treeparse treeparse tree, which replaces the linear sequence of tokens

with a tree structure built according to the rules of a formal grammar formal grammar formal grammar formal grammar which is

used to define the language's syntax.

• This is usually done using a contextcontextcontextcontext----free grammar free grammar free grammar free grammar which recursively defines

components that can make up an valid program and the order in which they

must appear.

• The resulting parse tree is then analyzed, augmented, and transformed by later

phases in the compiler.

• Parsers are written by hand or generated by parser generators, such as Yacc,

Bison, ANTLR or JavaCC, among other tools.

Syntactical analysis

Joey Paquet, 2000-2019

33COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Syntactical analysis

Joey Paquet, 2000-2019

34COMP 442/6421 – Compiler Design

S

id =

idid

*

;

E

E

E

input programinput programinput programinput program

Distance = rate * time;

grammargrammargrammargrammar

S ::= id = E;

E ::= E * E

E ::= id

Concordia University Department of Computer Science and Software Engineering

• Semantic analysis is the phase in which the compiler adds semantic informationsemantic informationsemantic informationsemantic information

to the parse tree and builds the symbol tablesymbol tablesymbol tablesymbol table.

• The symbol table is a dictionary containing information about all the identifiers

defined in a program.

• This phase performs semantic checks such as type checking type checking type checking type checking (checking for type

errors), or static binding static binding static binding static binding (associating variable and function references with their

definitions/types), or definite assignment definite assignment definite assignment definite assignment (requiring all local variables to be

initialized before use), rejecting semantically incorrect programs or issuing

warnings.

• This phase logically follows the parsing phase, and logically precedes the code

generation phase, though it is often possible to fold multiple phases into one

pass over the code in a compiler implementation, which is know as syntaxsyntaxsyntaxsyntax----

directed translationdirected translationdirected translationdirected translation.

• Not all rules defining programming languages can be expressed by context-free

grammars alone, for example semantic validity such as type validity and proper

declaration of identifiers. These rules can be formally expressed with attribute attribute attribute attribute

grammars grammars grammars grammars that implement attribute migration attribute migration attribute migration attribute migration across syntax tree nodes when

necessary.

Semantic analysis

Joey Paquet, 2000-2019

35COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Once semantic analysis is done, semantic translation semantic translation semantic translation semantic translation may traverse the parse tree

and generate an intermediate code representation.

Semantic analysis

Joey Paquet, 2000-2019

36COMP 442/6421 – Compiler Design

z

y

* E

E

E

S

x =

a

+

E

E

;
t1 = a;

t2 = y;

t3 = t1*t2;

t4 = z;

t5 = t3+t4;

x = t5;

x = a*y+z;

Concordia University Department of Computer Science and Software Engineering

• High-level optimization involves an analysis phase for the gathering of program

information from the intermediate representation derived by the front end.

• Typical analyzes are data flow analysis data flow analysis data flow analysis data flow analysis to build use-define chains, dependence dependence dependence dependence

analysisanalysisanalysisanalysis, alias analysisalias analysisalias analysisalias analysis, pointer analysispointer analysispointer analysispointer analysis, etc.

• Accurate analysis is the basis for any compiler optimization.

• The call graph call graph call graph call graph and control flow control flow control flow control flow graph are usually also built during the analysis

phase.

• After analysis, the intermediate language representation is transformed into

functionally equivalent but faster (or smaller) forms.

• Popular optimizations are inline expansioninline expansioninline expansioninline expansion, dead code eliminationdead code eliminationdead code eliminationdead code elimination, constant constant constant constant

propagationpropagationpropagationpropagation, loop transformationloop transformationloop transformationloop transformation, register allocation register allocation register allocation register allocation or even automatic automatic automatic automatic

parallelizationparallelizationparallelizationparallelization.

• At this level, all activities are target machine independent.

High-level optimization

Joey Paquet, 2000-2019

37COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Simplistic example of high-level optimization applied on intermediate code

High-level optimization

Joey Paquet, 2000-2019

38COMP 442/6421 – Compiler Design

t1 = a;

t2 = y;

t3 = t1*t2;

t4 = z;

t5 = t3+t4;

x = t5;

t1 = a*y;

x = t1+z;

Concordia University Department of Computer Science and Software Engineering

• The transformed intermediate language is translated into the output languagetranslated into the output languagetranslated into the output languagetranslated into the output language,

usually the native machine language of the system.

• This involves resource and storage decisions, such as deciding which variables to

fit into registers and memory and the selection and scheduling of appropriate

machine instructions along with their associated addressing modes.

Code generation

Joey Paquet, 2000-2019

39COMP 442/6421 – Compiler Design

t1 = a*y;

x = t1+z;

LE 4,a put a in register 4

ME 4,y multiply by y

AE 4,z add z

STE 4,x store register 4 in x

Concordia University Department of Computer Science and Software Engineering

• The generated target code is analyzed for inefficiencies in the generated code,
such as dead code or code redundancy.

• Care is taken to exploit as much as possible the CPU’s capabilities and the target
machine`s hardware architecture.

• This phase is heavily architecture-dependent.

Low-level optimization

Joey Paquet, 2000-2019

40COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• There are different approaches when considering the intermediate

representations to be used.

• An abstract intermediate representation (e.g. a tree) can be used in the front end

to enable high-level representation/optimization.

• A more concrete intermediate code representation may be used to facilitate code

generation and lower level optimizations.

Intermediate representations

Joey Paquet, 2000-2019

41COMP 442/6421 – Compiler Design

Syntactic

Analyzer

Lexical

Analyzer

Intermediate

Representation

Intermediate

Code

Front EndFront EndFront EndFront End Back EndBack EndBack EndBack End

Object

Code

Object

Code

Object

Code

Object

Code

Lexical

Analyzer

Lexical

Analyzer

Lexical

Analyzer

Syntactic

Analyzer

Syntactic

Analyzer

Syntactic

Analyzer

Intermediate

Representation

Intermediate

Code

Concordia University Department of Computer Science and Software Engineering

• Symbol table

• Central repository of identifiers (variable or function names) used in the compiled

program.

• Contains information such as the data type, function signature, or value in the case of

constants.

• Used to identify undeclared or multiply declared identifiers, as well as type mismatches

or invalid function calls, or use of invalid members for data structures or objects.

• Provides temporary variables for intermediate code generation.

• Run-time system

• Some programming languages concepts raise the need for dynamic memory allocation.

What are they?

• The running program must be able to manage its own memory use.

• Some will require a stack, others a heap. These are managed by the run-time system.

• Other language features may require to dynamically associate certain identifiers with a

specific implementation at run-time. What are they?

• Such features require elaborated dynamic linking systems available at run-time.

Compilation/execution system support

Joey Paquet, 2000-2019

42COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The first C compiler

• It is much easier to write a compiler if a high-level language is available.

• Here if we do one more iteration, we can have a C compiler written in C.

• Or we may then use this compiler to build compilers for other languages.

Writing of early compilers

Joey Paquet, 2000-2019

43COMP 442/6421 – Compiler Design

minimal
C compiler
source

assembler

executable
C compiler
(minimal)

C compiler
(minimal)

full
C compiler
source

executable
C compiler
(full)

Concordia University Department of Computer Science and Software Engineering

• Using the same concept, we can also create compilers for other platforms:

Cross-compilation

Joey Paquet, 2000-2019

44COMP 442/6421 – Compiler Design

Mac C compiler
source code
in Unix C

Unix C
compiler

Mac C complier
usable on Unix

Mac C complier
usable on Unix

Mac C compiler
source code
in Unix C

Mac C complier
usable on Mac

Concordia University Department of Computer Science and Software Engineering

• Two methods:

• Make a strict distinction between front-end and back-end, then use different

back-ends.

• Generate code for a virtual machine, then build a compiler or interpreter to

translate virtual machine code to a specific machine code. That is what we do

in the project.

Retargetable compilers

Joey Paquet, 2000-2019

45COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The first compiler was the assembler, a one-to-one direct translator.

• Complex compilers were written incrementally, first using assemblers.

• All compilation techniques are well known since the 60’s and early 70’s.

• The compilation process is divided into phases.

• The input of a phase is the output of the previous phase.

• It can be seen as a pipeline, where the phases are filters that successively
transform the input program into an executable.

Summary

Joey Paquet, 2000-2019

46COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Backus, J. W.; H. Stern, I. Ziller, R. A. Hughes, R. Nutt, R. J. Beeber, S. Best, R.

Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan (1957).

The FORTRAN Automatic Coding System. Western joint computer conference:

Techniques for reliability (Los Angeles, California: Institute of Radio Engineers,

American Institute of Electrical Engineers, ACM): 188–198.

doi:10.1145/1455567.1455599.

• Naomi Hamilton (Computerworld), The A-Z of Programming Languages: YACC -

The contribution YACC has made to the spread of Unix and C is a sense of pride for

Stephen C. Johnson. July 2008.

• C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr., Crafting a Compiler, Adison-Wesley,

2009. Chapter 1, 2.

References

Joey Paquet, 2000-2019

47COMP 442/6421 – Compiler Design

