
COMP 442/6421 Compiler
Design
Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TA: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

LAB 8 – CODE GENERATION II :
ADVANCED FEATURES AND MEMORY MANAGEMENT

1

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca

Lab 8 Outline
• Bit operations

• Advanced code generation issues
• Tags

• Floating point numbers

• Final Thoughts

2

Augmented AST and Symbol Table

3

AST
Augmented AST

+

Symbol Table
ExecutableSemantics Code Gen

• AST++
• A rich structure which represents the meaning of the program

• It is the primary artifact used for code generation (A4)

• Symbol Table
• Contains everything the programmer named

• We will be adding new memory information to it for code generation

• Temporary variables

• Tags and/or stack memory offsets

• Secondary artifact used for code generation (A4)

Bit-logic – Two’s Complement
• The moon processor interprets integers using the two's complement format.
• Most significant bit is sign bit

• Generally, you don’t need to worry about this
• Addition, subtraction, multiplication, divisions and comparison operations all work as you’d expect.

• Just keep in mind if you end up looking at specific bits

• Two’s complement conversion to decimal, for n bits, numbered 0 to n-1

• −𝑏𝑛 − 12
𝑛−1 + σ𝑖=1

𝑛−2𝑏𝑖2
𝑖

• Sums of powers of 2, with the largest being negative

4

Binary Decimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

Bit-logic – Bitwise Operations
• Many Moon processor logic operations work bitwise
• They operate on pairs of bits

• This works as you’d expect for certain operations
• Arithmetic: add, sub, mul, div, mod

• Comparisons: ceq, neq, clt, cle, cgt, cge

• Logical operations won’t work as you expect
• and, or, not

• They operate bit by bit

• You’ll need to find a different way to implement the logical operators

5

(4)10
AND (3)10

(0)10

(0100)2
AND (0011)2

(0000)2

Bit-logic – Bit Masks
• A useful tool for helping with this are bit masks

• What is it? An integer, which is picked specifically for it’s bit pattern

• How does it work? By doing a bitwise AND between an integer and a mask

• What does it do? It hides, or masks, certain bits in a word, keeping only the ones you’re interested in.

• Why?

• Particularly useful for implementing floating point operations and interpretations

• Separating the sign, exponent and significand

• Remember the moon processor only uses immediate decimal integers, not binary integers

• As well, remember immediates are limited to 2 bytes

• Java allows writing integer literals using binary notation
• Any integer literal, preceded with 0b, will be interpreted as binary

• int number = 0b0110; //stores 6 in number

• Unrelated: you can put underscores withing literals to improve readability

• Example

• Reference

6

https://docs.oracle.com/javase/8/docs/technotes/guides/language/binary-literals.html

Tags for control flow
• Tags in moon code are necessary for jumping between functions and conditional structures
• They are straightforward to use, but make sure generated tags are always unique

• Prefixes can help with this

• Be careful of tricky edge cases:

• Function overloading

• Function overriding and inheritance

• Similar free functions and member functions

• If using tag for memory, uniqueness is much harder

• Example

• class_function_functionName_param1Type_param2Type

• if_22, then_22, else_22

7

Floating Point Numbers
• Floating point numbers are quite difficult to implement
• The moon processor is only defined for integers, floats have to be implemented

• Floating point operations are much more complicated than integer operations

• The IEEE-754 specification on floats can help

• The basics
• 4 bytes

• Sign: most significant bit

• Exponent: 8 next bits

• Significand: remaining 23 bits

• Bit masks and bit shifting can be used to isolate and manipulate these

8

Final Thoughts

9

What Comes Next? – Compiler Design
• Further learning in Compiler Design
• Optimization

• Advanced error handling

• Different and novel language features

• Runtimes and Interpreted languages

• Compilers in the wild
• Many languages have free or open source compilers

• GCC (C, C++, Fortan, Go, ...)

• Java

• Clojure

• and many more . . .

10

https://gcc.gnu.org/
https://openjdk.java.net/
https://clojure.org/

