
COMP 442 / 6421
Compiler Design
 Tutorial 2

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca
 Jashanjot Singh s_jashan@cs.concordia.ca

1

Tutorial Slides

You can access the tutorial slide sets through the following link:

http://laihaotao.me/ta/

http://laihaotao.me/ta/

Assignment 2 : syntax analysis

● This lab material is about helping you achieve assignment #2, which is done in two stages:

○ Transform the grammar into an LL(1) grammar

○ Implement the parser

● The implementation absolutely cannot start before the grammar has been transformed.

○ We propose a set of tools to help achieve the transformation

○ Sample usage of these tools is depicted in this slide set

AtoCC kfgEdit

● Tool that allows you to analyze your grammar and locate possible ambiguities in the

grammar.

● After you grammar is entered, it also allows you to enter a string representing a token

stream and verify if this token stream is derivable from the grammar. If it is, it generates a

parse tree and a derivation for it.

Installing AtoCC

Installing AtoCC

● AtoCC can be downloaded at the following web site:

○ http://www.atocc.de

● You can either download an installer, or precompiled applications.

http://www.atocc.de/

You don’t have Windows machine?

Check the following link out:

http://atocc.de/AtoCCFAQ/index.php?option=com_content&task=category§ionid=11&id=
25&Itemid=34

Works, for example, for macOS High Sierra version 10.13.1

http://atocc.de/AtoCCFAQ/index.php?option=com_content&task=category§ionid=11&id=25&Itemid=34
http://atocc.de/AtoCCFAQ/index.php?option=com_content&task=category§ionid=11&id=25&Itemid=34

Install AtoCC without administration rights ?

These are portable executables, but they often crash, so save your work frequently!

Automated grammar transformation tools

● CyberZHG’s Compiler contruction toolkit:

 https://cyberzhg.github.io/toolbox/

● Can help you apply specific transformations

● Use in conjunction with kfgEdit

● However, it does not use the same grammar representation conventions

https://cyberzhg.github.io/toolbox/cfg2ll
https://cyberzhg.github.io/toolbox/

Example grammars in kfgEdit format

● Includes some before-after transformation examples.

The Goal of Assignment 2

1. Convert the given CFG to an LL(1) grammar
a. Use tools to help your transformation procedure
b. Remove the grammar from EBNF to non-EBNF representation
c. Remove ambiguities and left recursions
d. After each transformation step, verify that your grammar was not broken

2. Implement a LL(1) parser
a. Recursive descent predictive parsing
b. Table-driven predictive parsing

Example: removing EBNF constructs

Assume you was given a grammar as following, with EBNF repetition:

commaSeparatedList -> a {,a} | EPSILON

You should remove the EBNF repetition and come up with the following grammar:

commaSeparatedList -> a commaSeparatedListTail
 | EPSILON
commaSeparatedListTail -> ,a commaSeparatedListTail
 | EPSILON

Example: removing left recursion

After removal of all EBNF format instances, assume you have something like:

expr -> expr + term | term

term -> term * factor | factor

factor -> '(' expr ')' | 'x'

Remove left recursions (on expr and term) using the transformation shown in class:

How to come up with the proper grammar?

- You receive the initial grammar in EBNF in assignment 2 description already

- You need to remove the EBNF since AtoCC kfgEdit cannot understand this form

- Perform left factoring (if necessary)

- Remove left recursion (if exist, unfortunately, they exist in the given grammar)

It is strongly suggested that every time you make a single transformation step, that you use
AtoCC to check whether your transformation broke the grammar or not.

Don’t try to correct many errors in one shot, it is easy to get lost. Plus, if you make a mistake in
one transformation step and you carry on without checking, your further transformation will be

made on a wrong grammar and thus be invalid.

Example
--- How to use AtoCC for verification

What you should do?

1. Locate a specific error and identify the faulty productions (shown in red)

2. Copy the related productions into the grammar transformation tool

mentioned above (https://cyberzhg.github.io/toolbox/cfg2ll).

3. Copy the correction from the tool and paste it into AtoCC

4. Do some modification to adapt to AtoCC format

5. Check the grammar again

Note: Don’t try to solve more than one production at a time. When you solve one production’s
error, use the tool to check to make sure you are not bringing new errors.

https://cyberzhg.github.io/toolbox/cfg2ll

result from the tool after modification, adapted to AtoCC

Thanks

