
Copyright Joey Paquet, 2000 1

Advanced Modeling

Copyright Joey Paquet, 2000 2

Part I

Advanced Classes

Copyright Joey Paquet, 2000 3

Advanced Classes
• Classes are the most important building blocks of an

object-oriented system

• Classes are not only that: in UML, many things are
represented as classes (classifiers)

• A classifier is a general mechanism that describes
structural and behavioral features

• Classes, actors, interfaces, data types, signals, components,
nodes, use cases and subsystems are classifiers

• They are all subject to the same rules as basic “classes”

Copyright Joey Paquet, 2000 4

Kinds of Classifiers
• Interface: A collection of operations that are used to

specify the services provided by a class

• Datatype: As in C++, classes can be used to represent data
types (value and operations)

• Signal: The specification of an asynchronous stimulus
communicated between instances of classes

• Component: A physical and replaceable part of a system
that conforms to and provides the realization of a set of
interfaces

Copyright Joey Paquet, 2000 5

Kinds of Classifiers
• Node: A physical entity that exists at run time and that

represents a computational resource, generally having at
least some memory and processing capabilities

• Use case: A description of a set of sequences of actions,
including variants, that a system performs that yields an
observable result of value to a particular actor

• Subsystem: A grouping of elements of which some
constitute a specification or behavior offered by the other
contained elements

Copyright Joey Paquet, 2000 6

Additional Properties of Classes
• Visibility: The visibility of a classifier feature specifies

whether it can be used by other classifiers (as in C++)
– public (+) , protected (#) and private (-)

• Scope: The scope of a classifier feature specifies whether
the feature appears in each instance of the classifier, or
whether there is just instance for all the instances of the
classifier (static attributes and operations in C++)
– instance (default), classifier (underlined feature)

• Abstract elements: Abstract classes and features are
elements that find their instances in the child classes in the
hierarchy. They are represented by the italics font.

Copyright Joey Paquet, 2000 7

Additional Properties of Classes
• Root elements: A root classifier is a class that cannot have

a super-class. Represented using the {root} tag.

• Leaf elements: A leaf classifier is a class that cannot have
a child class. A leaf feature is a feature that is non-
polymorphic. It cannot be overriden by a feature in a child
class. Represented using the {leaf} tag.

• Multiplicity: The number of instances a classifier or
feature can have at run-time.

Copyright Joey Paquet, 2000 8

Additional Properties of Classes
• Attributes: The type, initial value and changeability of

each attribute can be specified

• General syntax:
– [visibility] name [multiplicity] [: type] [= initialValue] [{property}]

• origin
• + origin
• origin : Point
• name [0..1] : String
• origin : Point = (0,0)
• pi : Integer = 3.1416 {frozen}

• changeable: no restrictions on modification (default)

• addOnly: additional values may be added, but not removed

• frozen: value may not be changed after initialization

Copyright Joey Paquet, 2000 9

Additional Properties of Classes
• Operations: The return type, parameters’ types,

concurrency semantics, etc. can be specified

• General syntax:
– [visibility] name([paramList]) [: returnType] [{property}]

– display

– + display

– set (n : Name, s : String)

– getID() : Integer

– restart() {guarded}

• General syntax for parameter specification:
– [direction] name : type [= defaultValue]

– direction may be in, out or inout

Copyright Joey Paquet, 2000 10

Additional Properties of Classes
• Additional properties of operations:

– isQuery: Operation does not change the state of the instance

– sequential: a function that should not be called concurrently

– guarded: A function that cannot be called concurrently

– concurrent: A function that is designed to cope with multiple
concurrent flows of control

– The last three ones are relevant only in the presence of active
objects, processes and threads.

Copyright Joey Paquet, 2000 11

Part II

Advanced Relationships

Copyright Joey Paquet, 2000 12

Advanced Relationships
• Dependencies: The most general relationship available.

Semantically speaking, all relationships are dependencies,
but with their own flavor. Dependencies are used to show
that one thing is using another.

• Because of this generality, there are 17 different
stereotypes that can be used to give a shade of meaning on
relationships.

• The most common use of straight dependencies is to show
that a class uses another because one of its operations uses
it as a parameter.

• Rendered as a dashed directed line with an open arrowhead

Copyright Joey Paquet, 2000 13

Dependency Stereotypes
• derive: specifies that the source can be computed from the

target, e.g. age can be derived from birth date.

• friend: specifies that the source is given special visibility
into the target (same as friends in C++)

• instantiate: specifies that the source creates instances of the
target

• refine: specifies that the source is of finer degree of
abstraction than the target, e.g. relations between versions

Copyright Joey Paquet, 2000 14

Dependency Stereotypes
• access (packages): a package can refer to elements of

another package, e.g. Class::attribute.

• import (packages): a package can freely use elements of
another package

• extend (use cases): specifies that a use case extends the
behavior of another.

• include (use cases): specifies that the source use case
incorporates the target use case, e.g. decomposition of use
cases as reusable parts

Copyright Joey Paquet, 2000 15

Advanced Relationships
• Generalizations: A relationship between a general thing

(the superclass) and a more specific thing (the subclass).

• The subclass inherits all features of the superclass,
overriding multiply defined features.

• Multiple inheritance is possible but must be used carefully

• Can be used on any classifier (including classes, but also
on use cases, actors, interfaces, etc.)

• Rendered as a solid line with a closed arrowhead

Copyright Joey Paquet, 2000 16

Generalization Stereotypes
• complete: specifies that all children in the hierarchy have

been specified. No more children can be created.

• incomplete: specifies that some more children can be
created. Normally denotes an unfinished hierarchy.

• disjoint (multiple inheritance): specifies that objects of the
source may have no more than one of its parents as a type
(dynamic type allocation not allowed).

• overlapping (multiple inheritance): specifies that objects of
the source may have more than one of its parents as a type
(dynamic type allocation allowed).

Copyright Joey Paquet, 2000 17

Advanced Relationships
• Associations: A structural relationship specifying

connection (navigability) between objects of two classes.
This is the “has a” relationship used in entity-relationship
diagrams.

• Association name, roles and multiplicity are often defined

• Rendered as a solid, normally undirected line.

• Aggregation: a special case of association that a “part of”
relation between source and target. Represented as a solid
line with a diamond on the target side.

• Composition: a special case of aggregation stating that the
target’s lifetime is linked to the source’s lifetime.
Represented as a solid line with a solid diamond on the
target side.

Copyright Joey Paquet, 2000 18

Advanced Associations
• visibility specifiers (roles): specifies the visibility of

elements in a relationship, similarly to the visibility
specifications of attributes and operations (+, #, -) (figure
10-4)

• interface specifiers (roles) : specifies that a role is using a
specific interface realized by the target for communication.
Useful when the same class can have different roles which
use different interfaces. (figure 10-6)

Copyright Joey Paquet, 2000 19

Advanced Relationships
• Realizations: A semantic relationship between classifiers

in which the source specifies a contract that the target
guaranties to carry out. The target is normally an
abstraction of the source.

• Used most of the time to specify the relationships between
interfaces and and its realizer class, or between use cases
and its realizer collaboration.

• Rendered as a dashed directed line with a closed
arrowhead.

