
Concordia University
Department of Computer Science

and Software Engineering

Advanced Programming Practices

SOEN 6441 --- Fall 2014

Project Build 1 Grading

Instructions for Incremental Code Build Presentation

You must deliver an operational version demonstrating some capacity of your system. This is
about demonstrating that the code build is effectively aimed at solving specific project problems
or completely implementing specific system features. The code build must not be just a "portion
of the final project", but rather be something useful with a purpose on its own, that can be
demonstrated by its operational usage.

The presentation should be organized as follows:
1. Brief presentation of the goal of the build.
2. Brief presentation of the architectural design of your project.
3. Demonstration of the functional requirements as listed on the following grading sheet.
4. Demonstration of the use of tools as listed on the following grading sheet.

You are graded according to how effectively you can demonstrate that the features are
implemented. If you cannot really demonstrate the features through execution, you will have to
prove that the features are implemented by explaining how your code implements the features,
in which case you may lose some marks.

During your presentation, you have to demonstrate that you are well prepared for the
presentation, and that you can easily provide clear explanations as questions are asked about
the functioning of your code.

Identification

Team Evaluator Signature Date

SOEN 6441 Fall 2014 Build 1 Presentation Grading Sheet

Grading

Presentation 6

Effectiveness, structure and demonstrated preparation of the presentation 3

Knowledge of code base/clarity of explanations 3

Functional Requirements 30

Map creation and editing 15

User-driven interactive creation of a map as a grid of user-defined dimension 3

User-driven allocation of grid elements such as scenery, path, entry point and exit
point.

 3

Saving a map to a file 3

Loading a map from an existing file, then editing the map 3

Verification of map correctness before saving (at least 3 types of incorrect maps) 3

Game play 15

Game starts by selecting a saved map, then loads the map 1

User-driven placing of towers on the map, following the game’s restrictions 2

Implementation of currency and cost to buy or sell a tower 2

Implementation of towers’ level-dependent characteristics such as level, cost to
increase level, refund rate, range, power, rate of fire, special effects, etc.

 3

Tower inspection window that shows its current characteristics. 3

Tower inspection window allows to sell the tower. 2

Tower inspection window allows to increase the level of a tower, changing its
characteristics.

 2

Use of Tools 15

Architectural design—short 3-4 pages document including an architectural design
diagram, and a short but complete and clear description of the design.

 3

Software versioning repository—well-populated history with dozens of commits,
distributed evenly among team members, a tagged version is created for build 1.

 3

Inline documentation—completed for all file, all class and all methods. 3

Unit testing framework—at least 10 relevant test cases testing them most important
aspects of the code.

 3

Coding standards—consistent use of proper code layout, naming conventions and
comments.

 3

Total 50

Notes

SOEN 6441 Fall 2014 Build 1 Presentation Grading Sheet

Additional Narrative Specifications

Map

The software must allow for the creation of custom maps of variable size to be determined prior
to the creation of the map. As stated in the project description, it is advised (for simplicity) that
you design the map as a grid, where each grid cell is either (1) a scenery cell where towers can
be placed, and where the critters are not allowed to move or (2) a path cell where towers cannot
reside, and where the critters are allowed to move. One and only one path cell should be
assigned as the entry point of the map and one and only one path cell should be assigned as the
exit point of the map. There should be a connected graph consisting of path cells that connects
the entry point cell to the exit point cell. The map implementation should be designed to allow the
creation of a blank map given length and width, and provide member functions to set any cell to
anything it might eventually contain as stated above. Your class should have a method to verify
the validity of a map, which verifies the validity of the map according to the above specifications.

Tower

Towers should have the following characteristics: buying cost, refund value, range, power, rate
of fire, etc. Different types of towers should be created, whose difference is mainly in their
behavior, for example in the effect that their bullets have: direct damage, area of effect damage,
slowing, additional damage to specific kinds of critters, etc. At least three different types of
towers must be created. A tower can also have different levels, organized sequentially and with
gradually increased capacities, that allow it to eventually destroy critters more effectively. A
tower can be bought for an initial cost, and be further upgraded to subsequent levels for a certain
cost for each level. At any time, it can be sold for a certain amount depending on its level. When
operating, a tower first detects potential targets within its range, then selects one target and
shoots at it, which then inflicts damage and/or applies special effects on the target critter.

Critter

Individual critters should have the following characteristics: reward, hit point, strength, speed,
level, etc. The critter group generator is a component of the game that is called at the beginning
of each wave to create a group of critters whose characteristics are adapted to the level of
difficulty of the next wave (assuming that every successive wave is of increasing difficulty). The
critter group is a list of critters that will appear sequentially one after the other on the entry point
of the map when the game is played. When it is its turn to act, a critter should determine where it
will move, assuming that it knows where the exit point is of the map, then move at a certain
speed. A critter may be attacked by towers, which will reduce its hit points, eventually dying if it
reaches zero hit points. For every critter killed, the player should get a coin reward proportional
to the level of the critter. Once a critter reaches the exit point, it steals coins from the player at a
rate determined by the critter’s strength.

