
Concordia University
Department of Computer Science

and Software Engineering

Compiler Design (COMP 442/6421)
Winter 2013

Assignment 2, Syntactic Analyzer

Deadline: Monday February 25th, 2013
Evaluation: 10% of final grade
Late submission: penalty of 50% for each late working day

You have to design a syntactic analyzer for the language specified by the grammar below. We are using
the following convention: Terminals (lexical elements) are represented with the bold courier font like

this. Non-terminals are represented in angle brackets <like this>. The character ε (epsilon)

represents an empty stream. The non-terminal <prog> is the starting symbol of the grammar.

Grammar

<prog> ::= <classDecl>*<progBody>

<classDecl> ::= class id {<varDecl>*<funcDef>*};

<progBody> ::= program<funcBody>;<funcDef>*

<funcHead> ::= <type>id(<fParams>)

<funcDef> ::= <funcHead><funcBody>;

<funcBody> ::= {<varDecl>*<statement>*}

<varDecl> ::= <type>id<arraySize>*;

<statement> ::= <variable><assignOp><expr>;

 | if(<expr>)then<statBlock>else<statBlock>;

 | while(<expr>)do<statBlock>;

 | read(<variable>);

 | write(<expr>);

 | return(<expr>);

<statBlock> ::= {<statement>*} | <statement> | ε

<expr> ::= <arithExpr> | <arithExpr><relOp><arithExpr>

<arithExpr> ::= <arithExpr><addOp><term> | <term>

<sign> ::= + | -

<term> ::= <term><multOp><factor> | <factor>

<factor> ::= <variable>

 | <idnest>*id(<aParams>)

 | num

 | (<expr>)

 | not<factor>

 | <sign><factor>

<variable> ::= <idnest>*id<indice>*

<idnest> ::= id<indice>*.

<indice> ::= [<arithExpr>]

<arraySize> ::= [int]

<type> ::= integer | real | id

<fParams> ::= <type>id<arraySize>*<fParamsTail>* | ε

<aParams> ::= <expr><aParamsTail>* | ε

<fParamsTail> ::= ,<type>id<arraySize>*

<aParamsTail> ::= ,<expr>

Operators and additional lexical conventions

<assignOp> ::= =

<relOp> ::= == | <> | < | > | <= | >=

<AddOp> ::= + | - | or

<multOp> ::= * | / | and

id ::= follows specification for identifiers found in assignment#1

num ::= follows specification for numbers found in assignment#1

int ::= <nonZero><digit>*

<nonZero> ::= 1..9

<digit> ::= <nonZero> | 0

For example, the non-terminal <addOp> is a generalization of the addition operators tokens +, - and or.

The use of this notation here does not necessarily imply that you have to define a new type of token in
your lexical analyzer. Also, id and num are tokens that refer to the lexical conventions given in the first

assignment. Note that a new lexical convention for the token int has been added.

Work to be done

• Analyze the syntactical definition given on the first page (and the additional lexical definition for the

token int). Remove all the * notations and replace them by list-generating productions. List in your

documentation all the ambiguities and left recursions, or any error you may find in the grammar. Modify
the productions so that the left recursions and ambiguities are removed without modifying the language.
You should obtain a set of productions that can be parsed using the top-down predictive parsing
method. Include the transformed grammar in your documentation.

• Derive the FIRST and FOLLOW sets for each non-terminal in your transformed grammar and list them
in your documentation.

• Implement a predictive parser (recursive descent or table-driven) for your modified set of grammar
rules.

• Your parser should optionally output to a file the derivation that derives the source program from the
starting symbol.

• The parser should call your lexical analyzer as developed in assignment 1 when it needs a new token.
• The parser should properly identify the errors in the input program and print a meaningful message to

the user for each error encountered. The parser should implement an error recover method that permits
to report all errors. The error messages should be informative on the nature of the errors, as well as the
location of the errors in the input file.

• In this assignment, you only check the syntactic correctness of the program, i.e., check whether the
source program can be parsed according to the grammar. Do not check the semantic correctness of the
program in this assignment.

• Write a set of source files that enable to test the parser for all syntactical structures involved in the
language. Include cases testing for a variety of different errors to demonstrate the accuracy of your
error reporting and recovery.

Assignment submission requirements and procedure

You have to submit your assignment before midnight on the due date using the ENCS Electronic
Assignment Submission system under the category “programming assignment 2”. The file submitted
must be a .zip file containing:

• all your code
• a set of input files to be used for testing purpose, as well as a printout of the resulting output of the

program for each input file (derivation and error reporting, as described above)
• a simple document containing the information requested above

You are also responsible to give proper compilation and execution instructions to the marker in a
README file. If the marker cannot compile and execute your programs, you might have to have a
meeting for a demonstration.

Evaluation criteria and grading scheme

Documentation:
 List of left recursions and ambiguities in the original grammar 2 pts
 Transformed grammar 2 pts
 FIRST and FOLLOW sets of non-terminals in the transformed grammar 2 pts
Program:
 Correct implementation according to assignment statement 6 pts
 Accurate output of error messages 2 pts
 Output of derivation in a file 1 pt
 Error recovery 2 pts
 Completeness of test cases 4 pts
Total 20 pts

