
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Symbol table structure and generation

Type checking

Visitor pattern

Joey Paquet, 2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• One of the objectives of the compiler is to verify that identifiers are properly
used according to their specifications:
• Variables used according to their declarations (type, dimensionality)

• Functions called according to their declarations (return type, number and type of parameters)

• Objects are using members as defined in their class declaration

• Variables/functions are only used in the scope in which they were declared

• In manifestly-typed languages, all identifiers have a declaration:
• Class and/or data structure declaration (global or embedded)

• Variable declaration (global/local variables, class/data structure members)

• Function declaration (free function, member function, embedded function)

• Other languages minimize declarations by omitting types
• Often referred to as “dynamic languages”

• Limited analysis can still be done at compile-time, e.g. type inference

• Some of the analysis has to be delayed to run-time

• In the project, our language is manifestly-typed.

Symbol tables: processing declarations

Joey Paquet, 2018

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Declarations are processed as a tree is traversed, either:

• As a parse tree as the parse phase is proceeding

• As an Abstract Syntax Tree intermediate representation previously generated by the
parse phase

• The processing of the declarations is made by aggregating and processing
semantic information that is present at the leaves of the tree, and
migrated/processed by intermediate nodes of the tree.

• This migration/aggregation/processing is done using semantic actions that are
triggered as the tree is traversed

• Specific semantic actions should be triggered when certain specific kind of nodes
are reached as the tree is traversed.

• If the processing is done upon an intermediate representation (e.g. an AST),
further processing can be done in successive phases, where each phase is
responsible for a specific part of the analysis/translation process.

Symbol tables: processing declarations: tree traversal

Joey Paquet, 2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Symbol table structure

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Generally, every scope defined in the language/program requires its own symbol
table.

• The global scope contains an entry for all identifiers not declared in any scope,
e.g. global variables, globally-declared classes or data structures, free
functions.

• Some scopes (e.g. classes, functions) allow some identifiers to be declared,
e.g. local variables, or even inner classes or inner functions – which we don’t
have in the project.

• Some scopes are not named, e.g. a for loop’s statement block – these can also
define their own sub-scope and corresponding sub-symbol table.

Symbol tables: scopes

Joey Paquet, 2018

5COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• CreateNewTable – when hen a new scope is entered, a new empty symbol
table is created, as well as the symbol table entry to be recorded in the higher-
level symbol table.

• Insert – while in a scope, for every declaration encountered, a symbol table
record is created and inserted.

• Search – when an identifier is referred to in a scope, the compiler needs to
check if it has been previously defined, either in the current scope or one of the
higher-level scope, requiring a search method that searches across a table
hierarchy. If information hiding descriptors are part of the language, they must be
taken into consideration here.

• Print – for utility, a facility to output a symbol table, along with its sub-tables.

• Delete – some scopes cannot be referred to outside of their scopes. In which
case their symbol tables have to be deleted, for efficiency. Some scopes, e.g.
classes can be referred to from outside their own scope, These should not be
kept until the end of the compilation process.

Symbol table: procedures to implement

Joey Paquet, 2018

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Symbol tables: example

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

class MyClass1 {
int mc1v1[2][4];
float mc1v2;
MyClass2 mc1v3[3];
int mc1f1(int p1, MyClass2 p2[3]) {
MyClass2 fv1[3];
…

}
int f2(MyClass1 f2p1[3]) {
int mc1v1;
…

}
}

class MyClass2 {
int mc1v1[2][4];
float fp1;
MyClass2 m2[3];
…

}

program {
int m1;
float[3][2] m2;
MyClass2[2] m3;
...

}
float f1(int fp1[2][2], float fp2) {
MyClass1[3] fv1;
int fv2;
…

}

int f2() {
...
}

Symbol table: Global
name kind type
f1 function float : int[2][2], float

link

f2 function int : nil
MyClass1 class
MyClass2 class
program function

Symbol table: f1
name kind type
fp1 parameter int[2][2]

link

fp2 parameter float
fv1 variable MyClass1[3]
fv2 variable int

Symbol table: f2
name kind type link

Symbol table: MyClass1
name kind type
mc1v1 variable int[2][4]

link

mc1v2 variable float
mc1v3 variable MyClass2[3]
mc1f1 function int : int, MyClass2[3]
f2 function int : MyClass1[3]

Symbol table: MyClass2
name kind type
mc1v1 variable int[2][4]

link

fp1 variable float
m2 variable MyClass2[3]

Symbol table: program
name kind type
m1 variable int

link

m2 variable float[3][2]

Symbol table: MyClass1:mc1f1
name kind type
p1 parameter int

link

p2 parameter MyClass2[3]
fv1 variable MyClass2[3]

Symbol table: MyClass1:f2
name kind type
f2p1 parameter MyClass1[3]

link

m3 variable MyClass2[2]

mc1v1 variable int

Concordia University Department of Computer Science and Software Engineering

Symbol table generation

Joey Paquet, 2018

8COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Two avenues are possible:
• Integrate generation of the symbol table in the parse, using syntax-directed

translation

• Have the parser generate an Abstract Syntax Tree intermediate representation,
then implement a tree traversal phase on the AST to generate the symbol
table

Symbol table generation: implementation

Joey Paquet, 2018

9COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Symbol table generation using syntax-directed translation

Joey Paquet, 2018

10COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Symbol tables: generation using syntax-directed translation

Joey Paquet, 2000-2018

11COMP 442/6421 – Compiler Design

<prog> ::= #createGlobalTable# <classDecl>*<progBody>

<classDecl> ::= class id #createClassEntryAndTable# {<varDecl>*<funcDef>*};

<progBody> ::= program #createProgramTable# <funcBody>;<funcDef>*

<funcHead> ::= <type>id(<fParams>) #createFunctionEntryAndTable#

<funcDef> ::= <funcHead> <funcBody>;

<funcBody> ::= {<varDecl>*<statement>*}

<varDecl> ::= <type>id<arraySize>*; #createVariableEntry#

<statement> ::= <assignStat>;

| if(<expr>)then<statBlock>else<statBlock>;

| for(<type>id<assignOp><expr>;<relExpr>;<assignStat>)<statBlock>;

| get(<variable>);

| put(<expr>);

| return(<expr>);

<assignStat> ::= <variable><assignOp><expr>

<statBlock> ::= {<statement>*} | <statement> | 

<expr> ::= <arithExpr> | <relExpr>

<relExpr> ::= <arithExpr><relOp><arithExpr>

<arithExpr> ::= <arithExpr><addOp><term> | <term>

<sign> ::= + | -

<term> ::= <term><multOp><factor> | <factor>

<factor> ::= <variable>

| <idnest>*id(<aParams>)

| num

| (<arithExpr>)

| not<factor>

| <sign><factor>

<variable> ::= <idnest>*id<indice>*

<idnest> ::= id<indice>*.

<indice> ::= [<arithExpr>]

<arraySize> ::= [int]

<type> ::= int | float | id

<fParams> ::= <type>id<arraySize>* #createParameterEntry# <fParamsTail>* | 

<aParams> ::= <expr><aParamsTail>* | 

<fParamsTail> ::= ,<type>id<arraySize>* #createParameterEntry#

<aParamsTail> ::= ,<expr>

• Insert semantic actions (function
calls) that create tables/entries
when an identifier is declared.

• Attribute migration must be used
when the information necessary
to create an entry is distributed
over different rules.

• The same process is used to do
further semantic processing:

• Expression type inference

• Type checking

• Code generation

• Pitfalls:

• Many semantic actions have to be
inserted in the parser’s operation,
leading to increasing potential
confusion.

• All the phases including and after
syntax analysis are “piled-up” on
the parser.

Concordia University Department of Computer Science and Software Engineering

Symbol table generation using Abstract Syntax Tree traversal
using the visitor pattern

Joey Paquet, 2018

12COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2006-2017

13SOEN 6441 - Advanced Programming Practices

• Motivation
• When many new operations are needed and the object structure consists of

many unrelated classes, it's inflexible to add new subclasses each time a new
operation is required.

• Distributing all these new operations across the various node classes leads to a
system that's hard to understand, maintain, and change.

• Often, the new operations form groups that are related to specific kinds of
operations. Adding all of them in the same existing classes creates low
cohesion.

• Intent
• To create a structure/mechanism by which new operations are injected into

existing classes, with minimal changes to be applied to these classes.

• To provide modularity and cohesion by creating groups of related new
operations.

• Be able to inject only a specific group of operations at a time.

Visitor pattern

Concordia University Department of Computer Science and Software Engineering Joey Paquet, 2006-2017

14SOEN 6441 - Advanced Programming Practices

• The classes/objects participating in adapter pattern:
• Element – superclass of all the objects that are to be injected with new behavior.

• ConcreteElement – all the specific classes into which the new behavior is to be
injected.

• Visitor – superclass of all injectable behavior groups

• ConcreteVisitor – specific injectable behavior group

• Client – piece of code that uses a group/structure of elements and wants to
inject/execute new behavior in them

Visitor pattern: structure

Concordia University Department of Computer Science and Software Engineering

• The visitor pattern is made necessary when using a programming language that
only supports single dispatch, as opposed to multiple dispatch. Under this
condition, consider two objects, each of some class type; one is termed the
element, and the other is visitor.

• The Visitor class declares a visit method, which takes the Element as an
argument, for each class of Element that may be subject to new behavior
injection, and provides the implementation of the injected behavior.

• The Visitor class can be abstract, or an interface.

• In order to provide default empty behavior, it can be a regular class with empty
methods for every Element type to be processed.

Visitor pattern: implementation

Joey Paquet, 2018

15COMP 442/6421 – Compiler Design

public class Visitor {
public void visit(Node node) {};
public void visit(IdNode node) {};
public void visit(NumNode numNode) {};
public void visit(TypeNode node) {};
public void visit(AddOpNode node) {};
public void visit(MultOpNode node) {};
public void visit(VarDeclNode node) {};
public void visit(DimListNode node) {};

}

Concordia University Department of Computer Science and Software Engineering

• ConcreteVisitors classes are derived from the Visitor class and
implement these visit methods, each of which implements part of the
behavior group operating on the object structure. The state of the behavior
group is maintained locally by the ConcreteVisitor class.

Visitor pattern: implementation

Joey Paquet, 2018

16COMP 442/6421 – Compiler Design

public class SymTabCreationVisitor extends Visitor {
…
public void visit(VarDeclNode node){

System.out.println("visiting VarDeclNode");
// aggregate information from the subtree
String declrecstring;
// identify what kind of record that is
declrecstring = "localvar:";
// get the type from the first child node and aggregate here
Declrecstring += node.getChildren().get(0).getData() + ':’;
// get the id from the second child node and aggregate here
declrecstring += node.getChildren().get(1).getData() + ':’;
// loop over the list of dimension nodes and aggregate here
for (Node dim : node.getChildren().get(2).getChildren())

declrecstring += dim.getData() + ':’;
// create the symbol table entry for this variable
// it will be picked-up by another node above later
node.symtabentry = new SymTabEntry(declrecstring, null);

}
…

}

Concordia University Department of Computer Science and Software Engineering

• The Element declares an accept method to accept the injection of the
applicable methods of a Visitor, by taking the Visitor as an argument.

• ConcreteElements, derived from the Element class, implement the accept
method, these effectively implement tree traversal.

• For atomic Elements, this is a simple call to the visitor’s visit method.

• For composite Elements (i.e. elements that contain references to other elements),
each referenced element`s accept method is called, propagating the injection of the
new behavior throughout the structure.

Visitor pattern: implementation

Joey Paquet, 2018

17COMP 442/6421 – Compiler Design

public class IdNode extends Node {
…

public void accept(Visitor visitor) {
visitor.visit(this);}

}

public class MultOpNode extends Node {
…

public void accept(Visitor visitor) {
for (Node child : this.getChildren())

child.accept(visitor);
visitor.visit(this);

}
}

Concordia University Department of Computer Science and Software Engineering

• The Client creates the Element object structure and instantiates one
ConcreteVisitor for each of the behavior group it wants to inject into the
structure.

• When it wants to execute the behavior implemented by a specific
ConcreteVisitor, it calls the accept method of the element that is the entry
point of the structure, passing the specific ConcreteVisitor as a parameter.

• The accept/visit methods calls are then propagated in the structure, effectively
implementing the chosen behavior.

Visitor pattern: implementation

Joey Paquet, 2018

18COMP 442/6421 – Compiler Design

ConstructExpressionStringVisitor CEVisitor = new ConstructExpressionStringVisitor();
TypeCheckingVisitor TCVisitor = new TypeCheckingVisitor();
Node d = new IdNode("d", "int");
Node e = new IdNode("e", "int");
Node f = new IdNode("f", "float");
Node times = new MultOpNode("*", e, f);
Node plus = new AddOpNode("+", d, times1);
plus.accept(TCVisitor);
plus.accept(CEVisitor);

Concordia University Department of Computer Science and Software Engineering

• When the accept method is called, its specific implementation is chosen based
on both the dynamic type of the Element upon which it is called, and the static
type of the Visitor that is passed to it as a parameter.

• When the visit method is called in the accept method, its specific
implementation is chosen based on both the dynamic type of the Visitor and
the static type of the Element, as known from within the implementation of the
accept method, which is the same as the dynamic type of the element.

• Thus, the implementation of the visit method is chosen based on both the
dynamic type of the element and the dynamic type of the visitor. This effectively
implements a double dispatch mechanism.

Visitor pattern: mechanism: double dispatch

Joey Paquet, 2018

19COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Visitor pattern: mechanism: double dispatch

Joey Paquet, 2018

20COMP 442/6421 – Compiler Design

Element e1 = new Element1();

Visitor1 v1 = new Visitor1();

e1.accept(v1);

e1 : Element1

void accept(Visitor visitor) {

 visitor.visit(this);
}

client

v1 : Visitor1

void visit(Element1 element){

 <<visitor v1 executes behavior>>
 <<on element of type Element1>>
}

void visit(Element2 element){

 <<visitor v1 executes behavior>>
 <<on element of type Element2>>
}

...

Concordia University Department of Computer Science and Software Engineering

• In this way, a behavior can be implemented and applied as a graph composed of
Elements is traversed.

• Many different kinds of separate behaviors can be performed during that
traversal by supplying different ConcreteVisitors to interact with the
elements based on the dynamic types of both the elements and the Visitors.

• In a compiler, the Elements are AST nodes, which are interconnected to form an
Abstract Syntax Tree.

• Different ConcreteVisitors can be designed to implement the different
semantic analysis and translation phases, e.g.

• Construction of symbol table

• Type checking

• Translation into executable code

• Various optimization phases

• Using the Visitor pattern, the implementation of all these phases can
effectively be separated, thus decreasing the overall complexity of the compiler.

Visitor pattern: use in compiler design

Joey Paquet, 2018

21COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

AST visitors for symbol table creation

Joey Paquet, 2018

22COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Each scope in the program should have its own symbol table

• global, class, function body: member function, free function, main function

• When we visit one of these node types:

• Create a new local symbol table that is a new data member of this node

• Link this symbol table with its higher-level scope’s symbol table

• If a class inherits from another class, link the inherited class as a higher-level scope

AST visitor: symbol tables creation

Joey Paquet, 2018

23COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

AST Visitor pattern : example

Joey Paquet, 2006-2017

24SOEN 6441 - Advanced Programming Practices

public class SymTabCreationVisitor extends Visitor {
…
public void visit(ProgNode node){

node.symtab = new SymTab("global");
// for classes, loop over all class declaration nodes
for (Node classelt : node.getChildren().get(0).getChildren())

//add the symbol table entry of each class in the global symbol table
node.symtab.addEntry(classelt.symtabentry);

// for function definitions, loop over all function definition nodes
for (Node fndefelt : node.getChildren().get(1).getChildren())

//add the symbol table entry of each function definition in the global symbol table
node.symtab.addEntry(fndefelt.symtabentry);

// for the program function, get its local symbol table from node 2 and create
// an entry for it in the global symbol table
// first, get the table and change its name
SymTab table = node.getChildren().get(2).symtab;
table.m_name = "program";
node.symtab.addEntry("function:program", table);

};
}

prog

stat
Block

class
List

func
DefList

funcDefList

func
Def

func
Def

...

classList

class
Decl

class
Decl

...

Concordia University Department of Computer Science and Software Engineering

AST Visitor pattern : example

Joey Paquet, 2006-2017

25SOEN 6441 - Advanced Programming Practices

public class SymTabCreationVisitor extends Visitor {
…
public void visit(ClassNode node){

// get the class name from node 0
String classname = node.getChildren().get(0).getData();
// create a new table with the class name
node.symtab = new SymTab(classname);
// loop over all children of the class and migrate their
// symbol table entries in class table
for (Node member : node.getChildren()){

if (member.symtabentry != null)
node.symtab.addEntry(member.symtabentry);

}
// create the symbol table entry for the class
node.symtabentry = new SymTabEntry("class:" + classname, node.symtab);

}

…

public void visit(StatBlockNode node){
node.symtab = new SymTab();
// add the symbol table entries of all the variables
// declared in the statement block
// they will later be picked-up by the higher-level
// table creation
for (Node stat : node.getChildren()){

if (stat.symtabentry != null)
node.symtab.addEntry(stat.symtabentry);

}
…
}

classDecl

inher
List

memb
List

id

statBlock

stat
OrVarDecl

stat
OrVarDecl

...

statBlock

ε

Concordia University Department of Computer Science and Software Engineering

• Inside each scope, identifiers are declared

• class: data/function members, function body: local variables, parameters

• When we visit one of these node types:

• Create a symbol table record

• Insert the record in the current scope’s symbol table

• Upon insertion, we check/report multiply declared identifiers

• An identifier can be redefined in a subscope, shadowing the higher-level identifier

AST Visitor pattern : example

Joey Paquet, 2018

26COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

AST Visitor pattern : example

Joey Paquet, 2006-2017

27SOEN 6441 - Advanced Programming Practices

public class SymTabCreationVisitor extends Visitor {
…
public void visit(VarDeclNode node){

// aggregate information from the subtree
String declrecstring;
// identify what kind of record that is
declrecstring = "localvar:";
// get the type from the first child node and aggregate here
declrecstring += node.getChildren().get(0).getData() + ':’;
// get the id from the second child node and aggregate here
declrecstring += node.getChildren().get(1).getData() + ':’;
// loop over the list of dimension nodes and aggregate here
for (Node dim : node.getChildren().get(2).getChildren())

declrecstring += dim.getData() + ':’;
// create the symbol table entry for this variable
// it will be picked-up by another node above later
node.symtabentry = new SymTabEntry(declrecstring, null);
}

varDecl

type id

dim
List

Concordia University Department of Computer Science and Software Engineering

AST visitors for semantic checking

Joey Paquet, 2018

28COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Multiply declared identifiers

• detected when we inserted the symbol table records

• Undeclared identifiers

• As identifiers (variable or function) are encountered during the parsing of expressions,
check if the identifier is declared in the current scope, or in the class it should be in

• For function calls, 3 cases:

• Function id does not exist in the current scope (or higher-level scope)

• Number of parameters does not match the function defined in this scope

• For variables, 3 cases:

• Variable id does not exits in the current scope

• Number of dimensions used does not match the number of dimensions as declared

• An id uses the . operator on a member that is undefined in its class type

• Type checking

• Operators’ operand types are valid

• Type of expressions passed as parameters do not match the function’s parameter type

• Type of an assignment statement’s right and left hand side do not match

• Return statement does not match return type of the function

Semantic checking

Joey Paquet, 2018

29COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

AST Visitor pattern : example

Joey Paquet, 2006-2017

30SOEN 6441 - Advanced Programming Practices

public class TypeCheckingVisitor extends Visitor {
…

public void visit(AddOpNode node){
String leftOperandType = node.getChildren().get(0).getType();
String rightOperandType = node.getChildren().get(1).getType();
if(leftOperandType == rightOperandType)

node.setType(leftOperandType);
else{

node.setType("typeerror");
System.out.println("TYPE ERROR DETECTED between "

+ node.getChildren().get(0).getData()
+ " and “
+ node.getChildren().get(1).getData());

}
}

public void visit(MultOpNode node){
String leftOperandType = node.getChildren().get(0).getType();
String rightOperandType = node.getChildren().get(1).getType();
if(leftOperandType == rightOperandType)

node.setType(leftOperandType);
else{

node.setType("typeerror");
System.out.println("TYPE ERROR DETECTED between "

+ node.getChildren().get(0).getData()
+ " and "
+ node.getChildren().get(1).getData());

}
}

Concordia University Department of Computer Science and Software Engineering

• You may separate various steps as separate ConcreteVisitors.

• In the example code, there are two visitors:

• SymTabCreationVisitor

• Creates symbol tables and its entries

• TypeCheckingVisitor

• Implements a limited form of type inference on expression and assignment subtrees

• ConstructAssignmentAndExpressionStringVisitor

• Traverses an assignment subtree and re-creates its original form

• When you implement the visitors, the information you are gathering must be
stored. In the example:

Joey Paquet, 2018

31COMP 442/6421 – Compiler Design

public abstract class Node {
…
// The following data members have been added
// during the implementation of the visitors
// These could be added using a decorator pattern
// triggered by a visitor
public String type = null;
public String subtreeString = null;
public SymTab symtab = null;
public SymTabEntry symtabentry = null;
…

}

Concordia University Department of Computer Science and Software Engineering

• Wikipedia. Symbol Table.
Wikipedia. Visitor Pattern.

• C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr., Crafting a Compiler, Adison-Wesley,
2009. Chapter 8.

References

Joey Paquet, 2018

32COMP 442/6421 – Compiler Design

