COMP 442/6421 Compiler
Design

Instructor: Dr. Joey Paquet paguet@cse.concordia.ca
TA: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

LAB 7/ — CODE GENERATION I
ASSEMBLY CODE AND THE MOON PROCESSOR

e

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca

Augmented AST and Symbol Table

* AST++

* Arich structure which represents the meaning of the program

* Contains additional information inferred during semantic analysis
* Type, symbol table relation
* Itis the primary artifact used for code generation (A4)

* Symbol Table
* Contains everything the programmer named

* We will be adding new symbols to it for code generation
* Secondary artifact used for code generation (A4)

Augmented AST
Symbol Table

coel= 20 > Executable

AST

How to do Assignment 4

* Assignment 4 is fairly involved

* You will likely not have time to implement every feature of the language.

1. Familiarize yourself with the Moon processing environment
> Implement simple statements for compiler code generation
> Read/Write —> critical for testing
> Simple arithmetic = requires few memory considerations
2. Pick a static memory scheme
> What is static memory?

© Tags or stack memory
3. Prioritize the implementation of language features
> By difficulty
° By utility
° By grade weight

Language Features

* Read/Write statements * While loops
* Literals * Functions
* Integer numbers * Return
* Integer arithmetic * Parameters
* Variables * Recursion™
* Boolean arithmetic * Arrays
- Assignment * Floating point numbers
+ |f-else-then * Floating point arithmetic
* Classes
* Variables
* Functions

* Access control

* Inheritance

Moon Processor

* Avirtual processor, with a RISC architecture

* Reduced Instruction Set Computer

* It is the target of our compiler
* Available from the course site

* Documentation

* Source code for processor (in C)
* You'll need to compile it yourself

° gcc -o "moon" moon.c
* Sample programs

* Libraries, which can be used to help code generation

* Demo: A simple moon program: simple.moon

https://users.encs.concordia.ca/~paquet/wiki/images/7/7a/Moon.zip

Moon Processor - features

* Key Points
* Deals primarily with 4 byte integers (Words)

* Operations are done through registers

* Special operations use immediate values as well (constant, literal values)
* Integers are interpreted using two’s complement
* Operations are bitwise, they operate bit by bit

* Significant for logical operators

Moon Processor — A compiled example

* Moon instructions are very simple

* Not great for manually writing programs

It takes many instructions to do simple things

Generated Moon Code will be an order of magnitude longer than the original source code
Moon programs (and assembly code) are very difficult to read at a high level

* When generating code blocks, it would be wise to also generate comments which provide context

Example

Testing with the Moon Processor

* Moon programs are tedious to read and write.
* That’s why we’re making a compiler!
* It’s very easy to make mistakes with the generated code

* It’s thus recommended to integrated the moon processor into your test environment

* To get the most out of it, you’ll need to have implemented the write() language feature

* Should be prioritized
* Libraries are helpful here

* This will allow end-to-end testing of your compiler
* Input source file = analyze compiled program’s execution output

Testing with the Moon Processor

We will have to do the following, within the test code:

* Run the Moon processor program

* Pass command line arguments to it
* Verify it’s process status
* Obtain and verify it’s output

Effectively, we need to run a second program in our testing program
Fortunately, most programming languages allow doing all of the above

An example in Java, with Junit5

Code Generation with AST traversal

* We'll walk through an example AST, looking at when and what moon
instructions are generated

* Using a tag-based approach

* Generating code with an Euler tour,
* At pre-visits

* At post-visits

