
COMP 442/6421 Compiler
Design
Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TA: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

LAB 7 – CODE GENERATION I:
ASSEMBLY CODE AND THE MOON PROCESSOR

1

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca

Augmented AST and Symbol Table

2

AST
Augmented AST

+

Symbol Table
ExecutableSemantics Code Gen

• AST++
• A rich structure which represents the meaning of the program

• Contains additional information inferred during semantic analysis

• Type, symbol table relation

• It is the primary artifact used for code generation (A4)

• Symbol Table
• Contains everything the programmer named

• We will be adding new symbols to it for code generation

• Secondary artifact used for code generation (A4)

How to do Assignment 4
• Assignment 4 is fairly involved
• You will likely not have time to implement every feature of the language.

1. Familiarize yourself with the Moon processing environment
◦ Implement simple statements for compiler code generation

◦ Read/Write → critical for testing

◦ Simple arithmetic → requires few memory considerations

2. Pick a static memory scheme
◦ What is static memory?

◦ Tags or stack memory

3. Prioritize the implementation of language features
◦ By difficulty

◦ By utility

◦ By grade weight

3

Language Features
• Read/Write statements

• Literals

• Integer numbers
• Integer arithmetic

• Variables

• Boolean arithmetic

• Assignment

• If-else-then

• While loops

• Functions
• Return

• Parameters

• Recursion*

• Arrays

• Floating point numbers
• Floating point arithmetic

• Classes
• Variables

• Functions

• Access control

• Inheritance

4

Moon Processor
• A virtual processor, with a RISC architecture
• Reduced Instruction Set Computer

• It is the target of our compiler

• Available from the course site
• Documentation

• Source code for processor (in C)

• You’ll need to compile it yourself

• gcc -o "moon" moon.c

• Sample programs

• Libraries, which can be used to help code generation

• Demo: A simple moon program: simple.moon

5

https://users.encs.concordia.ca/~paquet/wiki/images/7/7a/Moon.zip

Moon Processor - features
• Key Points
• Deals primarily with 4 byte integers (Words)

• Operations are done through registers

• Special operations use immediate values as well (constant, literal values)

• Integers are interpreted using two’s complement

• Operations are bitwise, they operate bit by bit

• Significant for logical operators

6

Moon Processor – A compiled example
• Moon instructions are very simple
• Not great for manually writing programs

• It takes many instructions to do simple things

• Generated Moon Code will be an order of magnitude longer than the original source code

• Moon programs (and assembly code) are very difficult to read at a high level
• When generating code blocks, it would be wise to also generate comments which provide context

• Example

7

Testing with the Moon Processor
• Moon programs are tedious to read and write.
• That’s why we’re making a compiler!

• It’s very easy to make mistakes with the generated code
• It’s thus recommended to integrated the moon processor into your test environment

• To get the most out of it, you’ll need to have implemented the write() language feature
• Should be prioritized

• Libraries are helpful here

• This will allow end-to-end testing of your compiler
• Input source file → analyze compiled program’s execution output

8

Testing with the Moon Processor
• We will have to do the following, within the test code:
• Run the Moon processor program

• Pass command line arguments to it

• Verify it’s process status

• Obtain and verify it’s output

• Effectively, we need to run a second program in our testing program

• Fortunately, most programming languages allow doing all of the above

• An example in Java, with Junit5

9

Code Generation with AST traversal
• We’ll walk through an example AST, looking at when and what moon

instructions are generated

• Using a tag-based approach

• Generating code with an Euler tour,
• At pre-visits

• At post-visits

10

