
X
Submi�ed by:

Marker:
General Notes:

Notes %mark ra�o le�er
0% 100.00% 1 Part 1 : Player strategy pa�ern

0% 100.00% 2 Part 2 : Touranment mode

Grading rubric ra�o Part 1 Part 2 Score ra�o Total marks

All notes

1 : :
0% 10.00% 1.1 : :
0% 0.00% X 1.1.1 Students are fully aware of the correct Warzone game rules to implement during the presenta�on 1.1.1 : X :
0% 60.00% 1.2 : :
0% 0.00% X 1.2.1 Human player: requires user interac�ons to make decisions 1.2.1 : X :
0% 0.00% X 1.2.2 Aggressive player: computer player that focuses on a�ack (deploys or advances armies on its strongest country, then always advances to enemy territories un�l it cannot do so anymore). 1.2.2 : X :
0% 0.00% X 1.2.3 Benevolent player: computer player that focuses on protec�ng its weak countries (deploys or advances armies on its weakest countries, never advances to enemy territories). 1.2.3 : X :
0% 0.00% X 1.2.4 Neutral player: computer player that never issues any order. 1.2.4 : X :
0% 0.00% X 1.2.5 Cheater player: computer player that automa�cally conquers all territories that are adjacent to its own territories (only once per turn). 1.2.5 : X :
0% 0.00% X 1.2.6 If a Neutral player is a�acked, it becomes an Aggressive player. 1.2.6 : X :
0% 0.00% X 1.2.7 All data members of user-defined class type are of pointer type. 1.2.7 : X :
0% 0.00% X 1.2.8 Classes declared in header file. Func�ons implemented in cpp file. Absence of inline func�ons 1.2.8 : X :
0% 0.00% X 1.2.9 All classes implement a correct copy constructor, assignment operator, and stream inser�on operator. 1.2.9 : X :
0% 0.00% X 1.2.10 Absence of memory leaks. 1.2.10 : X :
0% 0.00% X 1.2.11 Driver that demonstrates that different players can be assigned different strategies that lead to different behavior using the Strategy design pa�ern. 1.2.11 : X :
0% 0.00% X 1.2.12 Driver that demonstrates that the strategy adopted by a player can be changed dynamically during play. 1.2.12 : X :
0% 0.00% X 1.2.13 Driver that demonstrates that the human player makes decisions according to user interac�on, and computer players make decisions automa�cally, which are both implemented using the strategy pa�ern. 1.2.13 : X :
0% 10.00% 1.3 : :
0% 0.00% X 1.3.1 All is implemented in the file duo named PlayerStrategies.cpp/PlayerStrategies.h and no other files. 1.3.1 : X :
0% 0.00% X 1.3.2 The Player class does not have subclasses that implement different behaviors 1.3.2 : X :
0% 0.00% X 1.3.3 Presence of a PlayerStrategy abstract class that is a superclass of all the player strategy behavioral classes. 1.3.3 : X :
0% 0.00% X 1.3.4 For each strategy as described above, you have a ConcreteStrategy class: HumanPlayerStrategy, AggressivePlayerStrategy, BenevolentPlayerStrategy, and NeutralPlayerStrategy that are subclasses of the PlayerStrategy class. 1.3.4 : X :
0% 0.00% X 1.3.5 Each of the ConcreteStrategy classes implement their own version of the issueOrder(), toA�ack(), and toDefend() methods. 1.3.5 : X :
0% 0.00% X 1.3.6 The Player class contains a data member of type PlayerStrategy. 1.3.6 : X :
0% 0.00% X 1.3.7 The issueOrder(), toDefend(), and toA�ack() methods of the player do not implement behavior and simply delegate their call to the corresponding methods in the PlayerStrategy member of the Player. 1.3.7 : X :
0% 10.00% 1.4 : :
0% 0.00% X 1.4.1 The program never crashed during the demonstra�on or code review 1.4.1 : X :
0% 0.00% X 1.4.2 Students were very clear in technical discussions during the demonstra�on 1.4.2 : X :
0% 10.00% 1.5 : :
0% 0.00% X 1.5.1 All user-defined classes, methods, free func�ons, and operators are documented 1.5.1 : X :
0% 0.00% X 1.5.2 Clear/consistent naming conven�on is used 1.5.2 : X :
0% 0.00% X 1.5.3 Absence of commented-out code 1.5.3 : X :

 : :
2 : :

0% 10.00% 2.1 : :
0% 0.00% X 2.1.1 Students are fully aware of the correct Warzone game rules to implement during the presenta�on 2.1.1 : X :
0% 60.00% 2.2 : :
0% 0.00% X 2.2.1 The tournament command can be entered either from the console or from a file. 2.2.1 : X :
0% 0.00% X 2.2.2 Invalid tournament commands are rejected. 2.2.2 : X :
0% 0.00% X 2.2.3 Map files are loaded and validated as a result of execu�ng a tournament command. 2.2.3 : X :
0% 0.00% X 2.2.4 Players are created as a result of execu�ng a tournament command. 2.2.4 : X :
0% 0.00% X 2.2.5 The specified number of games are executed with all the players specified as a result of execu�ng a tournament command. 2.2.5 : X :
0% 0.00% X 2.2.6 The played games end as a draw a�er the specified number of turns have been played without a winner. 2.2.6 : X :
0% 0.00% X 2.2.7 The games in a tournament all play witout any user interac�on. 2.2.7 : X :
0% 0.00% X 2.2.8 All data members of user-defined class type are of pointer type. 2.2.8 : X :
0% 0.00% X 2.2.9 Classes declared in header file. Func�ons implemented in cpp file. Absence of inline func�ons 2.2.9 : X :
0% 0.00% X 2.2.10 All classes implement a correct copy constructor, assignment operator, and stream inser�on operator. 2.2.10 : X :
0% 0.00% X 2.2.11 Absence of memory leaks. 2.2.11 : X :
0% 0.00% X 2.2.12 Driver clearly demonstrates the tournament command can be processed and validated by the CommandProcessor, and executed by the GameEngine, resul�ng in a tournament being played as described above. 2.2.12 : X :
0% 10.00% 2.3 : :
0% 0.00% X 2.3.1 The code for the processing of the tournament command must be implemented in the exis�ng CommandProcessing.cpp/CommandProcessing.h file duo 2.3.1 : X :
0% 0.00% X 2.3.2 The code for the execu�on of the tournament must be implemented in the exis�ng GameEngine.cpp/GameEngine.h file duo. 2.3.2 : X :
0% 10.00% 2.4 : :
0% 0.00% X 2.4.1 The program never crashed during the demonstra�on or code review 2.4.1 : X :
0% 0.00% X 2.4.2 Students were very clear in technical discussions during the demonstra�on 2.4.2 : X :
0% 10.00% 2.5 : :
0% 0.00% X 2.5.1 All user-defined classes, methods, free func�ons, and operators are documented 2.5.1 : X :
0% 0.00% X 2.5.2 Clear/consistent naming conven�on is used 2.5.2 : X :
0% 0.00% X 2.5.3 Absence of commented-out code 2.5.3 : X :

 : :

Knowledge/Correctness of Game Rules 2 0.00 0.00 0.00 0.00
Compliance of solu�on with Stated Problem 12 0.00 0.00 0.00 0.00

Add/remove some lines with red cells to add/remove evalua�on criteria Modularity of Solu�on 2 0.00 0.00 0.00 0.00
When you add lines, add them only in the middle of the area, or else the calcula�on is going to be wrong Mastery of Language/Tools/Libraries 2 0.00 0.00 0.00 0.00
To add lines, add a new row, then copy into it one of the exis�ng rows. Code readability: name conven�ons, clarity of code, use of comments 2 0.00 0.00 0.00 0.00
To remove parts, remove the en�re block above, then remove the corresponding column in the green table to the right
To add more than 5 parts, it's more compilcated...

1 : :
1.1 : :
1.1.1 : X :
1.2 : :
1.2.1 : X :
1.2.2 : X :
1.2.3 : X :
1.2.4 : X :
1.2.5 : X :
1.2.6 : X :
1.2.7 : X :
1.2.8 : X :
1.2.9 : X :
1.2.10 : X :
1.2.11 : X :
1.2.12 : X :
1.2.13 : X :
1.3 : :
1.3.1 : X :
1.3.2 : X :
1.3.3 : X :
1.3.4 : X :
1.3.5 : X :
1.3.6 : X :
1.3.7 : X :
1.4 : :
1.4.1 : X :
1.4.2 : X :
1.5 : :
1.5.1 : X :
1.5.2 : X :
1.5.3 : X :
 : :
2 : :
2.1 : :
2.1.1 : X :
2.2 : :
2.2.1 : X :
2.2.2 : X :
2.2.3 : X :
2.2.4 : X :
2.2.5 : X :
2.2.6 : X :
2.2.7 : X :
2.2.8 : X :
2.2.9 : X :
2.2.10 : X :
2.2.11 : X :
2.2.12 : X :
2.3 : :
2.3.1 : X :
2.3.2 : X :
2.4 : :
2.4.1 : X :
2.4.2 : X :
2.5 : :
2.5.1 : X :
2.5.2 : X :
2.5.3 : X :
 : :

1.1 Knowledge/Correctness of Game Rules

1.2 Compliance of solu�on with Stated Problem

1.3 Modularity of Solu�on

1.4 Mastery of Language/Tools/Libraries

1.5 Code readability: name conven�ons, clarity of code, use of comments

2.1 Knowledge/Correctness of Game Rules

2.2 Compliance of solu�on with Stated Problem

2.3 Modularity of Solu�on

2.4 Mastery of Language/Tools/Libraries

2.5 Code readability: name conven�ons, clarity of code, use of comments

Designer instruc�ons

Total 20 0.00 0.00 0.00

Marker instruc�ons
Enter values only in the red cells. Everything else is calculated automa�cally.
In Column D, enter either A, B, C, or F for each marking element
Enter notes in column A
If there is an en�re part that has been agreed to not be graded, delete one of the columns in the green table (Part 1 to Part 5)

