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• Front end:

• Lexical Analysis

• Syntactic Analysis

• Intermediate Code/Representation Generation

• Intermediate Code/Representation Optimization

• Semantic Analysis

• Back end:

• Object Code Generation

• Object Code Optimization

• The front end is machine-independent, i.e. the decisions made in its processing 
do not depend on the target machine on which the translated program will be 
executed.

• A well-designed front end can be reused to build compilers for different target 
machines.

• The back end is machine-dependent, i.e. these steps are related to the nature of 
the assembly or machine language of the target architecture. 

Introduction to code generation
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• After syntactic analysis, we have a number of options to choose from:

• generate object code directly from the parse.

• generate intermediate code, and then generate object code from it.

• generate an intermediate abstract representation, and then generate code directly 
from it.

• generate an intermediate abstract representation, generate intermediate code, and 
then the object code.

• All these options have one thing in common: they are all based on syntactic 
information gathered/aggregated/processed/verified in the syntactic-semantic 
analysis.

Introduction to code generation

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design



Concordia University Department of Computer Science and Software Engineering

our project

Possible paths toward object code generation
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• Intermediate representations synthetize the syntactic information gathered 
during the parse, generally in the form of a tree or directed graph. 

• Intermediate representations enable high-level code optimization.

• In out project, we use an Abstract Syntax Tree (AST) as an intermediate 
representation. 

• Intermediate code is a low-level coded (text) representation of the program, 
directly translatable to object code. 

• Intermediate code enables low-level, architecture-dependent optimizations.

• We don’t have intermediate code in our project.  

Intermediate representations and intermediate code

Joey Paquet, 2000-2018
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Intermediate representations
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• Each node represents the application of a rule in the grammar.

• A subtree is created only after the complete parsing of a right hand side.

• References to subtrees are sent up and grafted as upper subtrees are completed.

• Parse trees (concrete syntax trees) emphasize the grammatical structure of the 
program, based on the exact concrete syntax of the grammar.

• Abstract syntax trees emphasize the actual computations to be performed. They 
do not refer to the actual non-terminals defined in the grammar, nor to tokens 
that play no role in defining the translated program, hence their name. 

• When implementing an LL parser, there is generally a lot of differences between 
the parse tree and the corresponding abstract syntax tree. 

Abstract syntax tree

Joey Paquet, 2000-2018
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Parse tree vs. abstract syntax tree
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• Directed acyclic graphs (DAG) are a relative of syntax trees: they are used to show 
the syntactic structure of valid programs in the form of a graph with the following 
restrictions:

• Edges between nodes can only be unidirectional. 

• There cannot be cycles in a DAG, i.e. no path can ever lead twice to the same 
node. 

• Presence of a root node. 

• For example, in a DAG representation, the nodes for repeated variables and 
expressions are merged into a single node.

• DAGs are more complicated to build and use than syntax trees, but easily allows 
the implementation of a variety of optimization techniques by avoiding 
redundant operations. 

Directed acyclic graph

Joey Paquet, 2000-2018
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Abstract syntax tree vs. directed acyclic graph
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• Reverse Polish notation (RPN), also known as Polish postfix 
notation or simply postfix notation. 

• "Polish" refers to the nationality of logician Jan Łukasiewicz, 
who invented it in 1924.

• Mathematical notation in which operators follow their 
operands, in contrast to Polish notation, in which operators 
precede their operands. 

• It does not need any parentheses as long as each operator 
has a fixed number of operands. 

• The postfix notation was used by Friedrich L. Bauer and 
Edsger W. Dijkstra while working on the design of a 
compiler for the Algol language in the 1960s to reduce 
computer memory access and utilize a stack to evaluate 
expressions. 

Postfix notation

Joey Paquet, 2000-2018
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• Easy to generate from a bottom-up parse.

• Can be generated from an abstract syntax tree using post-order traversal.

• Some programming language constructs can be translated in post-fix notation. 

• Edsger Dijstra invented the shunting-yard algorithm to translate them from infix 
notation to post-fix notation. 

• This algorithm was later expanded into operator precedence parsing, which is 
essentially LR shift-reduce parsing without the notion of state. 

• Much less powerful than LR, e.g. cannot deal with grammars that have more 
than one consecutive non-terminals nor epsilon in a right-hand-side. 

Postfix notation

Joey Paquet, 2000-2018
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a+b  ab+
a+b*c  abc*+
if A then B else C  ABC?
if A then if B then C else D else E  ABCD?E?
x=a*b+a*b  xab*ab*+=
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• Example of processing post-fix notation: 

• Expression in post-fix notation in black. 

• Current token in black bold.

• Content of stack in red.  

• Stack-based evaluation of expressions 
expressed in post-fix notation: 

Postfix notation

Joey Paquet, 2000-2018
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• Three-address codes (TAC or 3AC) is an intermediate language that maps directly 
to “assembly pseudo-code”, i.e. architecture-dependent assembly code.

• It breaks the program into short statements requiring no more than three 
variables (hence its name) and no more than one operator.

• As it is an intermediate (abstract) language, its “addresses” represent symbolic 
addresses (i.e. variables), as opposed to either registers or memory addresses 
that would be used by the target machine code. 

• These characteristics allows 3AC to:

• be more abstract than assembly language, enabling optimizations at the higher 
abstract level.  

• have very high resemblance to assembly language, enabling very easy translation to 
assembly language.        

Three-address code

Joey Paquet, 2000-2018
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Three-address code

Joey Paquet, 2000-2018
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source 3AC

x = a+b*c t := b*c
x := a+t

x = (-b+sqrt(b^2-4*a*c))/(2*a) t1 := b * b 
t2 := 4 * a 
t3 := t2 * c 
t4 := t1 - t3 
t5 := sqrt(t4) 
t6 := 0 - b 
t7 := t5 + t6 
t8 := 2 * a 
t9 := t7 / t8 
x := t9

for (i = 0; i < 10; ++i) { 
b[i] = i*i; 

}
...

t1 := 0     
L1:  if t1 >= 10 goto L2     

t2 := t1 * t1  
t3 := t1 * 4 
t4 := b + t3 
*t4 := t2 
t1 := t1 + 1 
goto L1                

L2:  ...
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• The temporary variables are 
generated at compile time 
and may be added to the 
symbol table.

• In the generated code, the 
variables will refer to actual 
memory cells. Their address 
(or alias) may also be stored 
in the symbol table.

• 3AC can also be represented 
as quadruples, which are 
even more related to 
assembly languages. 

Three-address code

Joey Paquet, 2000-2018
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3AC ASM

t := b*c L 3,b
M 3,c
ST 3,t

x := a+t L 3,a
A 3,t
ST 3,x

3AC Quadruples

t := b*c MULT t,b,c

x := a+t ADD x,a,t
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• In this case, we generate code in a language for which we already have a 
compiler or interpreter.

• Such languages are generally low-level and dedicated to the compiler 
construction task.

• It provides the compiler writer with a “virtual machine”.

• Various compilers can be built using the same virtual machine.

• The virtual machine compiler can be compiled on different machines to provide a 
translator to various architectures.

• Many contemporary languages, such as Java, Perl, PHP, Python and Ruby use a 
similar execution architecture. 

• For the project, we have the Moon processor, which provides a virtual assembly 
language and a compiler/interpreter for that language..  

Intermediate languages

Joey Paquet, 2000-2018
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Project architectural overview

Joey Paquet, 2000-2018
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• Your compiler generates Moon code.

• The Moon processor (virtual machine) is used to execute your output program.

• The moon processor is written as a C program. 

• Your compiler is thus retargetable by recompilation of the Moon compiler on 
your target processor.

Project architectural overview

Joey Paquet, 2000-2018
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• Semantic verification/translation is done using Semantic Actions. 

• As the AST is traversed, semantic actions applicable to the currently traversed 
node type are triggered. 

• Many semantic actions need to be used in order to do the entire semantic 
verification/translation.

• As some semantic actions need to be applied prior to others, you need to 
organize them in phases.  

• A separate Semantic Actions module should be created that consists of a library 
of functions that the compiler will call as three AST is traversed. Ideally, there 
should be one such module for each phase, and each phase is externally 
triggered in a particular sequence. 

• For example, semantic verification actions and semantic translation actions can 
be separated from each other.   

• This can easily be done using the Visitor pattern. 

Project architectural overview

Joey Paquet, 2000-2018
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Project architectural overview
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Semantic actions and code generation

Joey Paquet, 2000-2018
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• Semantics is about giving a meaning to the compiled program.

• Semantic actions have two counterparts: 

• Semantic checking actions: check if the compiled program can have a meaning, e.g 
identifiers are declared and properly used, operators and functions have the right 
parameter types and number of parameters upon calling.

• Semantic translation actions: translate declarations, expressions, statements and 
functions to target code.

• Semantic translation is conditional to semantic checking, i.e. if a program is 
invalid, the generated code would be invalid. 

• There is no such thing as code generation errors detection/reporting. 

Semantic actions

Joey Paquet, 2000-2018
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• There are semantic actions associated with: 

• Declarations: 

• variable declarations

• type declarations

• function declarations

• Control structures: 

• conditional statements

• loop statements

• function calls

• Assignments and expressions: 

• assignment operations

• arithmetic and logical expressions

• This applies to strongly typed procedural programming. 

• Other programming language paradigms often have to be analyzed/translated 
differently. 

Semantic actions

Joey Paquet, 2000-2018
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Processing declarations

Joey Paquet, 2000-2018
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• Semantic checking

• In processing declarations, the only semantic checking there is to do is to ensure that 
every identifier (e.g. variable, type, class, function, etc.) is declared once and only once 
in the same scope. 

• This restriction is tested using the symbol table mechanism.

• Symbol table entries are generated as declarations are encountered.

• A symbol table is created every time a scope is entered. 

• Afterwards, every time an identifier is encountered, a check is made in the symbol 
table to ensure that: 

• It has been properly defined in the scope where the identifier is encountered.

• It is properly used according to its type as stored in the symbol table. 

Processing declarations

Joey Paquet, 2000-2018
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• Semantic translation

• Code generation in type declarations comes in the form of calculation of the total 
memory size to be allocated for the objects defined.

• Every variable defined will eventually have to be stored in the computer’s memory.

• Memory allocation must be done according to the size of the variables defined, the 
data encoding used, and the word length of the computer, which depends on the 
target machine.

• For each variable identifier declared, you must generate a unique label that will be 
used to refer to that variable in the Moon code. 

• If you implement a stack-based memory allocation scheme, all references to variables 
have to be done using offset calculation. 

• If recursion is allowed, stack-based memory allocation is necessary. 

• Examples that follow are using a unique labels non-recursive scheme. 

• Stack-based operation will be explained in more details in the next lecture.  

Processing declarations

Joey Paquet, 2000-2018
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• Semantic checking
• An entry has been entered in the symbol table corresponding to the current scope. 

• Semantic translation
• The label corresponding to the variable, or its offset versus the current scope’s starting 

point, is stored in the symbol table entry of the variable. In the case of arrays, the 
elements’ offsets (size of the elements, rows, etc) are often stored in the symbol table 
record, though it can be calculated from the array’s type and dimension list.

• Such information can also be put in the AST nodes, though it may clutter the AST node 
structure. 

• If a label was assigned to the variable, then memory space is reserved for the variable 
according to the size of the type of the variable and linked to a unique label (or offset) 
in the Moon code.

• If a stack-operated mode is used, it is just assumed that the variable’s value is stored at 
address stackframe+offset of all the variables preceding it. 

Processing variable declarations

Joey Paquet, 2000-2018
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• Variable declaration (basic type)

• sizeof(int) = 32 bits (4 bytes)

• sizeof(float) = needs to be encoded (non-native) 

• Implementation as a visitor method (non-array): 

Processing variable declarations (basic types)

Joey Paquet, 2000-2018
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public void visit(VarDeclNode node){
// First, propagate accepting the same visitor to all the children
// This effectively achieves Depth-First AST Traversal
for (Node child : node.getChildren() )

child.accept(this);
// Then, do the processing of this nodes' visitor
if (node.getChildren().get(0).getData() == "int")

moonDataCode += "        % space for variable " + node.getChildren().get(1).getData() + "\n";
moonDataCode += String.format("%-7s" ,node.getChildren().get(1).getData()) + " dw 0\n";

}

% space for variable a
a       res 4

% space for variable b
b       res 4

% space for variable c
c       res 4

int a;
int b; 
int c;

varDecl

type id ε 
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• All variables need to be declared so that they are of fixed size. This is why array 
dimensions need to be constants. 

• This restriction comes from the fact that the memory allocated to the array has 
to be set at compile time, and be fixed throughout the execution of the program.

• When processing an array declaration, a sufficient amount of memory is 
allocated to the variable depending on the size of the elements and the 
cardinality of the array.

• Similarly for objects, memory is assigned for all the data members available to 
objects of their class. 

• The starting address is stored in the symbol table. This is either a Moon label, or 
an offset computed from the size of all the data elements coming before it in the 
current scope. The size of the entire data structure also needs to be stored in the 
symbol table to facilitate code generation of array indexing or object member 
access during code generation, as well as the offset of other variables coming 
after this one in the current scope. 

• Variables of dynamic size are generally implemented using pointers, dynamic 
memory allocation functions and an execution stack or heap, which requires the 
implementation of a runtime system to execute the programs. For simplicity, we 
don’t have them in the project. 

Processing variables declarations (composite data structures)

Joey Paquet, 2000-2018
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• Variable declaration (arrays)

•

Processing variable declarations (arrays)

Joey Paquet, 2000-2018
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varDecl

type id dimList

num ... num

sizeof(array) = sizeof(type)
* num1

* num2

… 
* numn

% space for variable a
a       res 48

% space for variable b
b       res 8

% space for variable c
c       res 32

int a[3][4];
int b[2]; 
int c[2][2][2];

a[0][0] (int)
a[0][1] (int)
a[0][2] (int)

a[1][0] (int)
a[1][1] (int)
a[1][2] (int)

a[2][0] (int)
a[2][1] (int)
a[2][2] (int)

a+((0*sizeof(int)*col) + 0*sizeof(int))
a+((0*sizeof(int)*col) + 1*sizeof(int))
a+((0*sizeof(int)*col) + 2*sizeof(int))

a+((1*sizeof(int)*col) + 0*sizeof(int))
a+((1*sizeof(int)*col) + 1*sizeof(int))
a+((1*sizeof(int)*col) + 2*sizeof(int))

a+((2*sizeof(int)*col) + 0*sizeof(int))
a+((2*sizeof(int)*col) + 1*sizeof(int))
a+((2*sizeof(int)*col) + 2*sizeof(int))

a[0][3] (int) a+((0*sizeof(int)*col) + 3*sizeof(int))

a[1][3] (int) a+((1*sizeof(int)*col) + 3*sizeof(int))

a[2][3] (int) a+((2*sizeof(int)*col) + 3*sizeof(int))
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• Variable declaration (objects)

•

Processing variable declarations (objects)

Joey Paquet, 2000-2018
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classDecl

id inherList

id id... 

membList

var
Decl

var
Decl

... 

sizeof(object) = for each inherited class
size += classSize

for each member variable
size += memberSize

% space for variable a
a       res 36

class A : B {
int a1;
int a2[2][2];
C a3;

}

class B {
int b1;
int b2;

}

class C {
int c1;
int c2;

}

program {
A a;

}

a+(sizeof(a1))a2[0][0] (int)

a3.c1 (int)

aa1 (int)

a+(sizeof(C))

a2[0][1] (int)
a2[1][0] (int)
a2[1][1] (int)

A

a3.c1 (int)
C

b1 (int)
b2 (int)

B

a+(sizeof(A))
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• Semantic records contain the type and location for variables (i.e. labels in the 
Moon code, or offsets) or the type and value for constant factors.

• Semantic records are created at the leaves of the tree when factors are 
recognized and their information is retrieved, e.g from the symbol table record 
for variables, or from the token contained in the AST for literal values. 

• Some of the information in these semantic records needs to be migrated up for 
processing of: 

• Semantic checking, e.g. check if operands’ types are valid for the operator

• Semantic translation, generate code, or reserve memory/calculate offsets. 

Processing expressions/assignment statements

Joey Paquet, 2000-2018
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• As AST nodes (or subtrees) are traversed, intermediate results are stored in 
semantic records containing subresults for subexpressions.

• Each time an operator node is traversed, its corresponding semantic checking 
and translation is done and its subresult is stored in a temporary memory 
location for which you have to allocate some memory and generated a label or 
computed its offset.

• An entry can then be inserted in the symbol table for each intermediate result 
generated. If so, it can then be used for further reference when doing semantic 
verification and translation while continuing AST tree traversal. 

Processing expressions/assignment statements

Joey Paquet, 2000-2018
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• The code is generated sequentially as the tree is traversed:

Processing expressions/assignment statements

Joey Paquet, 2000-2018
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a

b c

+

*

x

=
Subtree Moon code

t1 = b*c lw r1,b(r0)
lw r2,c(r0)
mul r3,r1,r2
sw t1(r0), r3

t2 = a+t1 lw r1,a(r0)
lw r2,t1(r0)
add r3,r1,r2
sw t2(r0), r3

x = t2 lw r1,t2(r0)
sw x(r0),r1
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• Processing a multiplication node

• Expects the Moon labels to be stored in the nodes.

• Here, for variables, Moon labels are the same as variable names, not always the case.

• In cases where the factor subtree is a tree, its result needs to be stored as a temporary 
value. Here, temporary results are stored in labeled memory cells. If using a stack 
mode of operation, the temporary memory location’s offset needs to be used to get to 
the stored value before it can be loaded. 

Processing expressions/assignment statements

Joey Paquet, 2000-2018
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public void visit(MultOpNode node){ 
// First, propagate accepting the same visitor to all the children
// This effectively achieves Depth-First AST Traversal
for (Node child : node.getChildren() )

child.accept(this);
// Then, do the processing of this nodes' visitor
// create a local variable and allocate a register to this subcomputation
node.localRegister = this.registerPool.pop();
node.leftChildRegister = this.registerPool.pop();
node.rightChildRegister = this.registerPool.pop();
node.moonVarName = this.getNewTempVarName();
// generate code
moonExecCode += "        lw " + node.leftChildRegister + "," + node.getChildren().get(0).moonVarName + "(r0)\n";
moonExecCode += "        lw " + node.rightChildRegister + "," + node.getChildren().get(1).moonVarName + "(r0)\n";
moonExecCode += "        mul " + node.localRegister + "," + node.leftChildRegister + "," + node.rightChildRegister + "\n"; 
moonDataCode += String.format("%-7s",node.moonVarName) + " dw 0\n";
moonExecCode += "        sw " + node.moonVarName + "(r0)," + node.localRegister + "\n";
// deallocate the registers for the two children, and the current node
this.registerPool.push(node.leftChildRegister);
this.registerPool.push(node.rightChildRegister);
this.registerPool.push(node.localRegister);

}

multOp

term factor
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• Processing an assignment statement node

Processing expressions/assignment statements

Joey Paquet, 2000-2018
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public void visit(AssignStatNode node){ 
// First, propagate accepting the same visitor to all the children
// This effectively achieves Depth-First AST Traversal
for (Node child : node.getChildren() )
child.accept(this);

// Then, do the processing of this nodes' visitor
// allocate local register
node.localRegister = this.registerPool.pop();
//generate code
moonExecCode += "        lw " + node.localRegister + "," + node.getChildren().get(1).moonVarName + "(r0)\n";
moonExecCode += "        sw " + node.getChildren().get(0).moonVarName + "(r0)," + node.localRegister + "\n";
//deallocate local register
this.registerPool.push(node.localRegister);

}

assignStat

var expr
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• A solution needs to be implemented for:
• Register allocation : many operations use registers. You need a facility to allocate registers for 

operations and deallocate them after they have been used. 

• Moon tag name generation: If you want to use Moon tags for your temporary variables, you can 
implement that as a method of the visitor that implements the phase that uses name tag 
generation.  

• These facilities are local to this visitor and are hidden from other visitors. Which 
is good modularity. 

Processing expressions/assignment statements

Joey Paquet, 2000-2018
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public class CodeGenerationVisitor extends Visitor {

public Stack<String> registerPool = new Stack<String>();
public Integer       tempVarNum = 0;
public String        moonExecCode = new String(); // moon instructions part
public String        moonDataCode = new String(); // moon data part

public CodeGenerationVisitor() {
// create a pool of registers as a stack of Strings
// assuming only r1, ..., r12 are available
for (Integer i = 12; i>=1; i--)
registerPool.push("r" + i.toString());
}

public String getNewTempVarName(){
tempVarNum++;
return "t" + tempVarNum.toString();  
}

…
}
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• Most compilers build an intermediate representation of the parsed program, 
normally as an abstract syntax tree.

• These will allow high-level optimizations to occur before the code is generated.

• In the project, we are outputting Moon code, which is an intermediate language. 

• Moon code could be the subject of low-level optimizations.  

• Semantic actions are composed of semantic checking, and semantic translation
counterparts. 

• Semantic actions are triggered upon reaching certain node types when the AST is 
traversed. This generally requires a double dispatch mechanism, which is not 
available in most languages. 

• The Visitor pattern is a very appropriate solution to: 

• Achieve double dispatch

• Allow great modularity by grouping semantic actions in different phases. 

• Decorate the AST nodes with accumulated information used by further phases. 

• Store information internally to the current visitor, so that other visitors are not 
cluttered with information that is not pertinent to them.  

Conclusions
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