
Concordia University Department of Computer Science and Software Engineering

COMPILER DESIGN
Intermediate representations

Introduction to code generation

Joey Paquet, 2000-2018

1COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Front end:

• Lexical Analysis

• Syntactic Analysis

• Intermediate Code/Representation Generation

• Intermediate Code/Representation Optimization

• Semantic Analysis

• Back end:

• Object Code Generation

• Object Code Optimization

• The front end is machine-independent, i.e. the decisions made in its processing
do not depend on the target machine on which the translated program will be
executed.

• A well-designed front end can be reused to build compilers for different target
machines.

• The back end is machine-dependent, i.e. these steps are related to the nature of
the assembly or machine language of the target architecture.

Introduction to code generation

Joey Paquet, 2000-2018

2COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• After syntactic analysis, we have a number of options to choose from:

• generate object code directly from the parse.

• generate intermediate code, and then generate object code from it.

• generate an intermediate abstract representation, and then generate code directly
from it.

• generate an intermediate abstract representation, generate intermediate code, and
then the object code.

• All these options have one thing in common: they are all based on syntactic
information gathered/aggregated/processed/verified in the syntactic-semantic
analysis.

Introduction to code generation

Joey Paquet, 2000-2018

3COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

our project

Possible paths toward object code generation

Joey Paquet, 2000-2018

4COMP 442/6421 – Compiler Design

Syntactic
Analyzer

Lexical
Analyzer

Intermediate
Representation

Intermediate
Code

Front End Back End

Object
Code

Object
Code

Object
Code

Object
Code

Lexical
Analyzer

Lexical
Analyzer

Lexical
Analyzer

Syntactic
Analyzer

Syntactic
Analyzer

Syntactic
Analyzer

Intermediate
Representation

Intermediate
Code

Semantic
Translation

Semantic
Translation

Semantic
Translation

Semantic
Translation

Concordia University Department of Computer Science and Software Engineering

• Intermediate representations synthetize the syntactic information gathered
during the parse, generally in the form of a tree or directed graph.

• Intermediate representations enable high-level code optimization.

• In out project, we use an Abstract Syntax Tree (AST) as an intermediate
representation.

• Intermediate code is a low-level coded (text) representation of the program,
directly translatable to object code.

• Intermediate code enables low-level, architecture-dependent optimizations.

• We don’t have intermediate code in our project.

Intermediate representations and intermediate code

Joey Paquet, 2000-2018

5COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Intermediate representations

Joey Paquet, 2000-2018

6COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Each node represents the application of a rule in the grammar.

• A subtree is created only after the complete parsing of a right hand side.

• References to subtrees are sent up and grafted as upper subtrees are completed.

• Parse trees (concrete syntax trees) emphasize the grammatical structure of the
program, based on the exact concrete syntax of the grammar.

• Abstract syntax trees emphasize the actual computations to be performed. They
do not refer to the actual non-terminals defined in the grammar, nor to tokens
that play no role in defining the translated program, hence their name.

• When implementing an LL parser, there is generally a lot of differences between
the parse tree and the corresponding abstract syntax tree.

Abstract syntax tree

Joey Paquet, 2000-2018

7COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Parse tree vs. abstract syntax tree

Joey Paquet, 2000-2018

8COMP 442/6421 – Compiler Design

x = a*b+a*b

x

+

=

a b* a b*

E

A

E

E

Parse Tree

x

a b a b

*

=

*

+

x = a*b+a*b

Abstract Syntax Tree

Concordia University Department of Computer Science and Software Engineering

• Directed acyclic graphs (DAG) are a relative of syntax trees: they are used to show
the syntactic structure of valid programs in the form of a graph with the following
restrictions:

• Edges between nodes can only be unidirectional.

• There cannot be cycles in a DAG, i.e. no path can ever lead twice to the same
node.

• Presence of a root node.

• For example, in a DAG representation, the nodes for repeated variables and
expressions are merged into a single node.

• DAGs are more complicated to build and use than syntax trees, but easily allows
the implementation of a variety of optimization techniques by avoiding
redundant operations.

Directed acyclic graph

Joey Paquet, 2000-2018

9COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Abstract syntax tree vs. directed acyclic graph

Joey Paquet, 2000-2018

10COMP 442/6421 – Compiler Design

x

a b a b

*

=

*

+

x = a*b+a*b

Abstract Syntax Tree

x

=

a b

*

+

x = a*b+a*b

Directed Acyclic Graph

Concordia University Department of Computer Science and Software Engineering

• Reverse Polish notation (RPN), also known as Polish postfix
notation or simply postfix notation.

• "Polish" refers to the nationality of logician Jan Łukasiewicz,
who invented it in 1924.

• Mathematical notation in which operators follow their
operands, in contrast to Polish notation, in which operators
precede their operands.

• It does not need any parentheses as long as each operator
has a fixed number of operands.

• The postfix notation was used by Friedrich L. Bauer and
Edsger W. Dijkstra while working on the design of a
compiler for the Algol language in the 1960s to reduce
computer memory access and utilize a stack to evaluate
expressions.

Postfix notation

Joey Paquet, 2000-2018

11COMP 442/6421 – Compiler Design

Edsger Dijkstra

Friedrich L. Bauer

Concordia University Department of Computer Science and Software Engineering

• Easy to generate from a bottom-up parse.

• Can be generated from an abstract syntax tree using post-order traversal.

• Some programming language constructs can be translated in post-fix notation.

• Edsger Dijstra invented the shunting-yard algorithm to translate them from infix
notation to post-fix notation.

• This algorithm was later expanded into operator precedence parsing, which is
essentially LR shift-reduce parsing without the notion of state.

• Much less powerful than LR, e.g. cannot deal with grammars that have more
than one consecutive non-terminals nor epsilon in a right-hand-side.

Postfix notation

Joey Paquet, 2000-2018

12COMP 442/6421 – Compiler Design

a+b ab+
a+b*c abc*+
if A then B else C ABC?
if A then if B then C else D else E ABCD?E?
x=a*b+a*b xab*ab*+=

Concordia University Department of Computer Science and Software Engineering

• Example of processing post-fix notation:

• Expression in post-fix notation in black.

• Current token in black bold.

• Content of stack in red.

• Stack-based evaluation of expressions
expressed in post-fix notation:

Postfix notation

Joey Paquet, 2000-2018

13COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Three-address codes (TAC or 3AC) is an intermediate language that maps directly
to “assembly pseudo-code”, i.e. architecture-dependent assembly code.

• It breaks the program into short statements requiring no more than three
variables (hence its name) and no more than one operator.

• As it is an intermediate (abstract) language, its “addresses” represent symbolic
addresses (i.e. variables), as opposed to either registers or memory addresses
that would be used by the target machine code.

• These characteristics allows 3AC to:

• be more abstract than assembly language, enabling optimizations at the higher
abstract level.

• have very high resemblance to assembly language, enabling very easy translation to
assembly language.

Three-address code

Joey Paquet, 2000-2018

14COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Three-address code

Joey Paquet, 2000-2018

15COMP 442/6421 – Compiler Design

source 3AC

x = a+b*c t := b*c
x := a+t

x = (-b+sqrt(b^2-4*a*c))/(2*a) t1 := b * b
t2 := 4 * a
t3 := t2 * c
t4 := t1 - t3
t5 := sqrt(t4)
t6 := 0 - b
t7 := t5 + t6
t8 := 2 * a
t9 := t7 / t8
x := t9

for (i = 0; i < 10; ++i) {
b[i] = i*i;

}
...

t1 := 0
L1: if t1 >= 10 goto L2

t2 := t1 * t1
t3 := t1 * 4
t4 := b + t3
*t4 := t2
t1 := t1 + 1
goto L1

L2: ...

Concordia University Department of Computer Science and Software Engineering

• The temporary variables are
generated at compile time
and may be added to the
symbol table.

• In the generated code, the
variables will refer to actual
memory cells. Their address
(or alias) may also be stored
in the symbol table.

• 3AC can also be represented
as quadruples, which are
even more related to
assembly languages.

Three-address code

Joey Paquet, 2000-2018

16COMP 442/6421 – Compiler Design

3AC ASM

t := b*c L 3,b
M 3,c
ST 3,t

x := a+t L 3,a
A 3,t
ST 3,x

3AC Quadruples

t := b*c MULT t,b,c

x := a+t ADD x,a,t

Concordia University Department of Computer Science and Software Engineering

• In this case, we generate code in a language for which we already have a
compiler or interpreter.

• Such languages are generally low-level and dedicated to the compiler
construction task.

• It provides the compiler writer with a “virtual machine”.

• Various compilers can be built using the same virtual machine.

• The virtual machine compiler can be compiled on different machines to provide a
translator to various architectures.

• Many contemporary languages, such as Java, Perl, PHP, Python and Ruby use a
similar execution architecture.

• For the project, we have the Moon processor, which provides a virtual assembly
language and a compiler/interpreter for that language..

Intermediate languages

Joey Paquet, 2000-2018

17COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Project architectural overview

Joey Paquet, 2000-2018

18COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Your compiler generates Moon code.

• The Moon processor (virtual machine) is used to execute your output program.

• The moon processor is written as a C program.

• Your compiler is thus retargetable by recompilation of the Moon compiler on
your target processor.

Project architectural overview

Joey Paquet, 2000-2018

19COMP 442/6421 – Compiler Design

source

code

token

stream

AST

decorated

AST

Moon

code

lexical

analysis

syntax

analysis

code

generation

semantic

analysis

Moon

processor

Concordia University Department of Computer Science and Software Engineering

• Semantic verification/translation is done using Semantic Actions.

• As the AST is traversed, semantic actions applicable to the currently traversed
node type are triggered.

• Many semantic actions need to be used in order to do the entire semantic
verification/translation.

• As some semantic actions need to be applied prior to others, you need to
organize them in phases.

• A separate Semantic Actions module should be created that consists of a library
of functions that the compiler will call as three AST is traversed. Ideally, there
should be one such module for each phase, and each phase is externally
triggered in a particular sequence.

• For example, semantic verification actions and semantic translation actions can
be separated from each other.

• This can easily be done using the Visitor pattern.

Project architectural overview

Joey Paquet, 2000-2018

20COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Project architectural overview

Joey Paquet, 2000-2018

21COMP 442/6421 – Compiler Design

AST

Semantic
Analysis and
Translation
Module

Moon code

AbstractVisitor class

SemanticAnalyzer Module

SAphase1visitor class

SAphaseNvisitor class

…

CodeGenerator Module

CGphase1visitor class

CGphaseNvisitor class

…

visit(ASTnode4)
visit(ASTnode8)visit(ASTnode2)

visit(ASTnode1)

visit(ASTnode4)
visit(ASTnode8)visit(ASTnode3)

visit(ASTnode1)

visit(ASTnode9)
visit(ASTnode10)

visit(ASTnode4)
visit(ASTnode5)visit(ASTnode3)

visit(ASTnode2) visit(ASTnode10)

visit(ASTnode3)
visit(ASTnode2)
visit(ASTnode1)

ASTnode1

ASTnode2

ASTnode3

ASTnode4

ASTnode5

ASTnode6

ASTnode7

ASTnode8

ASTnode10ASTnode9

Concordia University Department of Computer Science and Software Engineering

Semantic actions and code generation

Joey Paquet, 2000-2018

22COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Semantics is about giving a meaning to the compiled program.

• Semantic actions have two counterparts:

• Semantic checking actions: check if the compiled program can have a meaning, e.g
identifiers are declared and properly used, operators and functions have the right
parameter types and number of parameters upon calling.

• Semantic translation actions: translate declarations, expressions, statements and
functions to target code.

• Semantic translation is conditional to semantic checking, i.e. if a program is
invalid, the generated code would be invalid.

• There is no such thing as code generation errors detection/reporting.

Semantic actions

Joey Paquet, 2000-2018

23COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• There are semantic actions associated with:

• Declarations:

• variable declarations

• type declarations

• function declarations

• Control structures:

• conditional statements

• loop statements

• function calls

• Assignments and expressions:

• assignment operations

• arithmetic and logical expressions

• This applies to strongly typed procedural programming.

• Other programming language paradigms often have to be analyzed/translated
differently.

Semantic actions

Joey Paquet, 2000-2018

24COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

Processing declarations

Joey Paquet, 2000-2018

25COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Semantic checking

• In processing declarations, the only semantic checking there is to do is to ensure that
every identifier (e.g. variable, type, class, function, etc.) is declared once and only once
in the same scope.

• This restriction is tested using the symbol table mechanism.

• Symbol table entries are generated as declarations are encountered.

• A symbol table is created every time a scope is entered.

• Afterwards, every time an identifier is encountered, a check is made in the symbol
table to ensure that:

• It has been properly defined in the scope where the identifier is encountered.

• It is properly used according to its type as stored in the symbol table.

Processing declarations

Joey Paquet, 2000-2018

26COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Semantic translation

• Code generation in type declarations comes in the form of calculation of the total
memory size to be allocated for the objects defined.

• Every variable defined will eventually have to be stored in the computer’s memory.

• Memory allocation must be done according to the size of the variables defined, the
data encoding used, and the word length of the computer, which depends on the
target machine.

• For each variable identifier declared, you must generate a unique label that will be
used to refer to that variable in the Moon code.

• If you implement a stack-based memory allocation scheme, all references to variables
have to be done using offset calculation.

• If recursion is allowed, stack-based memory allocation is necessary.

• Examples that follow are using a unique labels non-recursive scheme.

• Stack-based operation will be explained in more details in the next lecture.

Processing declarations

Joey Paquet, 2000-2018

27COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Semantic checking
• An entry has been entered in the symbol table corresponding to the current scope.

• Semantic translation
• The label corresponding to the variable, or its offset versus the current scope’s starting

point, is stored in the symbol table entry of the variable. In the case of arrays, the
elements’ offsets (size of the elements, rows, etc) are often stored in the symbol table
record, though it can be calculated from the array’s type and dimension list.

• Such information can also be put in the AST nodes, though it may clutter the AST node
structure.

• If a label was assigned to the variable, then memory space is reserved for the variable
according to the size of the type of the variable and linked to a unique label (or offset)
in the Moon code.

• If a stack-operated mode is used, it is just assumed that the variable’s value is stored at
address stackframe+offset of all the variables preceding it.

Processing variable declarations

Joey Paquet, 2000-2018

28COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Variable declaration (basic type)

• sizeof(int) = 32 bits (4 bytes)

• sizeof(float) = needs to be encoded (non-native)

• Implementation as a visitor method (non-array):

Processing variable declarations (basic types)

Joey Paquet, 2000-2018

29COMP 442/6421 – Compiler Design

public void visit(VarDeclNode node){
// First, propagate accepting the same visitor to all the children
// This effectively achieves Depth-First AST Traversal
for (Node child : node.getChildren())

child.accept(this);
// Then, do the processing of this nodes' visitor
if (node.getChildren().get(0).getData() == "int")

moonDataCode += " % space for variable " + node.getChildren().get(1).getData() + "\n";
moonDataCode += String.format("%-7s" ,node.getChildren().get(1).getData()) + " dw 0\n";

}

% space for variable a
a res 4

% space for variable b
b res 4

% space for variable c
c res 4

int a;
int b;
int c;

varDecl

type id ε

Concordia University Department of Computer Science and Software Engineering

• All variables need to be declared so that they are of fixed size. This is why array
dimensions need to be constants.

• This restriction comes from the fact that the memory allocated to the array has
to be set at compile time, and be fixed throughout the execution of the program.

• When processing an array declaration, a sufficient amount of memory is
allocated to the variable depending on the size of the elements and the
cardinality of the array.

• Similarly for objects, memory is assigned for all the data members available to
objects of their class.

• The starting address is stored in the symbol table. This is either a Moon label, or
an offset computed from the size of all the data elements coming before it in the
current scope. The size of the entire data structure also needs to be stored in the
symbol table to facilitate code generation of array indexing or object member
access during code generation, as well as the offset of other variables coming
after this one in the current scope.

• Variables of dynamic size are generally implemented using pointers, dynamic
memory allocation functions and an execution stack or heap, which requires the
implementation of a runtime system to execute the programs. For simplicity, we
don’t have them in the project.

Processing variables declarations (composite data structures)

Joey Paquet, 2000-2018

30COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Variable declaration (arrays)

•

Processing variable declarations (arrays)

Joey Paquet, 2000-2018

31COMP 442/6421 – Compiler Design

varDecl

type id dimList

num ... num

sizeof(array) = sizeof(type)
* num1

* num2

…
* numn

% space for variable a
a res 48

% space for variable b
b res 8

% space for variable c
c res 32

int a[3][4];
int b[2];
int c[2][2][2];

a[0][0] (int)
a[0][1] (int)
a[0][2] (int)

a[1][0] (int)
a[1][1] (int)
a[1][2] (int)

a[2][0] (int)
a[2][1] (int)
a[2][2] (int)

a+((0*sizeof(int)*col) + 0*sizeof(int))
a+((0*sizeof(int)*col) + 1*sizeof(int))
a+((0*sizeof(int)*col) + 2*sizeof(int))

a+((1*sizeof(int)*col) + 0*sizeof(int))
a+((1*sizeof(int)*col) + 1*sizeof(int))
a+((1*sizeof(int)*col) + 2*sizeof(int))

a+((2*sizeof(int)*col) + 0*sizeof(int))
a+((2*sizeof(int)*col) + 1*sizeof(int))
a+((2*sizeof(int)*col) + 2*sizeof(int))

a[0][3] (int) a+((0*sizeof(int)*col) + 3*sizeof(int))

a[1][3] (int) a+((1*sizeof(int)*col) + 3*sizeof(int))

a[2][3] (int) a+((2*sizeof(int)*col) + 3*sizeof(int))

Concordia University Department of Computer Science and Software Engineering

• Variable declaration (objects)

•

Processing variable declarations (objects)

Joey Paquet, 2000-2018

32COMP 442/6421 – Compiler Design

classDecl

id inherList

id id...

membList

var
Decl

var
Decl

...

sizeof(object) = for each inherited class
size += classSize

for each member variable
size += memberSize

% space for variable a
a res 36

class A : B {
int a1;
int a2[2][2];
C a3;

}

class B {
int b1;
int b2;

}

class C {
int c1;
int c2;

}

program {
A a;

}

a+(sizeof(a1))a2[0][0] (int)

a3.c1 (int)

aa1 (int)

a+(sizeof(C))

a2[0][1] (int)
a2[1][0] (int)
a2[1][1] (int)

A

a3.c1 (int)
C

b1 (int)
b2 (int)

B

a+(sizeof(A))

Concordia University Department of Computer Science and Software Engineering

• Semantic records contain the type and location for variables (i.e. labels in the
Moon code, or offsets) or the type and value for constant factors.

• Semantic records are created at the leaves of the tree when factors are
recognized and their information is retrieved, e.g from the symbol table record
for variables, or from the token contained in the AST for literal values.

• Some of the information in these semantic records needs to be migrated up for
processing of:

• Semantic checking, e.g. check if operands’ types are valid for the operator

• Semantic translation, generate code, or reserve memory/calculate offsets.

Processing expressions/assignment statements

Joey Paquet, 2000-2018

33COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• As AST nodes (or subtrees) are traversed, intermediate results are stored in
semantic records containing subresults for subexpressions.

• Each time an operator node is traversed, its corresponding semantic checking
and translation is done and its subresult is stored in a temporary memory
location for which you have to allocate some memory and generated a label or
computed its offset.

• An entry can then be inserted in the symbol table for each intermediate result
generated. If so, it can then be used for further reference when doing semantic
verification and translation while continuing AST tree traversal.

Processing expressions/assignment statements

Joey Paquet, 2000-2018

34COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• The code is generated sequentially as the tree is traversed:

Processing expressions/assignment statements

Joey Paquet, 2000-2018

35COMP 442/6421 – Compiler Design

a

b c

+

*

x

=
Subtree Moon code

t1 = b*c lw r1,b(r0)
lw r2,c(r0)
mul r3,r1,r2
sw t1(r0), r3

t2 = a+t1 lw r1,a(r0)
lw r2,t1(r0)
add r3,r1,r2
sw t2(r0), r3

x = t2 lw r1,t2(r0)
sw x(r0),r1

Concordia University Department of Computer Science and Software Engineering

• Processing a multiplication node

• Expects the Moon labels to be stored in the nodes.

• Here, for variables, Moon labels are the same as variable names, not always the case.

• In cases where the factor subtree is a tree, its result needs to be stored as a temporary
value. Here, temporary results are stored in labeled memory cells. If using a stack
mode of operation, the temporary memory location’s offset needs to be used to get to
the stored value before it can be loaded.

Processing expressions/assignment statements

Joey Paquet, 2000-2018

36COMP 442/6421 – Compiler Design

public void visit(MultOpNode node){
// First, propagate accepting the same visitor to all the children
// This effectively achieves Depth-First AST Traversal
for (Node child : node.getChildren())

child.accept(this);
// Then, do the processing of this nodes' visitor
// create a local variable and allocate a register to this subcomputation
node.localRegister = this.registerPool.pop();
node.leftChildRegister = this.registerPool.pop();
node.rightChildRegister = this.registerPool.pop();
node.moonVarName = this.getNewTempVarName();
// generate code
moonExecCode += " lw " + node.leftChildRegister + "," + node.getChildren().get(0).moonVarName + "(r0)\n";
moonExecCode += " lw " + node.rightChildRegister + "," + node.getChildren().get(1).moonVarName + "(r0)\n";
moonExecCode += " mul " + node.localRegister + "," + node.leftChildRegister + "," + node.rightChildRegister + "\n";
moonDataCode += String.format("%-7s",node.moonVarName) + " dw 0\n";
moonExecCode += " sw " + node.moonVarName + "(r0)," + node.localRegister + "\n";
// deallocate the registers for the two children, and the current node
this.registerPool.push(node.leftChildRegister);
this.registerPool.push(node.rightChildRegister);
this.registerPool.push(node.localRegister);

}

multOp

term factor

Concordia University Department of Computer Science and Software Engineering

• Processing an assignment statement node

Processing expressions/assignment statements

Joey Paquet, 2000-2018

37COMP 442/6421 – Compiler Design

public void visit(AssignStatNode node){
// First, propagate accepting the same visitor to all the children
// This effectively achieves Depth-First AST Traversal
for (Node child : node.getChildren())
child.accept(this);

// Then, do the processing of this nodes' visitor
// allocate local register
node.localRegister = this.registerPool.pop();
//generate code
moonExecCode += " lw " + node.localRegister + "," + node.getChildren().get(1).moonVarName + "(r0)\n";
moonExecCode += " sw " + node.getChildren().get(0).moonVarName + "(r0)," + node.localRegister + "\n";
//deallocate local register
this.registerPool.push(node.localRegister);

}

assignStat

var expr

Concordia University Department of Computer Science and Software Engineering

• A solution needs to be implemented for:
• Register allocation : many operations use registers. You need a facility to allocate registers for

operations and deallocate them after they have been used.

• Moon tag name generation: If you want to use Moon tags for your temporary variables, you can
implement that as a method of the visitor that implements the phase that uses name tag
generation.

• These facilities are local to this visitor and are hidden from other visitors. Which
is good modularity.

Processing expressions/assignment statements

Joey Paquet, 2000-2018

38COMP 442/6421 – Compiler Design

public class CodeGenerationVisitor extends Visitor {

public Stack<String> registerPool = new Stack<String>();
public Integer tempVarNum = 0;
public String moonExecCode = new String(); // moon instructions part
public String moonDataCode = new String(); // moon data part

public CodeGenerationVisitor() {
// create a pool of registers as a stack of Strings
// assuming only r1, ..., r12 are available
for (Integer i = 12; i>=1; i--)
registerPool.push("r" + i.toString());
}

public String getNewTempVarName(){
tempVarNum++;
return "t" + tempVarNum.toString();
}

…
}

Concordia University Department of Computer Science and Software Engineering

• Most compilers build an intermediate representation of the parsed program,
normally as an abstract syntax tree.

• These will allow high-level optimizations to occur before the code is generated.

• In the project, we are outputting Moon code, which is an intermediate language.

• Moon code could be the subject of low-level optimizations.

• Semantic actions are composed of semantic checking, and semantic translation
counterparts.

• Semantic actions are triggered upon reaching certain node types when the AST is
traversed. This generally requires a double dispatch mechanism, which is not
available in most languages.

• The Visitor pattern is a very appropriate solution to:

• Achieve double dispatch

• Allow great modularity by grouping semantic actions in different phases.

• Decorate the AST nodes with accumulated information used by further phases.

• Store information internally to the current visitor, so that other visitors are not
cluttered with information that is not pertinent to them.

Conclusions

Joey Paquet, 2000-2018

39COMP 442/6421 – Compiler Design

Concordia University Department of Computer Science and Software Engineering

• Fischer, Cytron, LeBlanc. Crafting a Compiler. Chapter 7, 8, 9, 10, 11. Addison-
Wesley, 2010.

• Wikipedia. Reverse Polish notation.

• Wikipedia. Directed Acyclic Graph.

• Dijkstra, E.W. (1961). Algol 60 translation : An algol 60 translator for the x1 and
making a translator for algol 60. Stichting Mathematisch Centrum. Rekenafdeling.
Stichting Mathematisch Centrum.

References

Joey Paquet, 2000-2018

40COMP 442/6421 – Compiler Design

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://ir.cwi.nl/pub/9251

