
1

Naval Battle Simulation System:
A Case Study in Software Engineering

LinFang Wang

A Major Report

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science at

Concordia University
Montreal, Quebec, Canada

March, 2002

© Linfang Wang, 2002



2

Abstract

This dissertation is a Computer Science Master degree major report by student

Linfang Wang. The main objective of this project is to utilize the object oriented

methodologies to design and implement a simple Naval Battle Simulation

System.  The project is based on a Software Engineering course project taught

by Dr. Joey Paquet at Concordia University. The project consists in

respecification of the system requirements, optimization of the system design,

UML notation improvement, reorganization of the structure of documents and

rewriting of the SRS, SDD and STD documents. This document can be taken as

an integrated standard for requirement, design, and testing documents for Naval

Battle Simulation System, or any other similar Software Engineering project. This

will enable Dr. Paquet to re-use this document as a valuable information source

for other Software Engineering projects in the future.

The project applies the object oriented design and implementation for all the

susbsystems. The developing tool is MFC and OpenGL. For the requirements

specification, a requirements identifier scheme is applied to improve the

traceability for the whole system. For system implementation, function

overloading, virtual function and pure virtual function, multithreading, inheritance

and polymorphism are used to improve the system generality, reuseability and

flexibility as well.



3

Acknowledgements

I would like to express that it was very beneficial to work on my major report

under the direction of Dr. Joey Paquet.  He gave me lots of important

suggestions and advises.  His guidance helped me to make significant progress

and enhance my knowledge as well. Sincerely, I appreciated Dr. Joey Paquet for

his great help during the process of this project for my master study.

Also, I would like to say thanks to all the COMP554 (Software Engineering,

Summer 2001) students for their great contribution, which I took as blueprint to

start my project.  Without their contribution, the project would have had to be

started from scratch and probably it would not have been possible for me to finish

it alone.

Finally, my best wish to my lovely 2 years old son—Ian.  I hope he will grow up to

know more and more from the world and keep growing healthy, happily.



4

Table of Contents

1. INTRODUCTION............................................................................................... 10

1.1 PURPOSE ........................................................................................................ 10
1.2 SCOPE ............................................................................................................ 10
1.3 DEFINITIONS, ACRONYMS, ABBREVIATIONS .................................................... 11
1.4 OVERVIEW ..................................................................................................... 12
1.5 REFERENCES................................................................................................... 12

2. GENERAL DESCRIPTION............................................................................... 13

2.1 PRODUCT PERSPECTIVE................................................................................... 13
2.2 PRODUCT FUNCTIONS ..................................................................................... 13
2.3 USER CHARACTERISTICS ................................................................................. 14
2.4 GENERAL CONSTRAINTS ................................................................................. 14
2.5 ASSUMPTIONS AND DEPENDENCIES ................................................................. 15

3. SPECIFIC REQUIREMENTS ........................................................................... 16

3.1 REQUIREMENT IDENTIFICATION....................................................................... 16
3.2 HIGH LEVEL USE CASE DESCRIPTION.............................................................. 17
3.3 FUNCTIONAL REQUIREMENTS DESCRIPTION..................................................... 23

3.3.1 Simulation Controller Requirements ...................................................... 24
3.3.2 Communication/Detection Requirements ............................................... 40
3.3.3 Aircraft Carrier Requirements................................................................ 58
3.3.4 Aircraft Requirements............................................................................ 71
3.3.5 Destroyer Requirements......................................................................... 86
3.3.6 Cruiser Requirements............................................................................. 98
3.3.7 Battleship Requirements ...................................................................... 110
3.3.8 Submarine Requirements ..................................................................... 122
3.3.9 Weapons Requirements........................................................................ 134

3.4 EXTERNAL INTERFACE REQUIREMENTS ......................................................... 139
3.4.1 User Interface ...................................................................................... 139
3.4.2 Hardware Interface .............................................................................. 139
3.4.3 Software Interface................................................................................ 139
3.4.4 Communication Interface..................................................................... 140

3.5 PERFORMANCE REQUIREMENTS..................................................................... 140
3.6 DESIGN CONSTRAINTS .................................................................................. 141
3.7 QUALITY ATTRIBUTES .................................................................................. 141
3.8 OTHER REQUIREMENTS................................................................................. 141

4. SOFTWARE DESIGN...................................................................................... 142

4.1 DECOMPOSITION DESCRIPTION...................................................................... 142
4.1.1 Module Decomposition........................................................................ 142
4.1.2 Concurrent Process Decomposition...................................................... 147
4.1.3 Data Decomposition............................................................................. 147



5

4.2 DEPENDENCY DESCRIPTION .......................................................................... 148
4.2.1 Internal Module Dependency ............................................................... 148
4.2.2 Internal Process Dependency ............................................................... 149
4.2.3 Data Dependency................................................................................. 149

4.3 INTERFACE DESCRIPTION .............................................................................. 150
4.3.1 Module Interface.................................................................................. 150
4.3.2 Process Interface.................................................................................. 156

4.4 SYSTEM DETAILED DESIGN........................................................................... 157
4.4.1 Simulation Controller Detailed Design................................................. 157
4.4.2 Communication/Detection Detailed Design.......................................... 171
4.4.3 Ship and Aircraft Detailed Design........................................................ 190
4.4.4 Weapon Detailed Design...................................................................... 219

5. SYSTEM TESTING.......................................................................................... 251

5.1 UNIT TESTING .............................................................................................. 251
5.1.1 Unit Testing for Simulation Controller................................................. 252
5.1.2 Unit Testing for Communication/Detection.......................................... 255
5.1.3 Unit Testing for All Vehicles ............................................................... 261
5.1.4 Unit Testing for Weapons .................................................................... 269

5.2 SUBSYSTEM TESTING .................................................................................... 275
5.2.1 Simulation Controller Subsystem Testing ............................................ 275
5.2.2 Communication/Detection Subsystem Testing ..................................... 278
5.2.3 Ship/Aircraft Subsystem Testing.......................................................... 279
5.2.4 Weapon Subsystem Testing ................................................................. 280

5.3 SYSTEM INTEGRATION TESTING .................................................................... 281
5.3.1 Integration scheme............................................................................... 281
5.3.2 Test Cases and Results......................................................................... 281
5.3.3 Error Reports ....................................................................................... 283



6

List of Tables
TABLE 3-1 REQUIREMENT IDENTIFIERS ................................................................................................... 16
TABLE 3-2 ATTACKER LIST ...................................................................................................................... 23
TABLE 3-3 WEAPON LIST ......................................................................................................................... 23
TABLE 3-4 USE CASE SET UP OPERATIONAL PARAMETERS .................................................................... 29
TABLE 3-5 SEQUENCE DIAGRAM FOR USE CASE: START SIMULATION .................................................. 31
TABLE 3-6 USE CASE DESCRIPTION FOR SIMULATE COMMUNICATION.................................................. 32
TABLE 3-7 USE CASE DESCRIPTION FOR BASE SUPPLY .......................................................................... 34
TABLE 3-8 USE CASE DESCRIPTION FOR PAUSE SIMULATION ................................................................ 36
TABLE 3-9 USE CASE DESCRIPTION FOR RESUME SIMULATION ............................................................. 37
TABLE 3-10 USE  CASE DESCRIPTION FOR END SIMULATION ................................................................... 38
TABLE 3-11 USE CASE DESCRIPTION FOR REPORT STATISTICS ................................................................ 39
TABLE 3-12 USE CASE DESCRIPTION FOR TURN ON RADAR..................................................................... 44
TABLE 3-13 USE CASE DESCRIPTION FOR TURN OFF RADAR.................................................................... 45
TABLE 3-14 USE CASE DESCRIPTION FOR RADAR EMIT WAVE................................................................ 46
TABLE 3-15 USE CASE DESCRIPTION FOR RADAR RECEIVE WAVE .......................................................... 47
TABLE 3-16 USE CASE DESCRIPTION FOR TURN ON SONAR ..................................................................... 48
TABLE 3-17 USE CASE DESCRIPTION FOR TURN OFF SONAR .................................................................... 49
TABLE 3-18 USE CASE DESCRIPTION FOR SONAR EMIT WAVE ................................................................ 50
TABLE 3-19 USE CASE DESCRIPTION FOR SONAR RECEIVE WAVE .......................................................... 51
TABLE 3-20 USE CASE DESCRIPTION FOR TURN ON RADIO ...................................................................... 52
TABLE 3-21 USE CASE DESCRIPTION FOR TURN OFF RADIO..................................................................... 53
TABLE 3-22 USE CASE DESCRIPTION FOR RADIO SEND MESSAGE ........................................................... 54
TABLE 3-23 USE CASE DESCRIPTION FOR RADIO RECEIVE MESSAGE...................................................... 56
TABLE 3-24 USE CASE DESCRIPTION FOR AIRCRAFT CARRIER NAVIGATION CONTROL ......................... 63
TABLE 3-25 USE CASE DESCRIPTION FOR AIRCRAFT CARRIER COMMUNICATE WITH ALLIES................ 64
TABLE 3-26 USE CASE DESCRIPTION FOR AIRCRAFT CARRIER MAKE DECISION .................................... 65
TABLE 3-27 USE CASE DESCRIPTION FOR AIRCRAFT CONTROL ............................................................... 67
TABLE 3-28 USE CASE DESCRIPTION FOR AIRCRAFT CARRIER UPDATE STATUS .................................... 69
TABLE 3-29 USE CASE DESCRIPTION FOR AIRCRAFT CARRIER REFUELING............................................. 70
TABLE 3-30 USE CASE DESCRIPTION FOR AIRCRAFT NAVIGATION CONTROL......................................... 77
TABLE 3-31 USE CASE DESCRIPTION FOR AIRCRAFT DETECT ENEMY..................................................... 79
TABLE 3-32 USE CASE DESCRIPTION FOR AIRCRAFT COMMUNICATION WITH ALLIES ............................ 80
TABLE 3-33 USE CASE DESCRIPTION FOR AIRCRAFT MAKE DECISION.................................................... 81
TABLE 3-34 USE CASE DESCRIPTION FOR AIRCRAFT WEAPON CONTROL ............................................... 83
TABLE 3-35 USE CASE DESCRIPTION FOR AIRCRAFT UPDATE STATUS.................................................... 84
TABLE 3-36 USE CASE DESCRIPTION FOR AIRCRAFT REFUELING ............................................................ 85
TABLE 3-37 USE CASE DESCRIPTION FOR DESTROYER  NAVIGATION CONTROL..................................... 91
TABLE 3-38 USE CASE DESCRIPTION FOR DESTROYER  NAVIGATION CONTROL..................................... 92
TABLE 3-39 USE CASE DESCRIPTION FOR DESTROYER COMMUNICATION WITH ALLIES......................... 93
TABLE 3-40 USE CASE DESCRIPTION FOR DESTROYER MAKE DECISION................................................. 94
TABLE 3-41 USE CASE DESCRIPTION FOR DESTROYER WEAPON CONTROL ............................................ 95
TABLE 3-42 USE CASE DESCRIPTION FOR DESTROYER UPDATE STATUS................................................. 96
TABLE 3-43 USE CASE DESCRIPTION FOR DESTROYER REARM AND REFUELING .................................... 97
TABLE 3-44 USE CASE DESCRIPTION FOR CRUISER  NAVIGATION CONTROL ........................................ 103
TABLE 3-45 USE CASE DESCRIPTION FOR CRUISER  NAVIGATION CONTROL ........................................ 104
TABLE 3-46 USE CASE DESCRIPTION FOR AIRCRAFT CARRIER COMMUNICATION WITH ALLIES .......... 105
TABLE 3-47 USE CASE DESCRIPTION FOR CRUISER MAKE DECISION .................................................... 106
TABLE 3-48 USE CASE DESCRIPTION FOR CRUISER WEAPON CONTROL................................................ 107
TABLE 3-49 USE CASE DESCRIPTION FOR CRUISER UPDATE STATUS .................................................... 108
TABLE 3-50 USE CASE DESCRIPTION FOR CRUISER REARM AND REFUELING........................................ 109
TABLE 3-51 USE CASE DESCRIPTION FOR BATTLESHIP NAVIGATION CONTROL ................................... 115



7

TABLE 3-52 USE CASE DESCRIPTION FOR BATTLESHIP NAVIGATION CONTROL ................................... 116
TABLE 3-53 USE CASE DESCRIPTION FOR BATTLESHIP COMMUNICATION WITH ALLIES ...................... 117
TABLE 3-54 USE CASE DESCRIPTION FOR BATTLESHIP MAKE DECISION............................................... 118
TABLE 3-55 USE CASE FOR WEAPON CONTROL ...................................................................................... 119
TABLE 3-56 USE CASE DESCRIPTION FOR BATTLESHIP UPDATE STATUS .............................................. 120
TABLE 3-57 USE CASE DESCRIPTION FOR BATTLESHIP REARM AND REFUELING.................................. 121
TABLE 3-58 USE CASE DESCRIPTION FOR SUBMARINE NAVIGATION CONTROL.................................... 127
TABLE 3-59 USE CASE DESCRIPTION FOR SUBMARINE DETECT ENEMY................................................ 128
TABLE 3-60 USE CASE DESCRIPTION FOR SUBMARINE COMMUNICATE WITH ALLIES........................... 129
TABLE 3-61 USE CASE DESCRIPTION FOR SUBMARINE MAKE DECISION ............................................... 130
TABLE 3-62 USE CASE DESCRIPTION FOR SUBMARINE WEAPON CONTROL ........................................... 131
TABLE 3-63 USE CASE DESCRIPTION FOR SUBMARINE UPDATE STATUS............................................... 132
TABLE 3-64 USE CASE DESCRIPTION FOR SUBMARINE REARM AND REFUELING .................................. 133
TABLE 3-65 USE CASE DESCRIPTION FOR PROVIDE LOCATION .............................................................. 136
TABLE 3-66 USE CASE DESCRIPTION FOR AIM TARGET.......................................................................... 137
TABLE 3-67 USE CASE DESCRIPTION FOR FIRE AND HIT TARGET .......................................................... 138
TABLE 5-1 UNIT STATIC TESTING........................................................................................................... 251
TABLE 5-2 UNIT DYNAMIC TESTING ...................................................................................................... 252
TABLE 5-3 UNIT TEST CASE FOR SETUPDLG DRAW FUNCTION............................................................ 253
TABLE 5-4 UNIT TEST CASE FOR SETUPDLG UNDO FUNCTION ............................................................ 253
TABLE 5-5 UNIT TEST CASE FOR CONTROLLER LOADTGA  FUNCTION ............................................... 253
TABLE 5-6 UNIT TEST CASE FOR CONTROLLER CALDIR FUNCTION...................................................... 254
TABLE 5-7 UNIT TEST CASE FOR CONTROLLER ONKEYDOWN FUNCTION........................................... 254
TABLE 5-8 OTHER UNIT TEST THROUGH USER INTERACTION.............................................................. 255
TABLE 5-9 UNIT TEST CASE FOR CDETCCTED SETDETDATA FUNCTION .............................................. 256
TABLE 5-10 UNIT TEST CASE FOR CDETCCTED OPERATOR <<  OVERLOADING FUNCTION ................... 256
TABLE 5-11 UNIT TEST CASE FOR CDETCCTEDDATABASE DELETEALL FUNCTION.............................. 256
TABLE 5-12 UNIT TEST CASE FOR CDETCCTEDDATABASE ADDDELETED FUNCTION ........................... 256
TABLE 5-13 UNIT TEST CASE FOR CRADAR EMITRECEIVE FUNCTION................................................... 257
TABLE 5-14 UNIT TEST CASE FOR CSONAR EMITRECEIVE FUNCTION ................................................... 258
TABLE 5-15 UNIT TEST CASE FOR CMESSAGE VALIDTOSEND FUNCTION.............................................. 258
TABLE 5-16 UNIT TEST CASE FOR CMESSAGE VALIDTOSEND FUNCTION.............................................. 258
TABLE 5-17 UNIT TEST CASE FOR CMESSAGE VALIDTOSEND FUNCTION.............................................. 259
TABLE 5-18 UNIT TEST CASE FOR CMESSAGE DELETEALLMSG FUNCTION.......................................... 259
TABLE 5-19 UNIT TEST CASE FOR CMESSAGE ADDONEMSGINTHELIST FUNCTION ............................. 259
TABLE 5-20 UNIT TEST CASE FOR CMESSAGE GETMYMSG FUNCTION................................................. 259
TABLE 5-21 UNIT TEST CASE FOR CRADIO DELETEMESSAGES FUNCTION............................................ 260
TABLE 5-22 UNIT TEST CASE FOR CRADIO SENDMESSAGE FUNCTION.................................................. 260
TABLE 5-23 UNIT TEST CASE FOR CRADIO RECEIVEMESSAGES FUNCTION........................................... 260
TABLE 5-24 UNIT TEST CASE FOR DERIVED BASESHIP CONSTRUCTOR FUNCTION................................ 261
TABLE 5-25           UNIT TEST CASE FOR BASESHIP UPDATESTATUS & RESISTANCERECOVERY  FUNCTION . 262
TABLE 5-26 UNIT TEST CASE FOR DERIVED CAPTAIN IFATTACK FUNCTION ......................................... 262
TABLE 5-27 UNIT TEST CASE FOR CAPTAIN : ISONTHEWAY, ADJUSTNAVIGATION FUNCTION ............. 262
TABLE 5-28 UNIT TEST CASE FOR NAVIGATIONOFFICER ADJUSTSPEED FUNCTION .............................. 263
TABLE 5-29 UNIT TEST CASE FOR NAVIGATIONOFFICER OTHER FUNCTION .......................................... 264
TABLE 5-30 UNIT TEST CASE FOR WEAPONOFFICER PREPAREATTACK FUNCTION ............................... 266
TABLE 5-31 UNIT TEST CASE FOR WEAPONOFFICER SELECTWEAPON FUNCTION................................. 266
TABLE 5-32 UNIT TEST CASE FOR WEAPONLAUNCHER AIMBYBALLISTIC FUNCTION .......................... 267
TABLE 5-33 UNIT TEST CASE FOR WEAPONLAUNCHER FIRECANNONSHELL FUNCTION....................... 267
TABLE 5-34 UNIT TEST CASE FOR WEAPONLAUNCHER FIREMISSILE FUNCTION................................... 267
TABLE 5-35 UNIT TEST CASE FOR WEAPONLAUNCHER DELETEWEAPON FUNCTION............................ 268
TABLE 5-36 UNIT TEST CASE FOR CWACTIVESTATECONTROLLER GET/SETSTATE FUNCTION ............ 269
TABLE 5-37 UNIT TEST CASE FOR CWACTIVESTATECONTROLLER INITIALPOSITION FUNCTION ......... 269



8

TABLE 5-38 UNIT TEST CASE FOR CWACTIVESTATECONTROLLER INITIALPOSITION FUNCTION ......... 270
TABLE 5-39 UNIT TEST CASE FOR CWAUTOAIMCONTROLLER TRACETARGET FUNCTION ................... 270
TABLE 5-40             UNIT TEST CASE FOR CWAUTOAIMCONTROLLER TRACETARGET (AIRCRAFT).............. 271
TABLE 5-41             UNIT TEST CASE FOR CWAUTOAIMCONTROLLER TRACETARGET (SUBMARINE)........... 271
TABLE 5-42 UNIT TEST CASE FOR CWCHARGECONTROLLER HITDETECT FUNCTION .......................... 272
TABLE 5-43 UNIT TEST CASE FOR CWCHARGECONTROLLER HITDETECT(AIRCRAFT) FUNCTION....... 272
TABLE 5-44             UNIT TEST CASE FOR CWCHARGECONTROLLER HITDETECT(SUBMARINE)................... 273
TABLE 5-45 UNIT TEST CASE CWCHARGE DETONATETARGET FUNCTION ............................................ 273
TABLE 5-46 UNIT TEST CASE CWRUDDER CHANGEVELOCITY FUNCTION ............................................ 274
TABLE 5-47 TEST CASE FOR SIMULAITON CONTROLLER(SETUPDLG) SUBSYSTEM .............................. 275
TABLE 5-48 TEST CASE FOR SIMULAITON CONTROLLER(VECTOR) SUBSYSTEM................................... 275
TABLE 5-49 TEST CASE FOR SIMULAITON CONTROLLER (SC) SUBSYSTEM........................................... 276
TABLE 5-50 TEST CASE FOR SIMULAITON CONTROLLER (VEHICLEFACTORY) SUBSYSTEM ................. 276
TABLE 5-51 TEST CASE FOR SIMULAITON CONTROLLER (CONTROLLER) SUBSYSTEM ......................... 277
TABLE 5-52 TEST CASE FOR COMMUNICATION/DETECTION SUBSYSTEM .............................................. 278
TABLE 5-53             TEST CASE FOR SHIP/AIRCRAFT SUBSYSTEM ................................................................... 279
TABLE 5-54 TEST CASE FOR WEAPON(WTORPEDO) SUBSYSTEM........................................................... 280
TABLE 5-55 TEST CASE FOR WEAPON (WCANNONSHELL) SUBSYSTEM ................................................ 280
TABLE 5-56 TEST CASES AND RESULTS................................................................................................... 282



9

List of Figures
FIGURE 3-1 SEQUENCE DIAGRAM FOR USE CASE NAVIGATION CONTROL.............................................. 17
FIGURE 3-2 SEQUENCE DIAGRAM FOR USE CASE DETECT ENEMY.......................................................... 18
FIGURE 3-3 SEQUENCE DIAGRAM FOR USE CASE COMMUNICATE WITH ALLIES .................................... 18
FIGURE 3-4 SEQUENCE DIAGRAM FOR USE CASE MAKE DECISION......................................................... 19
FIGURE 3-5 SEQUENCE DIAGRAM FOR USE CASE WEAPON CONTROL .................................................... 19
FIGURE 3-6 SEQUENCE DIAGRAM FOR USE CASE UPDATE STATUS......................................................... 20
FIGURE 3-7 SEQUENCE DIAGRAM FOR USE CASE REARM AND REFUELING ............................................ 20
FIGURE 3-8 SEQUENCE DIAGRAM FOR USE CASE TURN ON COMMUNICATION/DETECTION................... 21
FIGURE 3-9 SEQUENCE DIAGRAM FOR USE CASE TURN OFF COMMUNICATION/DETECTION ................. 21
FIGURE 3-10 SEQUENCE DIAGRAM FOR USE CASE DETECTION EMIT WAVE............................................ 22
FIGURE 3-11 SEQUENCE DIAGRAM FOR USE CASE DETECTION RECEIVE WAVE ...................................... 22
FIGURE 3-12 USE CASE DIAGRAM FOR SIMULATION CONTROLLER .......................................................... 24
FIGURE 3-13 SEQUENCE DIAGRAM FOR USE CASE: SET UP OPERATIONAL PARAMETERS........................ 30
FIGURE 3-14 SEQUENCE DIAGRAM FOR USE CASE: START SIMULATION .................................................. 31
FIGURE 3-15 SEQUENCE DIAGRAM FOR USE CASE: SIMULATE COMMUNICATION.................................... 33
FIGURE 3-16 SEQUENCE DIAGRAM FOR USE CASE: BASE SUPPLIER ......................................................... 35
FIGURE 3-17 SEQUENCE DIAGRAM FOR USE CASE: PAUSE SIMULATION .................................................. 36
FIGURE 3-18 SEQUENCE DIAGRAM FOR USE CASE: RESUME SIMULATION ............................................... 37
FIGURE 3-19 SEQUENCE DIAGRAM FOR USE CASE: END SIMULATION...................................................... 38
FIGURE 3-20 SEQUENCE DIAGRAM FOR USE CASE: REPORT STATISTICS.................................................. 39
FIGURE 3-21 USE CASE DIAGRAM FOR COMMUNICATION/DETECTION..................................................... 40
FIGURE 3-22 SEQUENCE DIAGRAM FOR USE CASE RADIO SEND MESSAGE .............................................. 55
FIGURE 3-23 SEQUENCE DIAGRAM FOR USE CASE RADIO RECEIVE MESSAGE......................................... 57
FIGURE 3-24 USE CASE DIAGRAM FOR AIRCRAFT CARRIER...................................................................... 58
FIGURE 3-25 SEQUENCE DIAGRAM FOR USE CASE AIRCRAFT CARRIER MAKE DECISION ....................... 66
FIGURE 3-26 SEQUENCE DIAGRAM FOR USE CASE AIRCRAFT CARRIER AIRCRAFT CONTROL................. 68
FIGURE 3-27 USE CASE DIAGRAM FOR AIRCRAFT...................................................................................... 71
FIGURE 3-28 SEQUENCE DIAGRAM FOR USE CASE AIRCRAFT NAVIGATION CONTROL............................ 78
FIGURE 3-29 SEQUENCE DIAGRAM FOR USE CASE AIRCRAFT MAKE DECISION ....................................... 82
FIGURE 3-30 USE CASE DIAGRAM FOR DESTROYER .................................................................................. 86
FIGURE 3-31 USE CASE DIAGRAM FOR CRUISER ........................................................................................ 98
FIGURE 3-32 USE CASE DIAGRAM FOR BATTLESHIP ................................................................................ 110
FIGURE 3-33 USE CASE DIAGRAM FOR SUBMARINE................................................................................. 122
FIGURE 3-34 USE CASE DIAGRAM FOR WEAPON...................................................................................... 134
FIGURE 3-35 SEQUENCE DIAGRAM FOR USE CASE WEAPON PROVIDE LOCATION ................................. 136
FIGURE 3-36 SEQUENCE DIAGRAM FOR USE CASE WEAPON AIM TARGET............................................. 137
FIGURE 3-37 SEQUENCE DIAGRAM FOR USE CASE WEAPON FIRE AND HIT TARGET............................. 138
FIGURE 4-1 INTERACTION DIAGRAM FOR SUBSYSTEMS OF THE NBSS................................................... 142
FIGURE 4-2 ARCHITECTURE OF THE NAVAL BATTLE SIMULATION SYSTEM ......................................... 143
FIGURE 4-3 CLASS LEVEL INTERFACE DIAGRAM OF THE NAVAL BATTLE SIMULATION SYSTEM......... 144
FIGURE 4-4 SIMULATION CONTROLLER_FOR_COMMUNICATION/DETECTION ...................................... 150
FIGURE4-5 RADAR/SONAR_FOR_WEAPON ............................................................................................ 152
FIGURE 4-6 BASESHIP_FOR_SC .............................................................................................................. 154
FIGURE 4-7 BASEWEAPON_FOR_SIMULATION CONTROLLER ................................................................ 155
FIGURE 4-8 BASEWEAPON_FOR_SHIP AND AIRCRAFT........................................................................... 156
FIGURE 4-9 CLASS DIAGRAM FOR SIMULATION CONTROLLER MODULE............................................... 158
FIGURE 4-10 CLASS DIAGRAM FOR COMMUNICATION/DETECTION MODULE ......................................... 171
FIGURE 4-11 CLASS DIAGRAM FOR BASESHIP (SHIP AND AIRCRAFT) MODULE...................................... 191
FIGURE 4-12 CLASS DIAGRAM FOR WEAPON MODULE............................................................................ 219



10

1. Introduction

The Naval Battle Simulation System is a software system to simulate real life but
yet simplified modern naval battle scenarios. This document follows the IEEE
standards [2], [3] and Dr. Paquet SRD slides [4] to specify the system
requirements and describe the system design. The whole document is based on
the Software Engineering (COMP554, Summer 2001) project of the Computer
Science Department in Concordia University. We did our best to write this
document in an organized and comprehensive structure, and also to fully list the
system requirement and optimize the original system design. This document’s
objective is to practice the object oriented design methodology and to comply
with the IEEE documentation standards for software.

1.1 Purpose

The purpose of this document is as following:

• Present in a precise and understandable manner the requirements, design,
and testing procedure of the Naval Battle Simulation System.

• Demonstrate software documentation traceability among SRS, SDD and
Software Testing Document.

• Show how the design is a translation of requirements into software structure,
software components, interface, and data necessary for the implementation
phase; show how testing is linked to requirements.

• The document is intended to be a baseline to supply sufficient design and
implementation information for the future students in other Software
Engineering courses offered in the Department.

• The system and documentation are to be designed in terms of extensibility
and reusability as much as possible.

1.2 Scope

The software system that will be developed is called NBSS---Naval Battle
Simulation System. This system simulates the activities and functions of many
real life parties involved in (hypothetic) naval battles. The subsystem includes
Simulation Controller, Aircraft, Aircraft Carrier, Battleship, Cruiser, Destroyer,
Submarine, Weapon and Communication/Detection. The simulated behavior
includes navigating, detecting enemies with Radars and Sonars, communicating
and cooperating with allies, attacking enemies, and base supplier.  The system
allows the user to set the simulation parameters and interact with the system too.



11

The deliverable products are the following:

Software System

A software package that fulfills the system requirements listed in section 3. It is
implemented to comply with software design in section 4. It also meets the test
goals listed in the testing document presented in section 5.

Software Document

A complete and understandable document that describes the whole system in
terms of requirement specification, software design, implementation, and testing.
It will also be an aid reference for future maintenance and updating.

1.3 Definitions, Acronyms, Abbreviations

Acronym Definition
ANSI American National Standards Institute
Class Diagram Used to display some of the classes and packages of

classes in the system
Design Entity An element (component) of a design that is structurally

and functionally distinct from other elements
IEEE The institute of Electrical and  Electronics Engineers
IMD Intenal Module Design
MFC Microsoft Foundation Class Library
MID Module Interface Design
NA Not Applicable
NBSS Naval Battle Simulation System
Open GL Open Graphics Library
SC Simulation Controller
Sequence Diagram Used to graphically show the flow of event in a use case

(Functional requirements specifications)
SRS Software Requirement Specification Document
SRD Software Requirements Document
Use Case Diagram Used to describe the functionality of a system, or one of

its components
UML Unified Modeling Language
Vehicle Aircraft Carrier, Aircraft, Destroyer, Cruiser, Battleship,

Submarine, Weapons
Weapon Sea-Sub Missile/Torpedo, Sea-Air Missile, Heavy

Cannon Shell, Sea-Sea Missile, Torpedo, Sub-Sea
Torpedo/Missile, Air-Sea Missile, Air-Air Missile



12

1.4 Overview

This document is organized in six major sections and data dictionary in appendix.
Section 1 Introduction introduces the main purpose, scope, overview, and
references of the whole document. References are presented there to comply
with the IEEE standards for software documentation. Section 2 General
Description describes the system from different aspects: product perspective,
product functions, user characteristics, general constraints and assumptions and
dependencies. Section 3 Specific Requirements defines the specific
requirements and all detailed need to build the system design for all the
subsystems. Section 4 Software Design describes the system in terms of
decomposition description, dependency description, interface description,
scenario for major functionality and detailed design.  Section 5 Testing describes
the unit test cases and integrated testing plan.

1.5 References

[1] Peter Freeman, Anthony I. Wasserman, Tutorial on Software Design
Techniques. 4th Edition, IEEE Computer Society Press, 1983.

[2] Institute of Eletrical and Electonics Engineers Inc., An American
National Standard IEEE Guide to Software Requirements
Specification, Software Engineering Standars Committee of the IEEE
Computer Society, 1984.

[3] Institute of Eletrical and Electonics Engineers Inc., IEEE Recommended
Practice for Software Design Descriptions, Software Engineering
Standars Committee of the IEEE Computer Society, September 1998.

[4] Joey Paquet, SRD Document Standard & Guidelines Slides, course
material, Concordia University, Department of Computer Science, 2000.

[5] Martin Fowler with Kendaill Scott, UML Distilled Secoond Edition(A
Brief Guide to the Standard Object Modeling Language), AADISON-
WESLEY, 1999.

[6] www.naval-technology.com, the Website for defence industries – Navy,
2001.

[7] Terry Quatrani , Visual Modeling With Rational Rose and UML,
AADISON-WESLEY, 1999.

[8] www.rational.com/uml/index.jsp, Rational Software Corporation, 2001.

[9] www.fas.org/man/dod-101/sys/, the Federation of American Scientists,

[10] James Rumbaugh, Michel Balha, Premerlani, Eddy, Lorensen, Object
Oriented Modeling and Design, Prentice Hall, 1991.



13

2. General Description

2.1 Product Perspective

The Naval Battle Simulation System is divided into several subsystems.  Each of
these subsystems can further be divided into functional tasks.

The identified subsystems are:

• Simulation Controller: provides a user interface and controls the
performance of the whole system. Acts as the communication media.

• Communication/Detection: responsible for detecting enemies and
communicating with allies, also simulates aiming system for Weapons.

• Aircraft Carrier: cooperate with Aircraft to locate and destroy enemy ships
and Aircraft.

• Aircraft: cooperate with Aircraft Carrier to locate and destroy enemy ships
and Aircraft.

• Destroyer: detects and destroys the underwater threats.
• Cruiser: detects and destroys the airborne threats.
• Battleship: detects and destroys the sea borne threats.
• Submarine: detects and destroys sea borne and underwater threats.
• Weapons: provides different kinds of Weapons that can be used by all

ships (except Aircraft Carrier) and Aircraft to attack enemies.

2.2 Product Functions

Simulation Controller:
1. Provide an interactive user interface
2. Simulate the communication media
3. Generate the vehicles for both sides
4. Animate the movements of vehicles
5. Generate the fuel and Weapon upon request

Vehicles (Battleship, Cruiser, Destroyer, Submarine, Aircraft)
1. Navigate on the map
2. Detect the enemy
3. Communicate with allies
4. Launch Weapon to attack targets
5. Make strategic decisions



14

Aircraft Carrier
1. Navigate on the map
2. Manage Aircraft take-offs
3. Manage Aircraft landings
4. Assign missions to Aircrafts
5. Communicate with allies
6. Make strategic decisions

Communication/Detection:
1. Pass information to the Simulation Controller
2. Detect vehicles
3. Enable communication between vehicles
4. Simulate the detecting system for Weapons

Weapon:
1. Aiming at a target
2. Fire at a taget
3. Hit a target
4. Inflict damage to a vehicle

For the product functions definitions, refer to [6] and [9]

2.3 User Characteristics

Users of NBSS can be various: some users are Software Engineering students
who need to access the system for maintenance and updating; some users are
the end users who will play with the system as a game, and they may not have
any background knowledge with computers. For the former, this document will
act as a reference manual. For the latter, the system will provide the necessary
help to them.

2.4 General Constraints

• The user interface of the vehicle subsystems is provided by the Simulation
Controller subsystem. The user has limited access rights for vehicle
subsystems.

• The vehicle subsystems have to interact with the Simulation Controller,
Weapons, and Communication/Detection subsystems to perform its functions.

• The language used for the implementation of the system is C++.

• The platform of the system is Microsoft Windows 95/98/NT/2000.



15

2.5 Assumptions and Dependencies

Since the NBSS is composed of nine subsystems, the cooperation and
coordination of all the subsystems is a key factor to ensure the success of the
whole system. We assume that all subsystems will meet its own requirements
and comply with the interface of the other subsystems.

Other assumptions and dependencies:

• The development requires the Microsoft Windows NT 4.0 operating system.
• There will be only two sides, enemy and friend, participating in the battle.
• The simulation will proceed fully automatically, the user can interact the

simulation in very limited ways.
• No consideration of natural interferences in the simulation, e.g. weather, wind,

lighting.



16

3. Specific Requirements

3.1  Requirement Identification

Each requirement is represented by a requirement identifier, and a requirement
name. It is described by a requirement statement and a requirement support
comment. They are defined as:

Requirement Identifier

Requirements are distinguished from explanatory text via the requirement
identifier. Requirement identifiers are made up of two alphabetic characters,
which identify the subsystem the requirement belongs to, followed by a hyphen,
and followed by a three digit number, which distinguishes it among requirements
within that subsystem.

Subsystem Prefix Maximal #
Simulation Controller SC 019
Communication/Detection CD 012
Aircraft Carrier AC 026
Aircraft AT 034
Destroyer DT 034
Cruiser CS 034
Battleship BS 030
Submarine SM 034
Weapons WP 008

Table 3-1 Requirement Identifiers

The “Last Used #” is the last number that was assigned to a requirement in a
particular subsystem. Requirement numbers are assigned sequentially. Sub
requirements will be identified by requirement number and a hyphen that is
followed by another two digit number (e.g. SC-001-01).

Requirement Name

The requirement name provides a short title description. Note that many
requirements are similar across subsystems (e.g. all vehicles have to implement
navigation). In these cases, the requirement names are worded as to refer to the
specific subsystem it describes.



17

Requirement Statement

The requirement statement is identified by being below the requirement name, in
normal font. The requirement statement provides a full but high-level description
of the requirement.

Requirement Support Comments

The requirement supporting comments are identified by being below the
requirement statements, in an italic and somewhat smaller font. The requirement
supporting comment provide further explanation and/or supporting discussion of
the requirement.

3.2 High Level Use Case Description

For use case diagram and sequence diagram notation refer to reference [5] and
[7].

Navigation Control

Figure 3-1 Sequence Diagram for Use Case Navigation Control



18

Detect Enemy

Figure 3-2 Sequence Diagram for Use Case Detect Enemy

Communicate with Allies

Figure 3-3 Sequence Diagram for Use Case Communicate with Allies



19

Make Decision

Figure 3-4 Sequence Diagram for Use Case Make Decision

Weapon Control

Figure 3-5 Sequence Diagram for Use Case Weapon Control



20

Update Status

Figure 3-6 Sequence Diagram for Use Case Update Status

Rearming and Refueling

Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling



21

Turn on Communication/Detection

Figure 3-8 Sequence Diagram for Use Case Turn on Communication/Detection

Turn off Communication/Detection Device

Figure 3-9 Sequence Diagram for Use Case Turn off Communication/Detection



22

Detection Emit Wave

Figure 3-10 Sequence Diagram for Use Case Detection Emit Wave

Detection Receive Wave

Figure 3-11 Sequence Diagram for Use Case Detection Receive Wave



23

3.3 Functional Requirements Description

The system requirement descriptions are based on the subsystem classification.
Each subsystem is described from the aspects of use case diagram,
requirements breakdown and use case description. Use case description refers
to the standard [4].

Attacker list

Attacker Possible target
Aircraft Carrier No attack ability
Aircraft Aircraft Carrier, Battleship, Cruiser, Destroyer, Aircraft
Battleship Aircraft, Aircraft Carrier, Cruiser, Destroyer, Battleship
Cruiser Aircraft
Destroyer Submarine
Submarine Battleship, Cruiser, Destroyer, Submarine

Table 3-2 Attacker List

Weapon list

Attacker Possible Weapon
Aircraft Carrier No attack ability.
Aircraft Air-Air Missile, Air-Sea Missile
Battleship Sea-Sea Missile, Sea-Air Missile, Heavy Cannon Shell,

Torpedo
Cruiser Sea-Air Missile
Destroyer Sea-Sub Missile
Submarine Sub-Sea Torpedo, Torpedo

Table 3-3 Weapon List



24

3.3.1 Simulation Controller Requirements

The Simulation Controller subsystem has the following seven sub modules:

• CMainframe
• SetUpDialog
• Controller
• Base Supplier
• Vehicle Info
• Position Vector
• Simulation Control

3.3.1.1 Use Case Diagram

Figure 3-12 Use Case Diagram for Simulation Controller



25

3.3.1.2 Requirement Breakdown

Use Case:     Set Up Operational Parameters

SC-001 Initialize Agents
The Simulation Controller shall create the agents for both friend
and enemy sides.
The agents include Aircraft Carrier, Battleship, Cruiser, Destroyer, and
Submarine.

      SC-002 Add Agents
The Simulation Controller shall allow the user to add new agents to
NBSS.
The new agents will be added from an agent list by name.

     SC-003 Initialization Weapon
The Simulation Controller shall allow the user to set the used
Weapons.
The used Weapons will be selected from a Weapon list by name.

     SC-004 Set the Production Rate
The Simulation Controller shall allow the user to set the production
rate for producing all kinds of agents, producing fuel and creating
Weapons.
These rates will be used when simulation is running by both sides.

     SC-005 Set the Limit for Supplying Base
The Simulation Controller shall allow the user to set the maximum
stock for supplying all kinds of agents, fuel and Weapons.
No comments.

     SC-006 Provide Set up User Interface
The UI shall provide the user to initialize and set the parameters to
start the simulation.
No comments.

Use Case:     Start Simulation

SC-007 Display Environment
The UI shall display the air, water surface, and underwater
environment.
No comments



26

     SC-008 Act as Medium for Communication System

     SC-008-01 Act as Water Medium
The Simulation Controller shall act as water medium to
transfer the sound waves used by the Sonar.
No comments.

     SC-008-02 Act as Air Medium
The Simulation Controller shall act as air medium to transfer
the electromagnetic waves used by the Radar and Radio.
No comments.

     SC-009 Animate Agents Movement on Screen
The UI shall display and animate the movement of the agents.
No comments

     SC-010 Animate Attack and Communication
The UI shall animate the scenario when agents shot Weapon and
agents communicate with each other.
No comments

     SC-011 Global Time Clock
When the simulation is starting, one global time clock shall be
created to provide a time scale for agents to update their status
(position, alive/dead, etc.)
No comments

     SC-012 Provide Start up User Interface
The UI shall allow the user to start the simulation.
No comments

Use Case:     Simulate Communication

SC-013 Provide Agent Information to Communication System
The Simulation Controller shall provide agent’s information to the
Communication subsystems within the range of Radar and Sonar.
No comments.

     SC-013-01 Provide Agent Location
The Simulation Controller shall provide agent’s location to
the Communication subsystem.
No comments.



27

     SC-013-02 Provide Agent Status
The Simulation Controller shall provide agent’s status
(alive/dead) to the Communication subsystem.
No comments.

     SC-013-03 Provide Agent Representative
The Simulation Controller shall provide an agent’s
representative (friend/enemy) and identification to the
Communication subsystem
No comments.

     SC-014 Control Status of Communication/Detection system
The UI shall allow the user to turn on/off the status of Radar, Sonar
and Radio for all the objects when the simulation is running.
No comments

Use Case:     Base Supply

     SC-015 Provide Regenerate Function

     SC-015-01 Produce Ships
The base supplier shall generate all kinds of ships based on
the initialization setting for both sides depending on the
production rate.
No comments.

     SC-015-02 Produce Fuel
The base supplier shall produce the specific amount of fuel
depending on production rate.
No comments.

     SC-015-03 Create Weapon
The base supplier shall create all kinds of Weapons based
on the initialization settings.
No comments

     SC-015-04 Transfer Fuel and Weapon
The base supplier shall transfer the fuel and Weapons to
agents upon request from agents.   
No comments

     SC-015-05 Update Stock
The base supplier shall update its stock for ships; also
updates stock for fuel and Weapons and respond to agents’
queries.
No comments.



28

Use Case:     Pause Simulation

     SC-016 Provide Pause Function
The UI shall allow the user to pause the simulation when the
simulation is running.
No comments

Use Case:     Resume Simulation

     SC-017 Provide Resume Function
The UI shall allow the user to resume the simulation when the
simulation is paused.
No comments

Use Case:     End Simulation

     SC-018 Provide Exit Function
The UI shall allow the user to stop the simulation when the
simulation is running or paused.
No comments

Use Case:     Report Statistics

    SC-019 Provide Report Function
The UI shall allow the user to view the log file after the simulation
has been started.
No comments



29

3.3.1.3 Use Case Description

3.3.1.3.1 Use Case: Set up Operational Parameters

Description Provide the service to allow the user to initialize all the
objects

Priority Must have this use case in order to start the simulation
Status Detailed description and completed scenario
Actor NBSS User

Pre-Conditions Simulation is not in running state or in pause state.
Base
Path

1. The user presses “Setup” button, the system displays
a setup dialog window;

2. The user either can press the “Add” button, the vehicle
configuration window is displayed and ask user to add
a new vehicle, or can select Weapon and input the
parameters, then click “OK”, the dialog window is
closed.

Flow of
Events

Alternate
Path

If the configuration exceeds the limitation or dissatisfies
required conditions, the warning massage window will pop
up.

Post-Condition 1. The valid input data are saved;
2. Set up window is closed.

Used Use
Case

Simulate CommunicationRelated
Use

Case Extending
Use Case

NA

Other Requirements NA

Table 3-4 Use Case Set up Operational Parameters

Sequence Diagram

See next page.



30

Figure 3-13 Sequence Diagram for Use Case: Set up Operational Parameters



31

3.3.1.3.2 Use Case: Start Simulation

Description Provide the service to start the simulation
Priority Must have this use case
Status Detailed description and completed scenario
Actor NBSS User

Pre-Conditions The user has set up the parameters
Base
Path

1. The user presses the “Start” button.
2. The system initializes the map, media, creates agents
3. Simulation begins.

Flow of
Events

Alternate
Path

NA

Post-Condition Simulation successfully started
Used Use

Case
Simulate CommunicationRelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-5 Sequence Diagram for Use Case: Start Simulation

Sequence Diagram

Figure 3-14 Sequence Diagram for Use Case: Start Simulation



32

3.3.1.3.3 Use Case: Simulate Communication

Description Provide the service to allow SC and vehicles to
communicate with each other, and allow to turn on/off
the Radar/Sonar and Radio.

Priority Must have this use case
Status High level description
Actor Communication/Detection

Pre-Conditions Simulation is in running state
Base Path 1. All the agents inform their status to the SC

periodically
2. The SC transfers the information to the

Communication and Detection system
3. Click “Turn on/off” button to change the status of

Radar, Sonar, and Radio for selected ship or
Aircraft.

Flow of
Events

Alternate
Path

NA

Post-Condition The SC know the status of agents, and all the agents
are aware of the presence of other agents within their
Communication/Detection range

Used Use
Case

NARelated
Use

Case Extending
Use Case

NA

Other Requirements NA

Table 3-6 Use Case Description for Simulate Communication

Sequence Diagram

See next page.



33

Figure 3-15 Sequence Diagram for Use Case: Simulate Communication



34

3.3.1.3.4 Use Case: Base Supply

Description Provide the service to allow the SC to provide supplies
(Weapons, fuel, ships) to both sides when the simulation
is running.

Priority Would like to have this use case
Status Detailed description and completed scenario
Actor NBSS Ships and Aircraft

Pre-Conditions Simulation is in running state
Base
Path

1. The base supplier will check the stock and transfer the
fuel or Weapon to the agents upon request.

2. The base supplier will produce the ships according to
the productivity settings periodically.

Flow of
Events

Alternate
Path

NA.

Post-Condition 1. The ships are generated when the simulation is
running

2. The ships get rearmed and refueed.
Used Use

Case
Simulate CommunicationRelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-7 Use Case Description for Base Supply

Sequence Diagram

See next page.



35

Figure 3-16 Sequence Diagram for Use Case: Base Supplier



36

3.3.1.3.5 Use Case: Pause Simulation

Description Provide the service to allow the user to pause the
simulation

Priority Would like to have this use case
Status Detailed description and completed scenario
Actor NBSS User

Pre-Conditions Simulation is in running state
Base
Path

1. The user presses the “Pause” button
2. The system pauses the clock and suspends the

simulation

Flow of
Events

Alternate
Path

NA.

Post-Condition The system saved the current status of all agents and SC
also.

Used Use
Case

NARelated
Use

Case Extending
Use Case

NA

Other Requirements NA

Table 3-8 Use Case Description for Pause Simulation

Sequence Diagram

Figure 3-17 Sequence Diagram for Use Case: Pause Simulation



37

3.3.1.3.6 Use Case: Resume Simulation

Description Provide the service to allow the user to resume the
simulation

Priority Would like to have this use case
Status Detailed description and completed scenario
Actor NBSS User

Pre-Conditions Simulation is in pause state.
Base
Path

1. The user presses the “Resume” button.
2. The system resumes the simulation.

Flow of
Events

Alternate
Path

NA

Post-Condition Simulation resumes execution.
Used Use

Case
NARelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-9 Use Case Description for Resume Simulation

Sequence Diagram

Figure 3-18 Sequence Diagram for Use Case: Resume Simulation



38

3.3.1.3.7 Use Case: End Simulation

Description Provide the service to allow the user to stop the simulation
Priority Must have this use case in order to stop the simulation

system
Status Detailed description and completed scenario
Actor NBSS User

Pre-Conditions Simulation is in running state or in pause state.
Base
Path

1. The user presses the “End” button
2. The system terminates the simulation

Flow of
Events

Alternate
Path

NA

Post-Condition Clean up all the agents, and ready for next simulaiton.
Used Use

Case
NARelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-10 Use  Case Description for End Simulation

Sequence Diagram

Figure 3-19 Sequence Diagram for Use Case: End Simulation



39

3.3.1.3.8 Use Case: Report Statistics

Description Provide the service to allow the user to view an execution
report of the running simulation.

Priority Would like have this use case
Status Detailed description and completed scenario
Actor NBSS User

Pre-Conditions Simulation is in running state or in pause state, or ended
successfully.

Base
Path

1. The user presses the “Report” button.
2. The system displays a statistics window.

Flow of
Events

Alternate
Path

If the simulation terminated erroneously, the statistics
window will show nothing.

Post-Condition Save the valid statistics data, and close the statistics
window.

Used Use
Case

NARelated
Use

Case Extending
Use Case

NA

Other Requirements NA

Table 3-11 Use Case Description for Report Statistics

Sequence Diagram

Figure 3-20 Sequence Diagram for Use Case: Report Statistics



40

3.3.2 Communication/Detection Requirements

The Communication/Detection subsystem has the following four modules:

• Radar system
• Sonar system
• Radio system
• Message Database
• Detected Database

3.3.2.1 Use Case Diagram

Figure 3-21 Use Case Diagram for Communication/Detection



41

3.3.2.2 Requirement Breakdown

Use Case:     Turn on Radar

CD-001 Turn on Radar
The Radar can be turned on by its owner when it is in the “off” state
during the simulation is undergoing initialization or running.
No comments.

Use Case:     Turn off Radar

CD-002 Turn off Radar
The Radar can be turned off by the user when it is in “on” state
during the simulation is undergoing initialization or running.
No comments.

Use Case:     Radar Emit Wave

CD-003 Radar Send Information to SC
The Radar shall provide its owner’s ID to the Simulation Controller.
No comments.

Use Case:     Radar Receive Wave

CD-004 Radar Get Information from SC
The Radar shall get the information about surrounding objects, both
on or above the surface of the water.
The objects refer to Ships, Aircrafts and Missiles.

     CD- 004-01 Radar Get Status for Surrounding Objects
The Radar shall get all the position, status and ID
information of surrounding objects within the Radar’s range.
No comments.

     CD-004-02 Radar Update Information
The Radar shall save all the information in its data buffer and
update all the information periodically.
No comments.

Use Case:     Turn on Sonar

CD-005 Turn on Sonar
The Sonar can be turned on by its owner when it in the “off” state
during the simulation is undergoing initialization or running.
No comments.



42

Use Case:     Turn off Sonar

CD-006 Turn off Sonar
The Sonar can be turned off its owner when it is in the “on” state
during the simulation is undergoing initialization or running.
No comments.

Use Case:     Sonar Emit Wave

CD-007 Send Information to SC
The Sonar shall provide its owner’s ID to Simulation Controller.
No comments.

Use Case:     Sonar Receive Wave

CD-008 Sonar Get Information from SC
The Sonar shall get the information about surrounding objects in
the water. The objects refer to Ships and Torpedoes.
No comments.

     CD- 008-01 Sonar Get Status for Surrounding Objects
The Sonar shall get all the position, status and ID
information of surrounding objects on or under the surface of
the water within the Sonar’s range.
No comments.

      CD-008-02 Sonar Update Information
The Sonar shall save all the information in its data buffer and
update all the information.
No comments.

Use Case:     Turn on Radio

     CD-009 Turn on Radio
The Radio can be turned on by its owner when Radio is in the “off”
state during the simulation is undergoing initialization or running.
No comments.

Use Case:     Turn off Radio

CD-010 Turn off Radio
The Radio can be turned off by its owner when Radio is in the “on”
state during the simulation is undergoing initialization or running.
No comments.



43

Use Case:     Radio Send Message

CD-011 Radio Send Message
The objects can send a message to its allies via its Radio system
and within Radio’s range.
The objects refer to all Ships and Aircrafts.

Use Case:     Radio Receive Message

CD-012 Radio Receive Message
The objects can receive a message from its allies via its Radio
system that communicates with emitting Radio objects within its
Radio’s range.
The objects refer to all Ships and Aircrafts.



44

3.3.2.3 Use Case Description

3.3.2.3.1 Use Case: Turn on Radar

Description Provide a service to allow the user to turn on the Radar
Priority Should have this use case
Status Detailed description and completed scenario
Actor 1. User

2. Simulation Controller
3. Battleship, Cruiser, Aircraft
4. Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-

Sea Missile
Pre-Condition Radar is in the “off” state

Base Path 1. User clicks on the “Set Radar” button, the system
display Radar setting window.

2. User selects the object from object list.
3. User set state on for Radar, and close the window.

Flow of
Events

Alternate
Path

NA

Post-Condition Radar is in the “on” state
Used Use

Case
NARelated

Use
Cases Extending

Use Case
Turn on Communication/Detection

Other Requirement NA

Table 3-12 Use Case Description for Turn on Radar

Sequence Diagram

Refer to Figure 3-8 Sequence D iagram fo r  Use Case Turn  on
Communication/Detection. The object list (ID list) is provided to the Radar owner
only for Aircraft Carrier, Aircraft, Battleship, Cruiser, Destroyer and Weapons
(except the Heavy Cannon Shell, Sea-Sub Missile when under the water,
Torpedo and Sub-Sea Torpedo).



45

3.3.2.3.2 Use Case: Turn off Radar

Description Provide a service to allow the user to turn off the Radar
Priority Should have this use case
Status Detailed description and completed scenario
Actor 1. User

2. Simulation Controller
3. Battleship, Cruiser, Aircraft
4. Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-

Sea Missile
Pre-Condition Radar is in on state

Base Path 1. User click “Set Radar” button, the system display
Radar setting window.

2. User select the object from object list;
3. User set state off for Radar, and close the window.

Flow of
Events

Alternate
Path

NA

Post-Condition Radar is in off state
Used Use

Case
NARelated

Use
Cases Extending

Use Case
Turn off Communication/Detection

Other Requirement NA

Table 3-13 Use Case Description for Turn off Radar

Sequence Diagram

Refer to Figure 3-9 Sequence D iagram for  Use Case Turn  o f f
Communication/Detection. The object list (ID list) is provided to user only for
Aircraft Carrier, Aircraft, Battleship, Cruiser, Destroyer and Weapons (except the
Heavy Cannon Shell, Sea-Sub Missile, Torpedo and Sub-Sea Torpedo).



46

3.3.2.3.3 Use Case: Radar Emit Wave

Description Provide a service for objects to send info to the SC in
order to detect the surrounding enemies by using Radar.

Priority Must have this use case
Status Detailed description and completed scenario
Actor 1. Simulation Controller

2. Battleship, Cruiser, Aircraft
3. Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-

Sea Missile
Pre-Condition 1. Object exist and Radar is created;

2. Object know its position, ID and flag;
3. The DB of SC is accessible.

Base Path 1. Radar gets its owner’s ID, position and flag;
2. Radar sends its owner’s information to SC;

Flow of
Events

Alternate
Path

If position DB is not accessible, SC return an error to the
object,

Post-Condition Radar send its owner’s info to SC
Used Use

Case
NARelated

Use
Cases Extending

Use Case
Detection Emit Wave

Other Requirement NA

Table 3-14 Use Case Description for Radar Emit Wave

Sequence Diagram

Refer to Figure 3-10 Sequence Diagram for Use Case Detection Emit Wave, this use
case is only applicable for objects Aircraft Carrier, Aircraft, Battleship, Cruiser,
Destroyer and Weapons (except the Heavy Cannon Shell, Sea-Sub Missile,
Torpedo and Sub-Sea Torpedo).



47

3.3.2.3.4 Use Case: Radar Receive Wave

Description Provide a service to allow the objects to receive the
information from SC in order to detect the surrounding
enemies by using a Radar.

Priority Must have this use case
Status Detailed description and completed scenario
Actor 1. Simulation Controller

2. Battleship, Cruiser, Aircraft
3. Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-

Sea Missile
Pre-Condition 1. Object exist and Radar is created;

2. Object know its position, ID and flag;
3. The DB of SC is accessible;
4. Radar’s data buffer is available.

Base Path 1. Radar get the record of all the surrounding enemy
objects within Radar’s range from SC’s status DB;

2. Radar save the info to its data buffer and update the
info.

3. Radar gives the info to its owner.

Flow of
Events

Alternate
Path

If position DB is not accessible, SC return an error to the
object.

Post-Condition The Radar’s owner gets the info about the surrounding
enemy objects.

Used Use
Case

NARelated
Use

Cases Extending
Use Case

Detection Receive Wave

Other Requirement NA

Table 3-15 Use Case Description for Radar Receive Wave

Sequence Diagram

Refer to Figure 3-11 Sequence Diagram for Use Case Detection Receive Wave, this
use case is only applicable for objects Aircraft Carrier, Aircraft, Battleship,
Cruiser, Destroyer and Weapons (except the Heavy Cannon Shell, Sea-Sub
Missile, Torpedo and Sub-Sea Torpedo).



48

3.3.2.3.5 Use Case: Turn on Sonar

Description Provide a service to allow the user to turn on the Sonar
Priority Should have this use case
Status Detailed description and completed scenario
Actor 1. User

2. Simulation Controller
3. Destroyer, Submarine, and Torpedo

Pre-Condition Sonar is in off state
Base Path 1. User click “Set Sonar” button, the system display

Radar setting window.
2. User select the object from object list;
3. User sets state on for Sonar, and close the window.

Flow of
Events

Alternate
Path

NA

Post-Condition Sonar is in on state
Used Use

Case
NARelated

Use
Cases Extending

Use Case
Turn on Communication/Detection

Other Requirement NA

Table 3-16 Use Case Description for Turn on Sonar

Sequence Diagram

Refer to Figure 3-8 Sequence D iagram fo r  Use Case Turn  on
Communication/Detection, the object list (ID list) is provided to user only for
Submarine and Weapons (including Heavy Cannon Shell, Sea-Sub Missile,
Torpedo and Sub-Sea Torpedo



49

3.3.2.3.6 Use Case: Turn off Sonar

Description Provide a service to allow the user to turn off the Sonar
Priority Should have this use case
Status Detailed description and completed scenario
Actor 1. User

2. Simulation Controller
3. Destroyer, Submarine, and Torpedo

Pre-Condition Sonar is in on state
Base Path 1. User click “Set Sonar” button, the system display

Radar setting window.
2. User select the object from object list;
3. User sets state off for Sonar, and close the window.

Flow of
Events

Alternate
Path

NA

Post-Condition Sonar is in off state
Used Use

Case
NARelated

Use
Cases Extending

Use Case
Turn off Communication/Detection

Other Requirement NA

Table 3-17 Use Case Description for Turn off Sonar

Sequence Diagram

Refer to Figure 3-9 Sequence D iagram for  Use Case Turn  o f f
Communication/Detection, the object list (ID list) is provided to user only for
Submarine and Weapons (including Heavy Cannon Shell, Sea-Sub Missile,
Torpedo and Sub-Sea Torpedo



50

3.3.2.3.7 Use Case: Sonar Emit Wave

Description Provide a service for objects to send info to SC in order
to detect the surrounding enemies using a Sonar.

Priority Must have this use case
Status Detailed description and completed scenario
Actor 1. Simulation Controller

2. Destroyer, Submarine, and Torpedo
Pre-Condition 1. Object exists, Radar is created and in on state;

2. Object know its position, ID and flag;
3. The DB of SC is accessible.

Base Path 1. Sonar gets its owner’s ID, position and flag;
2. Sonar sends its owner’s information to SC;

Flow of
Events

Alternate
Path

NA

Post-Condition Sonar send its owner’s info to SC
Used Use

Case
NARelated

Use
Cases Extending

Use Case
Detection Emit Wave

Other Requirement NA

Table 3-18 Use Case Description for Sonar Emit Wave

Sequence Diagram

Refer to Figure 3-10 Sequence Diagram for Use Case Detection Emit Wave, this use
case is only applicable for objects Submarine and Weapons (including Heavy
Cannon Shell, Sea-Sub Missile, Torpedo and Sub-Sea Torpedo).



51

3.3.2.3.8 Use Case: Sonar Receive Wave

Description Provide a service to allow the objects to receive the
information from the SC in order to detect the
surrounding enemies using a Sonar.

Priority Must have this use case
Status Detailed description and completed scenario
Actor 1. Simulation Controller

2. Destroyer, Submarine, and Torpedo
Pre-Condition 1. Object exist and Radar is created and in on state;

2. Object know its position, ID and flag;
3. The DB of SC is accessible.
4. Sonar’s data buffer id available.

Base Path 1. Sonar read the record of all the surrounding enemy
objects within Radar’s range;

2. Sonar save the info to its data buffer and update the
info.

3. Sonar gives the info to its owner.

Flow of
Events

Alternate
Path

NA

Post-Condition The Sonar’s owner gets the info about the surrounding
enemy objects.

Used Use
Case

NARelated
Use

Cases Extending
Use Case

Detection Receive Wave

Other Requirement NA

Table 3-19 Use Case Description for Sonar Receive Wave

Sequence Diagram

Refer to Figure 3-10 Sequence Diagram for Use Case Detection Emit Wave for
Detection Receive Wave, this use case is only applicable for objects Submarine
and Weapons (including Heavy Cannon Shell, Sea-Sub Missile (when under
water), Torpedo and Sub-Sea Torpedo).



52

3.3.2.3.9 Use Case: Turn on Radio

Description Provide a service to allow the user to turn on the Radio
Priority Should have this use case
Status Detailed description and completed scenario
Actor 1. User

2. Simulation Controller
3. Battleship, Cruiser, Aircraft, Destroyer, Submarine,

Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-
Sea Missile and Torpedo.

Pre-Condition Radio is in off state
Base Path 1. User click “Set Radio” button, the system display

Radar setting window.
2. User select the object from object list;
3. User sets state on for Radio, and close the window.

Flow of
Events

Alternate
Path

NA

Post-Condition Radio is in on state
Used Use

Case
NARelated

Use
Cases Extending

Use Case
Turn on Communication/Detection

Other Requirement NA

Table 3-20 Use Case Description for Turn on Radio

Sequence Diagram

Refer to Figure 3-8 Sequence D iagram fo r  Use Case Turn  on
Communication/Detection. The object list (ID list) is provided to user for Aircraft
Carrier, Aircraft, Battleship, Cruiser, Destroyer, and Submarine.



53

3.3.2.3.10 Use Case: Turn off Radio

Description Provide a service to allow the user to turn off the Radio
Priority Should have this use case
Status Detailed description and completed scenario
Actor 1. User

2. Simulation Controller
3. Battleship, Cruiser, Aircraft, Destroyer, Submarine,.

Pre-Condition Radio is in on state
Base Path 1. User clicks the “Set Radio” button, the system

display Radar setting window.
2. User selects the object from object list;
3. User sets state off for Radio, and closes the window.

Flow of
Events

Alternate
Path

NA

Post-Condition Radio is in off state
Used Use

Case
NARelated

Use
Cases Extending

Use Case
Turn off Communication/Detection

Other Requirement NA

Table 3-21 Use Case Description for Turn off Radio

Sequence Diagram

Refer to Figure 3-8 Sequence D iagram fo r  Use Case Turn  on
Communication/Detection, the object list (ID list ) is provided to user for Aircraft
Carrier, Aircraft, Battleship, Cruiser, Destroyer, and Submarine.



54

3.3.2.3.11 Use Case: Radio Send Message

Description Provide a service for objects send the message to its
allies via SC

Priority Must have this use case
Status Detailed description and completed scenario
Actor 1. Simulation Controller

2. Battleship, Cruiser, Aircraft Carrier Aircraft,
Destroyer, and Submarine.

Pre-Condition 1. Object exists and Radio is created and in “on” state.
2. Object know its position, ID and flag;
3. Object know the receivers‘s IDs and message it want

to send.
4. A data buffer for the message is available.

Base Path 1. Object sends a message to its Radio;
2. Radio passes the message to message DB;
3. Message DB check with SC to see if the receivers is

within the Radio’s range of sender;
4. Message DB keep the message in message list.

Flow of
Events

Alternate
Path

Step 4: if receiver is not within the range, message DB
return an error message to the Radio, and Radio returns
it to its owner.

Post-Condition The message is available in the message DB for the
receiver to retrieve them when needed.

Used Use
Case

NARelated
Use

Cases Extending
Use Case

NA

Other Requirement NA

Table 3-22 Use Case Description for Radio Send Message

Sequence Diagram

See next page.



55

Figure 3-22 Sequence Diagram for Use Case Radio Send Message



56

3.3.2.3.12 Use Case: Radio Receive Message

Description Provide a service for objects receive the message from
its allies via the SC

Priority Must have this use case
Status Detailed description and completed scenario
Actor 1. Simulation Controller

2. Battleship, Cruiser, Aircraft Carrier Aircraft,
Destroyer, and Submarine.

Pre-Condition 1. Object exists and Radio is created and in “on” state.
2. Object knows its ID;
3. A data buffer for the message list is available.

Base Path 1. Object provides its ID to its Radio and ask Radio to
get message;

2. Radio sends the ID with an empty message list to
message DB;

3. Message DB checks the records and copies all the
messages for this object ID to the message list;

4. Message DB deletes these copied records from the
DB;

5. Message DB return the message list to the Radio;
6. Radio returns this list to its owner;

Flow of
Events

Alternate
Path

NA

Post-Condition 1. The messages are deleted from the DB;
2. Object receives a message list containing zero or

more messages.
Used Use

Case
NARelated

Use
Cases Extending

Use Case
NA

Other Requirement NA

Table 3-23 Use Case Description for Radio Receive Message

Sequence Diagram

See next page.



57

Figure 3-23 Sequence Diagram for Use Case Radio Receive Message



58

3.3.3 Aircraft Carrier Requirements

The Aircraft Carrier subsystem has the following four modules:

• Captain
• Communication Officer
• Navigation Officer
• Aircraft Launcher Officer

3.3.3.1 Use Case Diagram

Figure 3-24 Use Case Diagram for Aircraft Carrier



59

3.3.3.2 Requirement Breakdown

Use Case:     Aircraft Carrier Navigate Control

AC-001 Start/Stop Aircraft Carrier

AC-001-01 Start Aircraft Carrier
Aircraft Carrier shall start to move on the sea in a random
direction after its initialization.
No comments.

AC-001-02 Stop Aircraft Carrier
Aircraft Carrier shall be stoppable by the user manually.
It is also stopped when its fuel is used up and base supplier has no more
fuel.

AC-002 Accelerate/ Decelerate/ Rotate Aircraft Carrier
Aircraft Carrier shall accelerate, decelerate and rotate according to
the Captain’s command. 
No comments.

AC-003 Control Steer Status
Aircraft Carrier shall turn on or turn off the steer in order to navigate
on the sea.
No comments.

Use Case:     Aircraft Carrier Communication with Allies

AC-004 Initialize Radio
When the Aircraft Carrier is created, a Radio object shall be
initialized with location and range.
No comments.

AC-005 Updating Radio Location
Aircraft Carrier’s Radio location shall be updated by Simulation
Controller.
No comments

AC-006 Control Radio Status
The Aircraft Carrier shall be able to turn on or turn off the Radio at
any time after Radio initialization.
Default status after Radio initialization is turn on.



60

AC-007 Receive Information from Radio
The Aircraft Carrier shall receive the report from its allies (including
its Aircrafts) by Radio.
Radio needs to get all the information from Simulation Controller. The
information about detected enemy is also sent by its allies (including its
Aircrafts) from the Radio.

AC-008 Send Information to Allies
The Aircraft Carrier can send information to its allies (including its
Aircrafts) by Radio.
The significant information include newly detected enemies, etc.

Use Case:     Aircraft Carrier Make Decision

AC-009 Collect the Necessary Information from Radar and Radio.
This requirement is accomplished by AC-006, AC-011 and AC-011.
No comments.

AC-010 Analysis Information
Aircraft Carrier shall has the ability to analyze the received
information to sort out the criticality of all the threats.   
No comments.

AC-011 Decide Location to Conduct Ship
Captain shall take decision to steer, accelerate, decelerate the
Aircrfat Carrier based on the position of the enemies and the
position of allied Aircrafts and Ships.
No comments.

AC-012 Decide Content of Sending Information
The Captain shall form the correct command and send them to the
Navigation, Aircraft Launcher and Communication Officers.
No comments.

      AC-013 Decide Time for Sending Information
The Captain shall decide the correct time to send commands to
subsystems.
No comments.

Use Case:     Aircraft Control

           AC-014 Get Status of Aircraft
Aircraft Carrier receives the current position, speed, and resistance
of allied Aircrafts.
No comments.



61

AC-015 Landing Control
Aircraft Carrier receives the landing request from its Aircrafts and
sends the landing authorization to them.
No comments.

AC-016 Send Return Command
Aircraft Carrier shall send the return command to its Aircraft to ask
the Aircraft come back.
No comments.

AC-017 Take off Aircraft
Aircraft Carrier shall issue the mission to its Aircraft and permit it to
take off.
No comments.

Use Case:     Aircraft Carrier Update Status

AC-018 Update Aircraft Carrier Location Periodically
Aircraft Carrier can update its location periodically and randomly if
no threats are detected.
No comments.

AC-019 Calculate Aircraft Carrier Resistance
Aircraft Carrier shall calculate the resistance or hit points after each
hit.
No comments.

AC-020 Aircraft Carrier Hit by Enemy Weapon
Aircraft Carrier shall know when it is hit by the enemy’s Weapon.
No comments.

AC-021 Aircraft Carrier Recover Within Time Limit
Aircraft Carrier can determine if it can recover from the damage
within the limited time.
No comments.

AC-022 Report Status to SC Periodically
Aircraft Carrier shall inform its status (location, alive/dead status) to
the Simulation Controller periodically.
No comments.

AC-023 Aircraft Carrier Destroyed at Hit Points Limit
Aircraft Carrier shall determine to be destroyed when exceeding the
hit points limit.
No comments.



62

AC-024 Aircraft Carrier Crashed with other object
Aircraft Carrier shall determine to be destroyed when crash with
other object.
No comments.

Use Case:     Aircraft Carrier Refueling

      AC-025 Update the Fuel Level
Aircraft Carrier shall reduce its fuel level according to the navigation
time since its creation.
No comments.

      AC-026 Refueling the Gas
Aircraft Carrier shall send request to its base supplying to refueling
when its gas goes to the warning level.
No comments.



63

3.3.3.3 Use Case Description

3.3.3.3.1 Use Case: Aircraft Carrier Navigation Control

Description Provide the service to navigate the Aircraft Carrier
Priority Must have this use case in order to move on the sea
Status Detailed description and completed scenario
Actor NA

Pre-Conditions 1. Existing Aircraft Carrier object;
2. A command is received from the navigation officer

Base
Path

Upon reception of the command from a navigation officer,
the Aircraft Carrier may perform one of following
operations: Start or Stop, Rotate, Accelerate, Decelerate

Flow of
Events

Alternate
Path

NA

Post-Condition The Aircraft Carrier is moved
Used Use

Case
Aircraft Carrier Make DecisionRelate

d Use
Case Extending

Use Case
Navigation Control

Other
Requirements

NA

Table 3-24 Use Case Description for Aircraft Carrier Navigation Control

Sequence Diagram

Refer to Figure 3-1 Sequence Diagram for Use Case Navigation Control for
Navigation Control.



64

3.3.3.3.2 Use Case: Aircraft Carrier Communicate with Allies

Description Provide the communication service between Aircraft
Carrier and its allies.

Priority Must have this use case in order to pass information to
the Aircraft Carrier’s allies

Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Existing Aircraft Carrier object
Base
Path

1. Initialize a Radio object with location and radius when
Aircraft Carrier is created;

2. Update Radio location;
3. Turn on /off Radio;
4. Get object information around the Aircraft Carrier;
5. Send massage to its allies

Flow of
Events

Alternate
Path

NA

Post-Condition The Aircraft Carrier received report from its allies, the
allies received  report from Aircraft Carrier

Used Use
Case

NARelated
Use

Case Extending
Use Case

Communicate with Allies

Other Requirements NA

Table 3-25 Use Case Description for Aircraft Carrier Communicate with Allies

Sequence Diagram

Refer to Figure 3-3 Sequence Diagram for Use Case Communicate with Allies.



65

3.3.3.3.3 Use Case: Aircraft Carrier Make Decision

Description Provide the service to analyze the report, decide attack
target, decide where to conduct the ship, decide to rearm
and refuel

Priority Must have this use case in order to know its next action
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions 1. Existing Aircraft Carrier object;
2. The Aircraft Carrier’s status is updated;
3. All the reports are received

Base
Path

1. Upon reception of reports, the Captain analyzes the
threats and decides to attack a target;

2. The Captain gives the order to the Navigation Officer
for where to conduct the ship and at what speed;

3. The Captain gives order to Aircraft Launch officer to
prepare the attack;

4. The Captain gives order to Communication Officer to
send out the message about detected enemy;

5. The Captain decide to rearm or refueling to send
request to SC.

6. The Aircraft Launcher Officer decide to launch the
Aircraft.

Flow of
Events

Alternate
Path

NA

Post-Condition 1. The Navigation Officer executes captain’s command
2. The Weapon Officer executes captain’s command
3. The Communication Officer execute Captain’s

command;
4. The Base Supplier perform the transaction task;

Used Use
Case

1. Aircraft Carrier Update Status;
2. Aircraft Carrier Detect Enemy;
3. Aircraft Carrier Communication with Allies;

Related
Use

Case
Extending
Use Case

Make Decision

Other Requirements NA

Table 3-26 Use Case Description for Aircraft Carrier Make Decision

Sequence Diagram

See next page



66

Figure 3-25 Sequence Diagram for Use Case Aircraft Carrier Make Decision



67

3.3.3.3.4 Use Case: Aircraft Control

Description Provide the service to control the Aircraft
Priority Must have this use case in order to control the Aircraft
Status Detailed description and completed scenario
Actor Aircraft

Pre-Conditions 1. The Aircarft Carrier object exist;
2. The Aircraft object exist;
3. The Aircraft need to be take off.

Base
Path

1. The Captain send request to launch the Aircraft;
2. The Captain allow the Aircraft to  take off ;
3. The Aircraft Carrier receive information from its allies

Aircraft.
4. Aircraft Carrier respond to the landing request and

send command to return.

Flow of
Events

Alternate
Path

NA

Post-Condition The Aircraft Carrier launch the Aircraft, send command to
Aircraft, and respond to Aircraft’s request.

Used Use
Case

Make DecisionRelated
Use

Case Extending
Use Case

NA

Other Requirements NA

Table 3-27 Use Case Description for Aircraft Control

Sequence Diagram

See next page.



68

Figure 3-26 Sequence Diagram for Use Case Aircraft Carrier Aircraft Control



69

3.3.3.3.5 Use Case: Aircraft Carrier Update Status

Description Provide the service to update Aircraft Carrier’s location
and other status (alive/dead)

Priority Must have this use case in order to report status to SC
Status Detailed description and completed scenario
Actor Simulation Controller

Pre-Conditions Exist a Aircraft Carrier object
Base
Path

1. Update the location of the Aircraft Carrier
2. Determine if the Aircraft Carrier is hit by Weapon
3. Get the hit points of the Aircraft Carrier
4. Determine if the Aircraft Carrier can recover from the

hit points
5. Determine if the Aircraft Carrier is destroyed
6. Determine if the Aircraft Carrier crashes with other

object

Flow of
Events

Alternate
Path

NA

Post-Condition The status of the Aircraft Carrier is updated
Used Use

Case
NARelated

Use
Case Extending

Use Case
Update Status

Other Requirements NA

Table 3-28 Use Case Description for Aircraft Carrier Update Status

Sequence Diagram

Refer to Figure 3-6 Sequence Diagram for Use Case Update Status.



70

3.3.3.3.6 Use Case: Aircraft Carrier Refueling

Description Provide the service to refueling the Aircraft Carrier
Priority Would like to have this use case in order to continue

moving on the sea
Status Detailed description and completed scenario
Actor 1. Simulation Controller;

2. Aircraft Carrier;
3. Radio.

Pre-Conditions 1. The  base supplier has enough fuel in stock;
2. The Radio is in “on” state.

Base
Path

1. Navigation Officer sends information to ask captain to
deduct the fuel;

2. Captain checks if the fuel is at limited level;
3. Captain sends request to SC to ask base supplier to

refuel;
4. Base Supplier transfer the fuel to Aircraft Carrier;

Flow of
Events

Alternate
Path

NA

Post-Condition The Aircraft Carrier gets refueled
Used Use

Case
Aircraft Carrier Make DecisionRelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-29 Use Case Description for Aircraft Carrier Refueling

Sequence Diagram

Refer to Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling.



71

3.3.4 Aircraft Requirements

The Aircraft subsystem has the following five sub modules:

• Pilot
• Navigation Officer
• Communication Officer
• Weapon Officer
• Weapon Launcher

3.3.4.1 Use Case Diagram

Figure 3-27 Use Case Diagram for Aircraft



72

3.3.4.2 Requirement Breakdown

Use Case:     Aircraft Navigation Control

AT-001 Start/Stop Aircraft

AT-001-01 Start Aircraft
Aircraft shall start to move in the air in random direction after
its initiation.
No comments.

AT-001-02 Stop Aircraft
Aircraft shall be stoppable by the user manually.
It is also stopped when its fuel is used up and base supplier has no more
fuel.

AT-002 Accelerate/ Decelerate/ Rotate Aircraft
Aircraft shall accelerate, decelerate and rotate according to the
Pilot’s command.
No comments

AT-003 Control Steer Status
Aircraft shall turn on or turn off the steer in order to navigate.
No comments

Use Case:     Aircraft Detect Enemy

AT-004 Initialize Radar
When the Aircraft is created, a Radar object shall be initialized with
location and radius.
No comments.

AT-005 Updating Radar Location
Aircraft’s Radar location shall be updated by Simulation Controller.
No comments

AT-006 Control Radar Status
The Aircraft shall turn on or turn off the Radar at any time after
Radar initialization.
Default status after Radar initialization is turn on.

AT-007 Receive Information from Radar
The Aircraft shall get the information about the surrounding
enemies from its Radar.
Radar needs to get all the information from Simulation Controller.



73

Use Case:     Aircraft Communicate With Allies

AT-008 Initialize Radio
When the Aircraft is created, a Radio object shall be initialized with
location and radius.
No comments.

AT-009 Updating Radio Location
Aircraft’s Radio location shall be updated by Simulation Controller.
No comments

AT-010 Control Radio Status
The Aircraft shall turn on or turn off the Radio at any time after
Radio initialization.
Default status after Radio initialization is turn on.

AT-011 Receive Information from Radio
The Aircraft shall receive the report from its allies (including its
Aircraft Carrier) by its Radio.
Radio needs to get all the information from Simulation Controller.

AT-012 Send Information to Allies
The Aircraft can send information to its allies (including its Aircraft
Carrier) by Radio.
The significant information include newly detected enemies, the target it will
attack, etc.

Use Case:     Aircraft Make Decision

AT-013 Collect the Necessary Information from Radar and Radio.
This requirement is accomplished by AT-006, AT-011 and AT-012.
No comments.

AT-014 Analysis Information
Aircraft shall has the ability to analyze the received information to
decide all the threats.
No comments.

AT-015 Decide Attack Object
Decide attack objects among threats based on the analyzed threats
No comments.

AT-016 Decide Location to Conduct Ship
The Pilot shall take decision to steer, accelerate, decelerate the
Aircraft based on position of allies and enemies.
No comments



74

AT-017 Decide Content of Sending Information
The Pilot shall form the correct command and send them to
navigation officer, Weapon officer and communication officer.
No comments.

      AT-018 Decide Time for Sending Information
The Pilot shall decide the correct time to send the command to
subsystems.
No comments.

Use Case:     Aircraft Weapon Control

AT-019 Select Number and Type of Weapon
Weapon Officer shall decide the type and quantity of Weapon to be
used on the Aicraft.
No comments.

AT-020 Initialize Weapon
Weapon Officer will issue an order to Weapon launcher to create a
Weapon.
No comments.

AT-021 Aim Object and Fire Weapon
Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot. It is also not for
Aircraft.

AT-022 Update the Number of Weapon
Weapon Officer shall calculate and update the number of Weapons
on board.
No comments.

AT-023 Recharge Weapon
When the Weapons are used up, the Aircraft shall go back to the
base (just give some remind to show the Weapon is used up) and
the Weapon officer can reload the Weapon as needed type and
quantity.
No comments.

Use Case:     Aircraft Update Status

AT-024 Update Aircraft Location Periodically
Aircraft can update its location periodically and randomly if no
threats are detected.
No comments.



75

AT-025 Calculate Aircraft Resistance
Aircraft shall calculate the resistance or hit points after each hit.
No comments.

AT-026 Aircraft Hit by Enemy Weapon
Aircraft shall know when it is hit by the enemy’s Weapon.
No comments.

AT-027 Aircraft Recover Within Time Limit
Aircraft can determine if it can recover from the hit points within the
limited time.
No comments.

AT-028 Report Status to SC Periodically
Aircraft shall inform its status (location, alive/dead status) to
Simulation Controller periodically.
No comments.

      AT-029 Report Status to Aircraft Carrier Periodically
Aircraft shall inform its status (location, alive/dead status) to Aircraft
Carrier periodically
No comments.

AT-030 Aircraft Destroyed at Hit Points Limit
Aircraft shall determine to be destroyed when exceed the hit points
limit.
No comments.

AT-031 Aircraft Crashed with other object
Aircraft shall determine to be destroyed when crash with other
object.
No comments.

Use Case:     Aircraft Rearm and Refueling

      AT-032 Update the Fuel Level
Aircraft shall reduce its fuel level according to the navigation time
since its creation.
No comments.

      AT-033 Refueling the Gas
Aircraft shall send request to its base supplying when its gas goes
to the warning level.
No comments.



76

      AT-034 Rearm the Weapon
Aircraft shall send the request to its base supplying once its
Weapons are used up.
Actually, the Weapon are created by Aircraft when they are launched, only after
the fired Weapon exceed the limits, the base supplying will create Weapon for
Aircraft and transfer them to Aircraft.



77

3.3.4.3 Use Case Description

3.3.4.3.1 Use Case: Aircraft Navigation Control

Description Provide the service to navigate the Aircraft
Priority Must have this use case in order to move
Status Detailed description and completed scenario
Actor NA

Pre-Conditions 1. Existing Aircraft object;
2. A command is received from the navigation officer

Base
Path

1. Upon reception of the command from a navigation
officer, the Aircraft may perform one of following
operations: Start or stop, Rotate, Accelerate,
Decelerate;

2. Upon received return command from Aircraft Carrier,
the Aircraft shall go back to its Aircraft Carrier.

Flow of
Events

Alternate
Path

NA

Post-Condition The Aircraft is moved
Used Use

Case
Aircraft Make DecisionRelated

Use
Case Extending

Use Case
Navigation Control

Other Requirements NA

Table 3-30 Use Case Description for Aircraft Navigation Control

Sequence Diagram

See next page.



78

Figure 3-28 Sequence Diagram for Use Case Aircraft Navigation Control



79

3.3.4.3.2 Use Case: Aircraft Detect Enemy

Description Provide the service to locate the enemy using Radar
Priority Must have this use case in order to detect the enemy
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Existing Aircraft object
Base
Path

1. Initialize a Radar object with location and radius when
Aircraft Carrier is created;

2. Update Radar location;
3. Turn on /off Radar;
4. Get enemy information around the Aircraft

Flow of
Events

Alternate
Path

NA

Post-Condition Any enemy in the range are detected
Used Use

Case
NARelated

Use
Case Extending

Use Case
Detect Enemy

Other Requirements NA

Table 3-31 Use Case Description for Aircraft Detect Enemy

Sequence Diagram

Refer to Figure 3-2 Sequence Diagram for Use Case Detect Enemy.



80

3.3.4.3.3 Use Case: Aircraft Communicate with Allies

Description Provide the communication service among Aircraft, its
allies , and its Aircraft Carrier.

Priority Must have this use case in order to pass information to
the Aircraft ‘s allies and its Aircraft Carrier

Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Aircraft object
Base
Path

1. Initialize a Radio object with location and radius when
Aircraft is created;

2. Update Radio location;
3. Turn on /off Radio;
4. Get enemy object information around the Aircraft;
5. Send massage to its allies and its Aircraft Carrier.

Flow of
Events

Alternate
Path

NA

Post-Condition The Aircraft received report from its allies and Aircraft
Carrier; the allies and Aircraft Carrier received  report from
Aircraft.

Used Use
Case

NARelated
Use

Case Extending
Use Case

Communicate with Allies

Other Requirements NA

Table 3-32 Use Case Description for Aircraft Communication with allies

Sequence Diagram

Refer to Figure 3-3 Sequence Diagram for Use Case Communicate with Allies.



81

3.3.4.3.4 Use Case: Aircraft Make Decision

Description Provide the service to analyze the report, decide attack
target, decide where to conduct the Aircraft, decide rearm
and refueling

Priority Must have this use case in order to know its next action
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions 1. Existing Aircraft object;
2. The Aircraft status is updated;
3. All the reports are received

Base
Path

1. Upon reception of reports, the captain analyze the
threats and decide attack target;

2. The captain gives the order to navigation officer for
where to conduct the Aircraft and at what speed;

3. The captain gives order to Weapon officer to prepare
the attack;

4. The captain gives order to communication officer to
send out the message about detected enemy;

5. The Captain decide to rearm or refueling to send
request to SC.

6. The Pilot decide to land on the Aircraft Carrier.

Flow of
Events

Alternate
Path

NA

Post-Condition 1. The navigation officer executes captain’s command
2. The Weapon office executes captain’s command
3. The communication officer execute captain’s

command;
4. The Base Supplier perform the transaction task;
5. Aircraft send request to land on.

Used Use
Case

1. Aircraft  Update Status;
2. Aircraft Detect Enemy;
3. Aircraft Communication with Allies;

Related
Use

Case
Extending
Use Case

Make Decision

Other Requirements NA

Table 3-33 Use Case Description for Aircraft Make Decision

Sequence Diagram

See next page.



82

Figure 3-29 Sequence Diagram for Use Case Aircraft Make Decision



83

3.3.4.3.5 Use Case: Aircraft Weapon Control

Description Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

Priority Must have this use case in order to attack the enemy
Status Detailed description and completed scenario
Actor Weapon

Pre-Conditions An attacking command is received
Base
Path

1. Decide the type and quantity of Weapon to be used;
2. Calculate and update the Weapon quantity on board
3. Issue an order to Weapon launcher
4. A Weapon object will be created and fired by Weapon

launcher
5. Weapon launcher will aim and fire Weapon
6. Deduct the quantity of Weapon on board

Flow of
Events

Alternate
Path

If the Weapon is Sea-Sea Missile, it will return a massage
stating whether the target is destroyed or not.

Post-Condition Weapon is fired and exploded
Used Use

Case
Aircraft Make DecisionRelated

Use
Case Extending

Use Case
Weapon Control

Other Requirements NA

Table 3-34 Use Case Description for Aircraft Weapon Control

Sequence Diagram

Refer to Figure 3-5 Sequence Diagram for Use Case Weapon Control.



84

3.3.4.3.6 Use Case: Aircraft Update Status

Description Provide the service to update Aircraft’s location and other
status (alive/dead)

Priority Must have this use case in order to report status to SC
Status Detailed description and completed scenario
Actor Simulation Controller

Pre-Conditions Exist a Aircraft object
Base
Path

1. Update the location of the Aircraft
2. Determine if the Aircraft is hit by Weapon
3. Get the hit points of the Aircraft
4. Determine if the Aircraft can recover from the hit points
5. Determine if the Aircraft is destroyed
6. Determine if the Aircraft crashes with other object

Flow of
Events

Alternate
Path

NA

Post-Condition The status of the Aircraft is updated
Used Use

Case
NARelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-35 Use Case Description for Aircraft Update Status

Sequence Diagram

Refer to Figure 3-6 Sequence Diagram for Use Case Update Status.



85

3.3.4.3.7 Use Case: Aircraft Rearm and Refueling

Description Provide the service to refueling the Aircraft Carrier
Priority Would like to have this use case in order to continue

moving on the sea
Status Detailed description and completed scenario
Actor 1. Simulation Controller;

2. Aircraft;
3. Radio.

Pre-Conditions 1. The  base supplier has enough fuel in stock;
2. The Radio is in ON state.

Base
Path

1. Navigation Officer send information to ask captain to
deduct the fuel;

2. Pilot checks if the fuel is at limited level;
3. Pilot send request to SC to ask base supplier to refuel;
4. Base Supplier transfer the fuel to Aircraft;

Flow of
Events

Alternate
Path

NA

Post-Condition The Aircraft get refueling
Used Use

Case
Aircraft Make DecisionRelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-36 Use Case Description for Aircraft Refueling

Sequence Diagram

Refer Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling.



86

3.3.5 Destroyer Requirements

The Destroyer subsystem has the following five sub modules:

• Captain
• Navigation Officer
• Communication Officer
• Weapon Officer
• Weapon Launcher

3.3.5.1 Use Case Diagram

Figure 3-30 Use Case Diagram for Destroyer



87

3.3.5.2 Requirement Breakdown

Use Case:     Destroyer  Navigation Control

DT-001 Start/Stop Destroyer

DT-001-01 Start Destroyer
Destroyer shall start to move on the sea in random direction
after its initiation.
No comments.

DT-001-02 Stop Destroyer
Destroyer shall be stoppable by the user manually.
It is also stopped when its fuel is used up and base supplier has no more
Fuel.

DT-002 Accelerate/ Decelerate/ Rotate Destroyer
Destroyer shall accelerate, decelerate and rotate according to the
Captain’s command.
No comments.

DT-003 Control Steer Status
Destroyer shall turn on or turn off the steer in order to navigate on
the sea.
No comments.

Use Case:     Destroyer  Detect Enemy

DT-004 Initialize Radar
When the Destroyer is created, a Radar object shall be initialized
with location and radius.
No comments.

DT-005 Updating Radar Location
Destroyer’s Radar location shall be updated by Simulation
Controller.
No comments

DT-006 Control Radar Status
The Destroyer shall be able to turn on or turn off the Radar at any
time after Radar initialization.
Default status after Radar initialization is turn on.



88

DT-007 Receive Information from Sonar
The Destroyer shall get the information about the near Submarine f
rom its Sonar
Radar needs to get all the information from Simulation Controller.

Use Case:     Destroyer  Communication with Allies

DT-008 Initialize Radio
When the Destroyer is created, a Radio object shall be initialized
with location and radius.
No comments

DT-009 Updating Radio Location
Destroyer’s Radio location shall be updated by Simulation
Controller.
No comments

DT-010 Control Radio Status
The Destroyer shall turn on or turn off the Radio at any time after
Radio initialization.
Default status after Radio initialization is turn on.

DT-011 Receive Information from Radio
The Destroyer shall receive the report from its allies by its Radio.
Radio needs to get all the information from Simulation Controller.

DT-012 Send Information to Allies
  The Destroyer can send information to its allies.

The significant information include newly detected enemies, the target it will
attack, etc

Use Case:     Destroyer  Make Decision

DT-013 Collect Information from Radar and Radio.
This requirement is accomplished by DT-006, DT-011 and DT-012.
No comments.

DT-014 Analysis Information
Destroyer shall has the ability to analyze the received information to
decide all the threats.
No comments.

DT-015 Decide Attack Object
Decide attack objects among threats based on the analyzed
threats.
No comments



89

DT-016 Decide Location to Conduct Ship

DT-017 Decide Content of Sending Information
The Captain shall form the correct command and send them to the
Navigation Officer, Weapon officer and communication officer.
No comments.

DT-018 Decide Time for Sending Information
The Captain shall decide the correct time to send the command to
sub system.
No comments.

Use Case:     Destroyer  Weapon Control

DT-019 Select Number and Type of Weapon
Weapon officer shall decide the type and quantity of Weapon to be
used on the Destroyer.
No comments.

DT-020 Initialize Weapon
Weapon Officer will issue an order to Weapon launcher to create a
Weapon.
No comments.

DT-021 Aim Object and Fire Weapon
Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot. it is not for
Destroyer.

DT-022 Update the Number of Weapon
Weapon officer shall calculate and update the Weapon on board.
No comments

DT-023 Recharge Weapon
When the Weapons are used up, the Destroyer shall go back to the
battle base, and the Weapon office can reload the Weapon as
needed type and quantity.
No comments.

Use Case:     Destroyer  Update Status

DT-024 Update Destroyer  Location Periodically
Destroyer can update its location periodically and randomly if no
threats are detected.
No comments.



90

DT-025 Calculate Destroyer  Resistance
Destroyer shall calculate the resistance or hit points after each hit.
No comments.

DT-026 Destroyer  Hit by Enemy Weapon
Destroyer shall know when it is hit by the enemy’s Weapon.
No comments.

DT-027 Destroyer  Recover Within Time Limit
Destroyer can determine if it can recover from the hit points within
the limited time.
No comments.

DT-029 Report Status to SC Periodically
Destroyer shall inform its status (location, alive/dead status) to
Simulation Controller  periodically.
No comments.

DT-030 Destroyer  Destroyed at Hit Points Limit
Destroyer shall determine to be destroyed when exceed the hit
points limit.
No comments.

DT-031 Destroyer  Crashed with other object
Destroyer shall determine to be destroyed when crash with other
object.
No comments.

Use Case:     Destroyer Rearm and Refueling

DT-032 Update the Fuel Level
Destroyer shall reduce its fuel level according to the navigation time
since its creation.
No comments.

DT-033 Refueling the Gas
Destroyer shall send request to its base supplying to refueling when
its gas goes to the warning level.
No comments.

DT-034 Rearm the Weapon
Destroyer shall send the request to its base supplying once its
Weapons are used up.
Actually, the Weapon are created by Destroyer  when they are launched, only
after the fired Weapon exceed the limits, the base supplying will create Weapon
for Destroyer  and transfer them to Destroyer .



91

3.3.5.3 Use Case Description

3.3.5.3.1 Use Case: Destroyer Navigation Control

Description Provide the service to navigate the Destroyer
Priority Must have this use case in order to move on the sea
Status Detailed description and completed scenario
Actor NA

Pre-Conditions 1. Exist a Destroyer  object;
2. A command is received from the navigation officer

Base
Path

Upon reception of the command from a navigation officer,
the Destroyer may perform one of following operations:
Start or stop, Rotate, Accelerate, Decelerate

Flow of
Events

Alternate
Path

NA

Post-Condition The Destroyer  is moved
Used Use

Case
Destroyer Make DecisionRelated

Use
Case Extending

Use Case
Navigation Control

Other Requirements NA

Table 3-37 Use Case Description for Destroyer  Navigation Control

Sequence Diagram

Refer to Figure 3-1 Sequence Diagram for Use Case Navigation Control.



92

3.3.5.3.2 Use Case: Destroyer Detect Enemy

Description Provide the service to locate the enemy using Radar
Priority Must have this use case in order to detect the enemy
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Destroyer  object
Base
Path

1. Initialize a Radar object with location and radius when
Destroyer  is created;

2. Update Radar location;
3. Turn on /off Radar;
4. Get enemy object information around the Destroyer

Flow of
Events

Alternate
Path

NA

Post-Condition Any enemy in the range are detected
Used Use

Case
NARelated

Use
Case Extending

Use Case
Detect Enemy

Other Requirements NA

Table 3-38 Use Case Description for Destroyer  Navigation Control

Sequence Diagram

Refer to Figure 3-2 Sequence Diagram for Use Case Detect Enemy.



93

3.3.5.3.3 Use Case:  Destroyer Communication with Allies

Description Provide the communication service between Destroyer
and its allies

Priority Communication/Detect must have this use case in order
to pass information to the Destroyer ’s allies

Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Destroyer  object
Base
Path

1. Initialize a Radio object with location and radius when
Destroyer  is created;

2. Update Radio location; 3.
3. Turn on /off Radio; 4.
4. Get object information around the Destroyer ;
5. Send massage to its allies

Flow of
Events

Alternate
Path

NA

Post-Condition The Destroyer  received report from its allies, the Allies
received  report from Destroyer

Used Use
Case

NARelated
Use

Case Extending
Use Case

Communicate with Allies

Other Requirements NA

Table 3-39 Use Case Description for Destroyer Communication with Allies

Sequence Diagram

Refer to Figure 3-3 Sequence Diagram for Use Case Communicate with Allies.



94

3.3.5.3.4 Use Case: Destroyer Make Decision

Description Provide the service to analyze the report, decide attack
target, and decide where to conduct the ship

Priority Must have this use case in order to know its next action
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions 1. Exist a Destroyer  object;
2. The Destroyer ’s status is updated;
3. All the reports are received

Base
Path

1. Upon reception of reports, the captain analyze the
threats and decide attack target;

2. The captain gives the order to navigation officer for
where to conduct the ship and at what speed;

3. The captain gives order to Weapon officer to prepare
the attack;

4. The captain gives order to communication officer to
send out the message

5. The Captain decide to rearm or refueling to send
request to SC

Flow of
Events

Alternate
Path

NA

Post-Condition 1. The navigation officer executes captain’s command
2. The Weapon office executes captain’s command
3. The communication officer execute captain’s

command;
4. The Base Supplier perform the transaction task;

Used Use
Case

1. Destroyer Update Status;
2. Destroyer Detect Enemy;
3. Destroyer Communication with Allies;

Related
Use

Case
Extending
Use Case

Make Decision

Other Requirements NA

Table 3-40 Use Case Description for Destroyer Make Decision

Sequence Diagram

Refer to Figure 3-4 Sequence Diagram for Use Case Make Decision.



95

3.3.5.3.5 Use Case: Destroyer Weapon Control

Description Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

Priority Must have this use case in order to attack the enemy
Status Detailed description and completed scenario
Actor Weapon

Pre-Conditions An attacking command is received
Base
Path

1. Decide the type and quantity of Weapon to be used;
2. Calculate and update the Weapon quantity on board
3. Issue an order to Weapon launcher
4. A Weapon object will be created and fired by Weapon

launcher
5. Weapon launcher will aim and fire Weapon
6. When Weapons are used up, recharge the Weapon on

board

Flow of
Events

Alternate
Path

If the Weapon is Sea-Sea Missile, it will return a massage
stating whether the target is destroyed or not

Post-Condition Weapon is fired and exploded.
Used Use

Case
Destroyer Make DecisionRelated

Use
Case Extending

Use Case
Weapon Control

Other Requirements NA

Table 3-41 Use Case Description for Destroyer Weapon Control

Sequence Diagram

Refer to Figure 3-5 Sequence Diagram for Use Case Weapon Control.



96

3.3.5.3.6 Use Case: Destroyer Update Status

Description Provide the service to update Destroyer ’s location and
other status (alive/dead)

Priority Must have this use case in order to report status to SC
Status Detailed description and completed scenario
Actor Simulation Controller

Pre-Conditions Exist a Destroyer  object
Base
Path

1. Update the location of the Destroyer
2. Determine if the Destroyer  is hit by Weapon
3. Get the hit points of the Destroyer
4. Determine if the Destroyer  can recover from the hit

points
5. Determine if the Destroyer  is destroyed
6. Determine if the Destroyer  crashes with other object

Flow of
Events

Alternate
Path

NA

Post-Condition The status of the Destroyer  is updated
Used Use

Case
NARelated

Use
Case Extending

Use Case
Update Status

Other Requirements NA

Table 3-42 Use Case Description for Destroyer Update Status

Sequence Diagram

Refer to Figure 3-6 Sequence Diagram for Use Case Update Status.



97

3.3.5.3.7 Use Case: Destroyer Rearm and Refueling

Description Provide the service to rearm and refueling the Destroyer
Priority Would like to have this use case in order to continue

moving on the sea
Status Detailed description and completed scenario
Actor 1. Simulation Controller;

2. Destroyer;
3. Radio.

Pre-Conditions 1. The  base supplier has enough fuel in stock;
2. The Radio is in ON state.

Base
Path

1. Navigation Officer send information to ask captain to
deduct the fuel; Weapon Officer send information to
Captain to deduct the Weapon;

2. Captain check if the fuel is at limited level; Captain
check if the Weapon is used up ;

3. Captain send request to SC to ask base supplier to
refuel; Captain send request to SC to ask base
supplier to create Weapon;

4. Base Supplier transfer the fuel or Weapon to Aircraft
Carrier.

Flow of
Events

Alternate
Path

NA

Post-Condition The Destroyer get rearm and refueling
Used Use

Case
NARelated

Use
Case Extending

Use Case
Rearm and Refueling

Other Requirements NA

Table 3-43 Use Case Description for Destroyer Rearm and Refueling

Sequence Diagram

Refer to Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling.



98

3.3.6 Cruiser Requirements

The Cruiser subsystem has the following five sub modules:

• Captain
• Navigation Officer
• Communication Officer
• Weapon Officer
• Weapon Launcher

3.3.6.1 Use Case Diagram

Figure 3-31 Use Case Diagram for Cruiser



99

3.3.6.2 Requirement Breakdown

Use Case: Cruiser Navigation Control

CS-001 Start/Stop Cruiser

CS-001-01 Start Cruiser
Cruiser shall start to move on the sea in random direction
after its initiation.
No comments.

CS-001-02 Stop Cruiser
Cruiser shall be stopped by the user manually.
It is also stopped when its fuel is used up and base supplier has no more
fuel.

CS-002 Accelerate/ Decelerate/ Rotate Cruiser
Cruiser shall accelerate, decelerate and rotate according to the
Captain’s command.
No comments.

CS-003 Control Steer Status
Cruiser shall turn on or turn off the steer in order to navigate on the
sea.
No comments.

Use Case:  Cruiser Detect Enemy

CS-004 Initialize Radar
When the Cruiser is created, a Radar object shall be initialized with
location and radius.
No comments.

CS-005 Updating Radar Location
Cruiser’s Radar location shall be updated by the Simulation
Controller.
No comments.

CS-006 Control Radar Status
The Cruiser shall turn on or turn off the Radar at any time after
Radar initialization.
Default status after Radar initialization is turn on.



100

CS-007 Receive Information from Radar
The Cruiser shall get the information about the nearing Aircrafts
from its Radar.
Radar needs to get all the information from Simulation Controller.

Use Case: Cruiser Communication with Allies

CS-008 Initialize Radio
When the Cruiser is created, a Radio object shall be initialized with
location and radius.
No comments

CS-009 Updating Radio Location
Cruiser’s Radio location shall be updated by Simulation Controller.
No comments

CS-010 Control Radio Status
The Cruiser shall turn on or turn off the Radio at any time after
Radio initialization.
Default status after Radio initialization is turn on.

CS-011 Receive Information from Radio
The Cruiser shall receive the report from its allies by its Radio.
Radio needs to get all the information from Simulation Controller.

CS-012 Send Information to Allies
The Cruiser can send information to its allies.
The significant information include newly detected enemies, the target it will
attack, etc.

Use Case:     Cruiser Make Decision

CS-013 Collect the Necessary Information from Radar and Radio.
This requirement is accomplished by CS-006, CS-011 and CS-012.
No comments.

CS-014 Analysis Information
Cruiser shall has the ability to analyze the received information to
decide all the threats.
No comments.

CS-015 Decide Attack Object
Decide attack objects among threats based on the analyzed
threats.
No comments.



101

CS-016 Decide Location to Conduct Ship

CS-017 Decide Content of Sending Information
The captain shall form the correct command and send them to
navigation officer, Weapon officer and communication officer.
No comments.

     CS-018 Decide Time for Sending Information
The captain shall decide the correct time to send the command to
sub system.
No comments.

Use Case:     Cruiser Weapon Control

CS-019 Select Number and Type of Weapon
Weapon officer shall decide the type and quantity of Weapon to be
used on the Cruiser.
No comments.

CS-020 Initialize Weapon
Weapon officer will issue an order to Weapon launcher to create a
Weapon.
No comments.

CS-021 Aim Object and Fire Weapon
Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot. It is not for Cruiser.

CS-022 Update the Number of Weapon
Weapon officer shall calculate and update the Weapon on board.
No comments.

CS-023 Recharge Weapon
When the Weapons are used up, the Cruiser shall go back to the
battle base, and the Weapon office can reload the Weapon as
needed type and quantity.
No comments.

Use Case:     Cruiser Update Status

CS-024 Update Cruiser Location Periodically
Cruiser can update its location periodically and randomly if no
threats are detected.
No comments.



102

CS-025 Calculate Cruiser Resistance
Cruiser shall calculate the resistance or hit points after each hit.
No comments.

CS-026 Cruiser Hit by Enemy Weapon
Cruiser shall know when it is hit by the enemy’s Weapon.
No comments.

CS-027 Cruiser Recover Within Time Limit
Cruiser can determine if it can recover from the hit points within the
limited time.
No comments.

CS-029 Report Status to SC Periodically
Cruiser shall inform its status (location, alive/dead status) to
Simulation Controller  periodically.
No comments.

CS-030 Cruiser Destroyed at Hit Points Limit
Cruiser shall determine to be destroyed when exceed the hit points
limit.
No comments.

CS-031 Cruiser Crashed with other object
Cruiser shall determine to be destroyed when crash with other
object.
No comments.

Use Case:     Cruiser Rearm and Refueling

      CS-032 Update the Fuel Level
Cruiser shall reduce its fuel level according to the navigation time
since its creation.
No comments.

      CS-033 Refueling the Gas
Cruiser shall send request to its base supplying to refueling when
its gas goes to the warning level.
No comments.

      CS-034 Rearm the Weapon
Cruiser shall send the request to its base supplying once its
Weapons are used up.
No comments.



103

3.3.6.3 Use Case Description

3.3.6.3.1 Use  Case: Cruiser  Navigation Control

Description Provide the service to navigate the Cruiser
Priority Must have this use case in order to move on the sea
Status Detailed description and completed scenario
Actor NA

Pre-Conditions 1. Exist a Cruiser  object;
2. A command is received from the navigation officer

Base
Path

Upon reception of the command from a navigation officer,
the Cruiser may perform one of following operations: Start
or stop, Rotate, Accelerate, Decelerate

Flow of
Events

Alternate
Path

NA

Post-Condition The Cruiser  is moved
Used Use

Case
Cruiser Make DecisionRelated

Use
Case Extending

Use Case
Navigation Control

Other Requirements NA

Table 3-44 Use Case Description for Cruiser  Navigation Control

Sequence Diagram

Refer to Figure 3-1 Sequence Diagram for Use Case Navigation Control.



104

3.3.6.3.2 Use Case: Cruiser  Detect Enemy

Description Provide the service to locate the enemy using Radar
Priority Must have this use case in order to detect the enemy
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Cruiser  object
Base
Path

1. Initialize a Radar object with location and radius when
Cruiser  is created;

2. Update Radar location;
3. Turn on /off Radar;
4. Get enemy object information around the Cruiser

Flow of
Events

Alternate
Path

NA

Post-Condition Any enemy in the range are detected
Used Use

Case
NARelated

Use
Case Extending

Use Case
Detect Enemy

Other Requirements NA

Table 3-45 Use Case Description for Cruiser  Navigation Control

Sequence Diagram

Refer to Figure 3-2 Sequence Diagram for Use Case Detect Enemy.



105

3.3.6.3.3 Use Case:  Cruiser Communication with Allies

Description Provide the communication service between Cruiser  and
its allies

Priority Communication/Detect must have this use case in order
to pass information to the Cruiser ’s allies

Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Cruiser  object
Base Path 1. Initialize a Radio object with location and radius when

Cruiser  is created;
2. Update Radio location; 3.
3. Turn on /off Radio; 4.
4. Get object information around the Cruiser ;
5. Send massage to its allies

Flow of
Events

Alternate
Path

NA

Post-Condition The Cruiser received report from its allies, the Allies
received  report from Cruiser.

Used Use
Case

NARelated
Use

Case Extending
Use Case

Communicate with Allies

Other Requirements NA

Table 3-46 Use Case Description for Aircraft Carrier Communication with Allies

Sequence Diagram

Refer to Figure 3-3 Sequence Diagram for Use Case Communicate with Allies.



106

3.3.6.3.4 Use Case: Cruiser Make Decision

Description Provide the service to analyze the report, decide attack
target, and decide where to conduct the ship

Priority Must have this use case in order to know its next action
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions 1. Exist a Cruiser object;
2. The Cruiser’s status is updated;
3. All the reports are received

Base
Path

1. Upon reception of reports, the captain analyze the
threats and decide attack target;

2. The captain gives the order to navigation officer for
where to conduct the ship and at what speed;

3. The captain gives order to Weapon officer to prepare
the attack;

4. The captain gives order to communication officer to
send out the message ;

5. The Captain decide to rearm or refueling to send
request to SC

Flow of
Events

Alternate
Path

NA

Post-Condition 1. The navigation officer executes captain’s command
2. The Weapon office executes captain’s command
3. The communication officer execute captain’s

command;
4. The Base Supplier perform the transaction task.

Used Use
Case

1. Cruiser Update Status;
2. Cruiser Detect Enemy;
3. Cruiser Communication with Allies

Related
Use

Case
Extending
Use Case

Make Decision

Other Requirements NA

Table 3-47 Use Case Description for Cruiser Make Decision

Sequence Diagram

Refer to Figure 3-4 Sequence Diagram for Use Case Make Decision.



107

3.3.6.3.5 Use Case: Cruiser Weapon Control

Description Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

Priority Must have this use case in order to attack the enemy
Status Detailed description and completed scenario
Actor Weapon

Pre-Conditions An attacking command is received
Base
Path

1. Decide the type and quantity of Weapon to be used;
2. Calculate and update the Weapon quantity on board
3. Issue an order to Weapon launcher
4. A Weapon object will be created by Weapon launcher
5. Weapon launcher will aim and fire Weapon
6. Deduct the Weapon on board

Flow of
Events

Alternate
Path

If the Weapon is Sea-Sea Missile, it will return a massage
stating whether the target is destroyed or not

Post-Condition Weapon is fired and exploded.
Used Use

Case
Cruiser Make DecisionRelated

Use
Case Extending

Use Case
Weapon Control

Other Requirements NA

Table 3-48 Use Case Description for Cruiser Weapon Control

Sequence Diagram

Refer to figure 3-5 Sequence Diagram for Weapon Control.



108

3.3.6.3.6 Use Case: Cruiser Update Status

Description Provide the service to update Cruiser’s location and other
status (alive/dead)

Priority Must have this use case in order to report status to SC
Status Detailed description and completed scenario
Actor Simulation Controller

Pre-Conditions Exist a Cruiser object
Base
Path

1. Update the location of the Cruiser
2. Determine if the Cruiser is hit by Weapon
3. Get the hit points of the Cruiser
4. Determine if the Cruiser can recover from the hit points
5. Determine if the Cruiser is destroyed
6. Determine if the Cruiser crashes with other object

Flow of
Events

Alternate
Path

NA

Post-Condition The status of the Cruiser is updated
Used Use

Case
NARelated

Use
Case Extending

Use Case
Update Status

Other Requirements NA

Table 3-49 Use Case Description for Cruiser Update Status

Sequence Diagram

Refer to Figure 3-6 Sequence Diagram for Use Case Update Status.



109

3.3.6.3.7 Use Case: Cruiser Rearm and Refueling

Description Provide the service to rearm and refueling the Cruiser
Priority Would like to have this use case in order to continue

moving on the sea
Status Detailed description and completed scenario
Actor 1. Simulation Controller;

2. Cruiser;
3. Radio.

Pre-Conditions 1. The  base supplier has enough fuel in stock;
2. The Radio is in ON state.

Base
Path

1. Navigation Officer send information to ask captain to
deduct the fuel; Weapon Officer send information to
Captain to deduct the Weapon;

2. Captain check if the fuel is at limited level; Captain
check if the Weapon is used up ;

3. Captain send request to SC to ask base supplier to
refuel; Captain send request to SC to ask base
supplier to create Weapon;

4. Base Supplier transfer the fuel or Weapon to Aircraft
Carrier.

Flow of
Events

Alternate
Path

NA

Post-Condition The Cruiser get rearm and refueling
Used Use

Case
NARelated

Use
Case Extending

Use Case
Rearm and Refueling

Other Requirements NA

Table 3-50 Use Case Description for Cruiser Rearm and Refueling

Sequence Diagram

Refer to Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling.



110

3.3.7 Battleship Requirements

The Battleship subsystem has the following five sub modules:

• Captain
• Navigation Officer
• Communication Officer
• Weapon Officer
• Weapon Launcher

3.3.7.1 Use Case Diagram

Figure 3-32 Use Case Diagram for Battleship



111

3.3.7.2 Requirement Breakdown

Use Case: Battleship Navigation Control

BS-001 Start/Stop Battleship

BS-001-01 Start Battleship
Battleship shall start to move on the sea in random direction
after its initiation.
No comments.

BS-001-02 Stop Battleship
Battleship shall be stopped by the user manually.
It is also stopped when its fuel is used up and base supplier has no more
fuel.

BS-002 Accelerate/ Decelerate/ Rotate Battleship
Battleship shall accelerate, decelerate and rotate according to the
Captain’s command.
No comments.

BS-003 Control Steer Status
Battleship shall turn on or turn off the steer in order to navigate on
the sea.
No comments.

Use Case:  Battleship Detect Enemy

BS-004 Initialize Radar
when the Battleship is created, a Radar object shall be initialized
with location and radius.
No comments.

BS-005 Updating Radar Location
Battleship’s Radar location shall be updated by Simulation
Controller.
No comments.

BS-006 Control Radar Status
The Battleship shall turn on or turn off the Radar at any time after
Radar initialization.
Default status after Radar initialization is turn on.



112

BS-007 Receive Information from Radar
The Battleship shall get the information about the surrounding
objects from its Radar.
Radar needs to get all the information from Simulation Controller.

Use Case: Battleship Communication with Allies

BS-008 Initialize Radio
when the Battleship is created, a Radio object shall be initialized
with location and radius.
No comments

BS-009 Updating Radio Location
Battleship’s Radio location shall be updated by Simulation
Controller.
No comments

BS-010 Control Radio Status
The Battleship shall turn on or turn off the Radio at any time after
Radio initialization.
Default status after Radio initialization is turn on.

BS-011 Receive Information from Radio
The Battleship shall receive the report from its allies by its Radio.
Radio needs to get all the information from Simulation Controller.

BS-012 Send Information to Allies
The Battleship can send information to its allies.
The significant information include newly detected enemies, the target it will
attack, etc.

Use Case:     Battleship Make Decision

BS-013 Collect the Necessary Information from Radar and Radio.
This requirement is accomplished by BS-006, BS-011 and BS-012.
No comments.

BS-014 Analysis Information
Battleship shall has the ability to analyze the received information
to decide all the threats.
No comments.

BS-015 Decide Attack Object
Decide attack objects among threats based on the analyzed
threats.
No comments.



113

BS-016 Decide Location to Conduct Ship

BS-017 Decide Content of Sending Information
The captain shall form the correct command and send them to
navigation officer, Weapon officer and communication officer.
No comments.

      BS-018 Decide Time for Sending Information
The captain shall decide the correct time to send the command to
sub system.
No comments.

Use Case:     Battleship Weapon Control

BS-019 Select Number and Type of Weapon
Weapon officer shall decide the type and quantity of Weapon to be
used on the Battleship.
No comments.

BS-020 Initialize Weapon
Weapon officer will issue an order to Weapon launcher to create a
Weapon.
No comments.

BS-021 Aim Object and Fire Weapon
Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot.It is for Battleship.

BS-022 Update the Number of Weapon
Weapon officer shall calculate and update the Weapon on board.
No comments.

BS-023 Recharge Weapon
When the Weapons are used up, the Battleship shall go back to the
battle base, and the Weapon office can reload the Weapon as
needed type and quantity.
No comments.

Use Case:     Battleship Update Status

BS-024 Update Battleship Location Periodically
Battleship can update its location periodically and randomly if no
threats are detected.
No comments.



114

BS-025 Calculate Battleship Resistance
Battleship shall calculate the resistance or hit points after each hit.
No comments.

BS-026 Battleship Hit by Enemy Weapon
Battleship shall know when it is hit by the enemy’s Weapon.
No comments.

BS-027 Battleship Recover Within Time Limit
Battleship can determine if it can recover from the hit points within
the limited time.
No comments.

BS-029 Report Status to SC Periodically
Battleship shall inform its status (location, alive/dead status) to
Simulation Controller  periodically.
No comments.

BS-030 Battleship Destroyed at Hit Points Limit
Battleship shall determine to be destroyed when exceed the hit
points limit.
No comments.

BS-031 Battleship Crashed with other object
Battleship shall determine to be destroyed when crash with other
object.
No comments.

Use Case:     Battleship Rearm and Refueling

      BS-032 Update the Fuel Level
Battleship shall reduce its fuel level according to the navigation time
since its creation.
No comments.

      BS-033 Refueling the Gas
Battleship shall send request to its base supplying to refueling
when its gas goes to the warning level.

      BS-034 Rearm the Weapon
Battleship shall send the request to its base supplying once its
Weapons are used up.
Actually, the Weapon are created by Battleship when they are launched, only
after the fired Weapon exceed the limits, the base supplying will create Weapon
for Battleship and transfer them to Battleship.



115

3.3.7.3 Use Case Description

3.3.7.3.1 Use Case: Battleship Navigation Control

Description Provide the service to navigate the Battleship
Priority Must have this use case in order to move on the sea
Status Detailed description and completed scenario
Actor NA

Pre-Conditions 1. Exist a Battleship object;
2. A command is received from the navigation officer

Base
Path

Upon reception of the command from a navigation officer,
the battle ship may perform one of following operations:
Start or stop, Rotate, Accelerate, Decelerate

Flow of
Events

Alternate
Path

NA

Post-Condition The Battleship is moved
Used Use

Case
Battleship Make DecisionRelated

Use
Case Extending

Use Case
Navigation Control

Other Requirements NA

Table 3-51 Use Case Description for Battleship Navigation Control

Sequence Diagram

Refer to Figure 3-1 Sequence Diagram for Use Case Navigation Control.



116

3.3.7.3.2 Use Case: Battleship Detect Enemy

Description Provide the service to locate the enemy using Radar
Priority Must have this use case in order to detect the enemy
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Battleship object
Base
Path

1. Initialize a Radar object with location and radius when
Battleship is created;

2. Update Radar location;
3. Turn on /off Radar;
4. Get object information around the Battleship

Flow of
Events

Alternate
Path

NA

Post-Condition Any enemy in the range are detected
Used Use

Case
NARelated

Use
Case Extending

Use Case
Detect Enemy

Other Requirements NA

Table 3-52 Use Case Description for Battleship Navigation Control

Sequence Diagram

Refer to Figure 3-2 Sequence Diagram for Use Case Detect Enemy.



117

3.3.7.3.3 Use Case: Battleship Communication with Allies

Description Provide the communication service between Battleship
and its allies

Priority Communication/Detect must have this use case in order
to pass information to the Battleship’s allies

Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Battleship object
Base
Path

1. Initialize a Radio object with location and radius when
Battleship is created;

2. Update Radio location;
3. Turn on /off Radio;
4. Get object information around the Battleship;
5. Send massage to its allies.

Flow of
Events

Alternate
Path

NA

Post-Condition The Battleship received report from its allies, the Allies
received  report from Battleship

Used Use
Case

NARelated
Use

Case Extending
Use Case

Communication with Allies

Other Requirements NA

Table 3-53 Use Case Description for Battleship Communication with Allies

Sequence Diagram

Refer to Figure 3-3 Sequence Diagram for Use Case Communicate with Allies.



118

3.3.7.3.4 Use Case: Battleship Make Decision

Description Provide the service to analyze the report, decide attack
target, and decide where to conduct the ship

Priority Must have this use case in order to know its next action
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions 1. Exist a Battleship object;
2. The Battleship’s status is updated;
3. All the reports are received

Base
Path

1. Upon reception of reports, the captain analyze the
threats and decide attack target;

2. The captain gives the order to navigation officer for
where to conduct the ship and at what speed;

3. The captain gives order to Weapon officer to prepare
the attack;

4. The captain gives order to communication officer to
send out the message ;

5. The Captain decide to rearm or refueling to send
request to SC.

Flow of
Events

Alternate
Path

NA

Post-Condition 1. The navigation officer executes captain’s command;
2. The Weapon office executes captain’s command;
3. The communication officer execute captain’s

command;
4. The Base Supplier perform the transaction task.

Used Use
Case

1. Battleship Update Status;
2. Battleship Detect Enemy;
3. Battleship Communication with Allies

Related
Use

Case
Extending
Use Case

Make Decision

Other Requirements NA

Table 3-54 Use Case Description for Battleship Make Decision

Sequence Diagram

Refer to Figure 3-4 Sequence Diagram for Use Case Make Decision.



119

3.3.7.3.5 Use Case: Battleship Weapon Control

Description Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

Priority Must have this use case in order to attack the enemy
Status Detailed description and completed scenario
Actor Weapon

Pre-Conditions An attacking command is received
Base
Path

1. Decide the type and quantity of Weapon to be used;
2. Calculate and update the Weapon quantity on board;
3. Issue an order to Weapon launcher;
4. A Weapon object will be created and fired by Weapon

launcher;
5. Weapon launcher will aim and fire Weapon;
6. When Weapons are used up, recharge the Weapon on

board.

Flow of
Events

Alternate
Path

If the Weapon is Sea-Sea Missile, it will return a massage
stating whether the target is destroyed or not

Post-Condition Weapon is fired and exploded.
Used Use

Case
Battleship Make DecisionRelated

Use
Case Extending

Use Case
Weapon Control

Other Requirements NA

Table 3-55 Use Case for Weapon Control

Sequence Diagram

Refer to Figure 3-5 Sequence Diagram for Use Case Weapon Control.



120

3.3.7.3.6 Use Case: Battleship Update Status

Description Provide the service to update Battleship’s location and
other status (alive/dead)

Priority Must have this use case in order to report status to SC
Status Detailed description and completed scenario
Actor Simulation Controller

Pre-Conditions Exist a Battleship object
Base
Path

1. Update the location of the Battleship
2. Determine if the Battleship is hit by Weapon
3. Get the hit points of the Battleship
4. Determine if the Battleship can recover from the hit

points
5. Determine if the Battleship is destroyed
6. Determine if the Battleship crashes with other object

Flow of
Events

Alternate
Path

NA

Post-Condition The status of the Battleship is updated
Used Use

Case
NARelated

Use
Case Extending

Use Case
Update Status

Other Requirements NA

Table 3-56 Use Case Description for Battleship Update Status

Sequence Diagram

Refer to Figure 3-6 Sequence Diagram for Use Case Update Status.



121

3.3.7.3.7 Use Case: Battleship Rearm and Refueling

Description Provide the service to rearm and refueling the Battleship
Priority Would like to have this use case in order to continue

moving on the sea
Status Detailed description and completed scenario
Actor 1. Simulation Controller;

2. Battleship;
3. Radio.

Pre-Conditions 1. The  base supplier has enough fuel in stock;
2. The Radio is in ON state.

Base
Path

1. Navigation Officer send information to ask captain to
deduct the fuel; Weapon Officer send information to
Captain to deduct the Weapon;

2. Captain check if the fuel is at limited level; Captain
check if the Weapon is used up ;

3. Captain send request to SC to ask base supplier to
refuel; Captain send request to SC to ask base
supplier to create Weapon;

4. Base Supplier transfer the fuel or Weapon to Aircraft
Carrier.

Flow of
Events

Alternate
Path

NA

Post-Condition The Battleship get rearm and refueling
Used Use

Case
NARelated

Use
Case Extending

Use Case
Rearm and Refueling

Other Requirements NA

Table 3-57 Use Case Description for Battleship Rearm and Refueling

Sequence Diagram

Refer to Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling.



122

3.3.8 Submarine Requirements

The Submarine subsystem has the following five sub modules:

• Captain
• Navigation Officer
• Communication Officer
• Weapon Officer
• Weapon Launcher

3.3.8.1 Use Case Diagram

Figure 3-33 Use Case Diagram for Submarine



123

3.3.8.2 Requirement Breakdown

Use Case: Submarine Navigation Control

SM-001 Start/Stop Submarine

SM-001-01 Start Submarine
Submarine shall start to move on the sea in random direction
after its initiation.
No comments.

SM-001-02 Stop Submarine
Submarine shall be stoppable by the user manually.
It is also stopped when its fuel is used up and base supplier has no more
fuel.

SM-002 Accelerate/ Decelerate/ Rotate Submarine
Submarine shall accelerate, decelerate and rotate according to the
Captain’s command.
No comments.

SM-003 Control Steer Status
Submarine shall turn on or turn off the steer in order to navigate on
the sea.
No comments.

Use Case:  Submarine Detect Enemy

SM-004 Initialize Radar
when the Submarine is created, a Radar object shall be initialized
with location and radius.
No comments.

SM-005 Updating Radar Location
Submarine’s Radar location shall be updated by Simulation
Controller.
No comments.

SM-006 Control Radar Status
The Submarine shall turn on or turn off the Radar at any time after
Radar initialization.
Default status after Radar initialization is turn on.



124

SM-007 Receive Information from Sonar
The Submarine shall get the information about the surrounding
enemy ships and Submarines from its Sonar.
Radar needs to get all the information from Simulation Controller.

Use Case: Submarine Communication with Allies

SM-008 Initialize Radio
When the Submarine is created, a Radio object shall be initialized
with location and radius.
No comments

SM-009 Updating Radio Location
Submarine’s Radio location shall be updated by Simulation
Controller.
No comments

SM-010 Control Radio Status
The Submarine shall turn on or turn off the Radio at any time after
Radio initialization.
Default status after Radio initialization is turn on.

SM-011 Receive Information from Radio
The Submarine shall receive the report from its allies by its Radio.
Radio needs to get all the information from Simulation Controller.

SM-012 Send Information to Allies
The Submarine can send information to its allies.
The significant information include newly detected enemies, the target it will
attack, etc.

Use Case:     Submarine Make Decision

SM-013 Collect the Necessary Information from Radar and Radio.
Refer to requirements SM-006, SM-011 and SM-012.
No comments.

SM-014 Analysis Information
Submarine shall has the ability to analyze the received information
to decide all the threats.
No comments.

SM-015 Decide Attack Object
Decide attack objects among threats based on the analyzed
threats.
No comments.



125

SM-016 Decide Location to Conduct Ship

SM-017 Decide Content of Sending Information
The captain shall form the correct command and send them to
navigation officer, Weapon officer and communication officer.
No comments.

      SM-018 Decide Time for Sending Information
The captain shall decide the correct time to send the command to
sub system.
No comments.

Use Case:     Submarine Weapon Control

SM-019 Select Number and Type of Weapon
Weapon officer shall decide the type and quantity of Weapon to be
used on the Submarine.
No comments.

SM-020 Initialize Weapon
Weapon officer will issue an order to Weapon launcher to create a
Weapon.
No comments.

SM-021 Aim Object and Fire Weapon
Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot. It is not
forSubmarine.

SM-022 Update the Number of Weapon
Weapon officer shall calculate and update the Weapon on board.
No comments.

SM-023 Recharge Weapon
When the Weapons are used up, the Submarine shall go back to
the battle base, and the Weapon office can reload the Weapon as
needed type and quantity.
No comments.

Use Case:     Submarine Update Status

SM-024 Update Submarine Location Periodically
Submarine can update its location periodically and randomly if no
threats are detected.
No comments.



126

SM-025 Calculate Submarine Resistance
Submarine shall calculate the resistance or hit points after each hit.
No comments.

SM-026 Submarine Hit by Enemy Weapon
Submarine shall know when it is hit by the enemy’s Weapon.
No comments.

SM-027 Submarine Recover Within Time Limit
Submarine can determine if it can recover from the hit points within
the limited time.
No comments.

SM-029 Report Status to SM Periodically
Submarine shall inform its status (location, alive/dead status) to
Simulation Controller  periodically.
No comments.

SM-030 Submarine Destroyed at Hit Points Limit
Submarine shall determine to be destroyed when exceed the hit
points limit.
No comments.

SM-031 Submarine Crashed with other object
Submarine shall determine to be destroyed when crash with other
object.
No comments.

Use Case:     Submarine Rearm and Refueling

      SM-032 Update the Fuel Level
Submarine shall reduce its fuel level according to the navigation
time since its creation.
No comments.

      SM-033 Refueling the Gas
Submarine shall send request to its base supplying to refueling
when its gas goes to the warning level.
No comments.

      SM-034 Rearm the Weapon
Submarine  shall send the request to its base supplying once its
Weapons are used up.
No comments.



127

3.3.8.3 Use Case Description

3.3.8.3.1 Use  Case: Submarine Navigation Control

Description Provide the service to navigate the Submarine
Priority Must have this use case in order to move on the sea
Status Detailed description and completed scenario
Actor NA

Pre-Conditions 1. Exist a Submarine object;
2. A command is received from the navigation officer

Base
Path

Upon reception of the command from a navigation officer,
the battle ship may perform one of following operations:
Start or stop, Rotate, Accelerate, Decelerate

Flow of
Events

Alternate
Path

NA

Post-Condition The Submarine is moved
Used Use

Case
Submarine Make DecisionRelated

Use
Case Extending

Use Case
Navigation Control

Other Requirements NA

Table 3-58 Use Case Description for Submarine Navigation Control

Sequence Diagram

Refer to Figure 3-1 Sequence Diagram for Use Case Navigation Control.



128

3.3.8.3.2  Use Case: Submarine Detect Enemy

Description Provide the service to locate the enemy using Radar
Priority Must have this use case in order to detect the enemy
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Submarine object
Base
Path

1. Initialize a Radar object with location and radius when
Submarine is created;

2. Update Radar location;
3. Turn on /off Radar;
4. Get object information around the Submarine

Flow of
Events

Alternate
Path

NA

Post-Condition Any enemy in the range are detected
Used Use

Case
NARelated

Use
Case Extending

Use Case
Detect Enemy

Other Requirements NA

Table 3-59 Use Case Description for Submarine Detect Enemy

Sequence Diagram

Refer to Figure 3-2 Sequence Diagram for Use Case Detect Enemy.



129

3.3.8.3.3 Use Case:  Submarine Communicate with Allies

Description Provide the communication service between Submarine
and its allies

Priority Communication/Detect must have this use case in order
to pass information to the Submarine’s allies

Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions Exist a Submarine object
Base
Path

1. Initialize a Radio object with location and radius when
Submarine is created;

2. Update Radio location;
3. Turn on /off Radio;
4. Get object information around the Submarine;
5. Send massage to its allies

Flow of
Events

Alternate
Path

NA

Post-Condition The Submarine received report from its allies, the Allies
received  report from Submarine

Used Use
Case

NARelated
Use

Case Extending
Use Case

Communication with Allies

Other Requirements NA

Table 3-60 Use Case Description for Submarine Communicate with Allies

Sequence Diagram

Refer to Figure 3-3 Sequence Diagram for Use Case Communicate with Allies.



130

3.3.8.3.4  Use Case: Submarine Make Decision

Description Provide the service to analyze the report, decide attack
target, and decide where to conduct the ship

Priority Must have this use case in order to know its next action
Status Detailed description and completed scenario
Actor Communication/Detection

Pre-Conditions 1. Exist a Submarine object;
2. The Submarine’s status is updated;
3. All the reports are received

Base
Path

1. Upon reception of reports, the captain analyze the
threats and decide attack target;

2. The captain gives the order to navigation officer for
where to conduct the ship and at what speed;

3. The captain gives order to Weapon officer to prepare
the attack;

4. The captain gives order to communication officer to
send out the message ;

5. The Captain decide to rearm or refueling to send
request to SC.

Flow of
Events

Alternate
Path

NA

Post-Condition 1. The navigation officer executes captain’s command;
2. The Weapon office executes captain’s command;
3. The communication officer execute captain’s

command;
4. The Base Supplier perform the transaction task.

Used Use
Case

1. Submarine Update Status;
2. Submarine Detect Enemy;
3. Submarine Communication with Allies

Related
Use

Case
Extending
Use Case

Make Decision

Other Requirements NA

Table 3-61 Use Case Description for Submarine Make Decision

Sequence Diagram

Refer to Figure 3-4 Sequence Diagram for Use Case Make Decision.



131

3.3.8.3.5 Use Case: Submarine Weapon Control

Description Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

Priority Must have this use case in order to attack the enemy
Status Detailed description and completed scenario
Actor Weapon

Pre-Conditions An attacking command is received
Base
Path

1. Decide the type and quantity of Weapon to be used;
2. Calculate and update the Weapon quantity on board
3. Issue an order to Weapon launcher
4. A Weapon object will be created and fired by Weapon

launcher
5. Weapon launcher will aim and fire Weapon
6. When Weapons are used up, recharge the Weapon on

board

Flow of
Events

Alternate
Path

If the Weapon is Sea-Sea Missile, it will return a massage
stating whether the target is destroyed or not

Post-Condition Weapon is fired and exploded.
Used Use

Case
Submarine Make DecisionRelated

Use
Case Extending

Use Case
Weapon Control

Other Requirements NA

Table 3-62 Use Case description for Submarine Weapon Control

Sequence Diagram

Refer to Figure 3-5 Sequence Diagram for Use Case Weapon Control.



132

3.3.8.3.6  Use Case: Submarine Update Status

Description Provide the service to update Submarine’s location and
other status (alive/dead)

Priority Must have this use case in order to report status to SC
Status Detailed description and completed scenario
Actor Simulation Controller

Pre-Conditions Exist a Submarine object
Base
Path

1. Update the location of the Submarine
2. Determine if the Submarine is hit by Weapon
3. Get the hit points of the Submarine
4. Determine if the Submarine can recover from the hit

points
5. Determine if the Submarine is destroyed
6. Determine if the Submarine crashes with other object

Flow of
Events

Alternate
Path

NA

Post-Condition The status of the Submarine is updated
Used Use

Case
NARelated

Use
Case Extending

Use Case
Update Status

Other Requirements NA

Table 3-63 Use Case Description for Submarine Update Status

Sequence Diagram

Refer to Figure 3-6 Sequence Diagram for Use Case Update Status.



133

3.3.8.3.7 Use Case: Submarine Rearm and Refueling

Description Provide the service to rearm and refueling the Submarine
Priority Would like to have this use case in order to continue

moving on the sea
Status Detailed description and completed scenario
Actor 1. Simulation Controller;

2. Submarine;
3. Radio.

Pre-Conditions 1. The  base supplier has enough fuel in stock;
2. The Radio is in ON state.

Base
Path

1. Navigation Officer send information to ask captain to
deduct the fuel; Weapon Officer send information to
Captain to deduct the Weapon;

2. Captain check if the fuel is at limited level; Captain
check if the Weapon is used up ;

3. Captain send request to SC to ask base supplier to
refuel; Captain send request to SC to ask base
supplier to create Weapon;

4. Base Supplier transfer the fuel or Weapon to
Submarine

Flow of
Events

Alternate
Path

NA

Post-Condition The Submarine get rearm and refueling
Used Use

Case
NARelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-64 Use Case Description for Submarine Rearm and Refueling

Sequence Diagram

Refer to Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling.



134

3.3.9 Weapons Requirements

The Weapons subsystem has the following four sub modules:

• Weapon (Carried Weapon)
• Controller
• Ruder
• Charger

Weapons can be classified as following eight types:

• Sea-Sub Missile (Carrying Torpedo)
• Sea-Air Missile
• Heavy Cannon Shell
• Sea-Sea Missile
• Torpedo
• Sub-Sea Torpedo (Carrying Missile)
• Air-Sea Missile
• Air-Air Missile

More Weapon types may be added when the NBS need to extend its
functionality.

3.3.9.1 Use Case Diagram

Figure 3-34 Use Case Diagram for Weapon



135

3.3.9.2 Requirement Breakdown

Use Case:     Provide Location

WP-001 Report Position to SC
The Weapon shall report its position to SC periodically.
No comments.

Use Case:     Aim Target

WP-002 Target Tracing via Radar or Sonar
The Weapon except the Cannon Shell, shall aim and trace the
target by its Radar or Sonar.
The Radar and Sonar act as simulation for Weapon detection device.

      WP-003 Trajectory Control
The Cannon Shells shall be controlled by ballistic when it shot.
No comments.

      WP-004 Steering Weapon
The Weapon except the Cannon Shells can be steered after shot.
No comments.

Use Case:     Fire and Hit target

WP-005 Fire Itself
The Weapon shall fire itself after receiving a command from
Weapon launcher.
No comments.

      WP-006 Detonate
The Weapon should signal and transfer the power to the target
when the target is hit.
No comments.

      WP-007 Inform the Hit Target
The Weapon shall inform the target that has been hit by it.
No comments.

      WP-008 Inform the Owner
Once the Weapon detonated itself, the Weapon will send a
message to its owner it has been exploded.



136

3.3.9.3 Use Case Description

3.3.9.3.1  Use Case: Provide Location

Description Provide the Weapon location to SC
Priority Must have this use case in order to aim the target.
Status Detailed description and completed scenario
Actor 1. All the Weapon;

2. Simulation Controller.
Pre-Conditions Weapon knows its location

Base
Path

1. When Weapon will be launched, report its location to
SC;

2. When Weapon is fired, provide the updated location to
SC periodically.

Flow of
Events

Alternate
Path

NA

Post-Condition SC get the Weapon ‘s location
Used Use

Case
NARelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-65 Use Case Description for Provide Location

Sequence Diagram

Figure 3-35 Sequence Diagram for Use Case Weapon Provide Location



137

3.3.9.3.2  Use Case: Aim Target

Description Provide a service to trace the target location
Priority Must have this use case in order to aim the target
Status Detailed description and completed scenario
Actor 1. All the Weapon (Heavy Cannon Shell, Sea-Sub Missile

and Sub-Sea Missile will based on ballistic to aim the
target);

2. Communication/Detection;
3. Target Objet.

Pre-Conditions Detected targets are within the Radar or Sonar’ s range
Base
Path

1. The Weapon’s owner detect the target and launch the
Weapon;

2. Weapon use its detection system to trace the location
of the nearest target;

Flow of
Events

Alternate
Path

NA

Post-Condition The location of target has been traced by Weapon
Used Use

Case
Provide LocationRelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-66 Use Case Description for Aim Target

Sequence Diagram

Figure 3-36 Sequence Diagram for Use Case Weapon Aim Target



138

3.3.9.3.3  Use Case: Fire and Hit Target

Description Provide the service for Weapon to be fired and hit the
target.

Priority Must have this use case in order to hit the target
Status Detailed description and completed scenario
Actor 1. All the Weapon;

2. Target Object.
Pre-Conditions Weapon is launched and prepared to fire.

Base
Path

1. Weapon is launched by the Weapon’s owner;
2. Weapon is fired and detonated when it hit the target;
3. Weapon inform the hit target to reduce its resistance

Flow of
Events

Alternate
Path

NA

Post-Condition The Weapon is fired and target has been hit.
Used Use

Case
Aim TargetRelated

Use
Case Extending

Use Case
NA

Other Requirements NA

Table 3-67 Use Case Description for Fire and Hit Target

Sequence Diagram

Figure 3-37 Sequence Diagram for Use Case Weapon Fire And Hit Target



139

3.4 External Interface Requirements

Each subsystem need the external interface to provide the service and use the
services provided by other subsystem. The detailed interface requirements are
listed in this section to accomplish a successful design goal.

3.4.1 User Interface

The only user interface is provided by the Simulation Controller subsystem. All
the other subsystem has no direct user interface.

3.4.2 Hardware Interface

The software is supported by personal computer equipped with a keyboard and a
mouse.

3.4.3 Software Interface

The software interface is outlined as following. The detailed software interface
will be addressed in the software design section.

Ship and Aircraft vs. Simulation Controller

A) Ship and Aircraft provide to Simulation Controller

• Constructor to create the ship or Aircraft object
• Ship or Aircraft current location and alive/dead ststus

B) Simulation Controller provide to Ship and Aircraft for initialize ship and Aircraft

• Initial location, direction
• Initial speed
• Initial quantity of fuel
• Blue/Red flag
• Object ID
• On board quantity of Weapons( Sea-Sea Missile and heave cannons)
• For Aircraft Carrier, on board quantity of Aircraft.
• Base supplier responds to fuel and Weapon request during the simulaiton

is running.



140

Ship and Aircraft vs. Communication/Detection

A) Ship and Aircraft provide to Communication/Detection

• Create and initialize Radar/Sonar object
• Update Radar/Sonar location
• Create and initialize Radio object
• Update Radio location
• Prepare information to be sent

B) Communication/Detection provide to Ship and Aircraft

• Radar provide the location, speed, direction of all objects detected around
the ship

• Distinguish the enemy or friend
• Emit and receive wave function
• Radio send report to friends
• Receive report from friends

Ship and Aircraft vs. Weapon

A) Ship and Aircraft provide to Weapon

• Initialize the Weapon object
• Target location
• Initialize location, speed and direction of heavy cannon.

B) Weapon provide to Ship and Aircraft

• Fire Weapon function
• Inform the ship and Aircraft when they are hit
• Trace the target(Sea-Sea Missile)

3.4.4 Communication Interface

NA

3.5 Performance Requirements

This software is designed for single user and single terminal. Simulation
controller will set up a time limits and a terminated condition. User starts the
simulation program and input all the parameters required, simulation will start



141

and run by itself. When the simulation reach its time limit or the terminate
condition is satisfied, this simulation will be terminated.

3.6 Design Constraints

The design is based on personal computer with Microsoft Windows
95/98/NT2000. The language to implement this design is Visual C++. Since each
subsystem of NBSS need to corporate each other to accomplish the whole
system function, it is extremely important that the connection between the
interfaces of subsystems is well designed.

3.7 Quality Attributes

All the functional requirement will be tested to insure the quality of the software.
Software documentation will be supplied to insure the good learn ability and
maintainability

3.8 Other Requirements

NA



142

4. Software Design

4.1 Decomposition Description

This section describes partition of the system into design entities, the way the
system has been structured, the purpose and the function of each entity. The
main criteria and methods for entity decomposition is information hiding, which
means the module’s interface of definition was chosen to reveal as little as
possible about its inner workings. [1]&[8].

4.1.1 Module Decomposition

The Naval Battle Simulation System consists of nine subsystems: Simulation
Controller, Communication/Detection, Weapons, Aircraft Carrier, Aircraft,
Destroyer, Submarine, Cruiser and Battleship. In the following figure, MFC and
OpenGL are external library of system.

Figure 4-1 Interaction diagram between subsystems of the Naval Battle Simulation System



143

The following figure describes the architecture of the system:

Figure 4-2 Architecture of the Naval Battle Simulation System



144

The following diagram describes the subsystem interface diagram at the class
level:

Figure 4-3 Class Level Interface diagram of the Naval Battle Simulation System



145

4.1.1.1 Simulation Controller

The Simulation Controller is the heart of the simulation. It provides a user
interface to view the objects navigating on the map. Consequently, threats are
generated to provoke offensive and defensive maneuvers at the beginning and
periodically after running as well.

To perform the simulation, Simulation Controller allows every object to have a
time slice to update its data information. By tracking the positions and status of
all Vehicles and Weapons objects periodically, it generates an animated view of
the naval battlefield. The Simulation Controller knows exactly where each agent
is at any time and draws the agents on the screen.

For any agent, the only way to know the position of another agent is done by
interrogating the Simulation Controller through Communication/Detection.
Communication (Radio) and Detection (Radar and Sonar) can interact with the
Simulation Controller to detect the enemies and exchange information among
allies. The Simulation Controller depends on all other subsystems except
Communication/Detection subsystem.

4.1.1.2 Communication/Detection Description

Enemies can only be detected using a Radar for Aircraft and Ships or Sonar for
Submarines and Destroyers. Radars and Sonars are on board ships and
Aircrafts. If an enemy is not detected using a Radar or Sonar (i.e. it is outside its
range), it is virtually non-existent in the simulation, as far as other Ships and
Aircrafts are concerned.

Allies also have to communicate with one another to share some information
about the location of enemies. Aircraft Carriers also need to communicate their
orders to Aircrafts. In the simulation, Communication/Detection acquire agent
position information by interrogating the Simulation Controller. It depends on the
Simulation Controller and all other subsystems depend on it, except the
Simulation Controller.

4.1.1.3 Aircraft Carrier Description

The Aircraft Carrier gives long-range capacities to the fleet by launching Aircrafts
to locate and destroy enemy Ships and Aircrafts. The Aircraft Carrier itself is
“blind”. It can only “see” enemies by the information it gets from its patrolling
Aircrafts and its allied Ships using its Radio (Communication).



146

Much of the job done by the Aircraft Carrier itself is communication with its
Aircrafts to gather threat information and react to it as fast as possible to
eliminate threats while they are as far as possible from the fleet. The Aircraft
Carrier can transmit its updated position to the Simulation Controller. It depends
on the Communication/Detection and its Aircrafts.

4.1.1.4 Aircraft Description

The Aircraft is used by the Aircraft Carrier to provide a long-range detection by
patrolling using its Radar (Detection). It is also able to intercept far enemy
Aircrafts and Ships by firing Weapons (Air-Sea Missile and Air-Air Missile). It
communicates using its Radio (Communication) to the Aircraft Carrier the
position of any enemy Aircraft and Ship it encounters during a patrol. An Aircraft
can transmit its updated position to the Simulation Controller. It depends on the
Communication/Detection and Weapon subsystems.

4.1.1.5 Destroyer Description

The Destroyer locates underwater threats with its Sonar (Detection) and attempts
to intercept them with its torpedoes and sea-sub Missiles (Weapons). It
cooperates with Submarines teammates by sending them the coordinates of all
detected enemy Submarines using their Radio (Communication). The Destroyer
can transmit its updated position to the Simulation Controller. It depends on the
Communication/Detection and Weapon subsystems.

4.1.1.6 Cruiser Description

The Cruiser locates airborne threats with its Radar (Detection) and gives the
information about far threats to its allies using its Radio (Communication). It also
attempts to intercept close airborne threats with its sea-air Missiles (Weapons). It
also receives information using its Radio (Communication) about far enemy
Aircrafts detected by allies. The Cruiser can transmit its updated position to the
Simulation Controller. It depends on the Communication/Detection and Weapon
subsystems.

4.1.1.7 Battleship Description

With its Radar (Detection), the Battleship scans the surrounding water surface for
enemy ships. It also receives information from its allies about far seaborne
threats by Radio (Communication). The Battleship attempts to eliminate the
nearest threats using its Weapons (Sea-Sea Missiles and Heavy Cannons).
Battleship can transmit its updated position to Simulation Controller. It depends
on the Communication/Detection and Weapon subsystems.



147

4.1.1.8 Submarine Description

The Submarine cruises underwater and attempts detect enemies in the water
using its Sonar (Detection) and to destroy enemy ships and Submarines using its
torpedoes and Sub-Sea Missiles (Weapon). It can use its Radio
(Communication) to communicate to its allies all the enemies it detected with its
Sonar. The Submarine has a unique advantage: it is invisible to all Ships and
Aircrafts, except to Destroyers and to other Submarines, which can detect them
underwater with their Sonar. The Submarine can transmit its updated position to
Simulation Controller. It depends on the Communication/Detection and Weapon
subsystems.

4.1.1.9 Weapon Description

The Weapons are used by Ships and Aircrafts to eliminate threats. They have
limited functionalities, but there are different kinds of Weapons, such as the
various Missiles, Torpedoes and Cannon Shells. Most Weapons are auto-aiming,
relying on their own Radar or Sonar (Detection) to aim at their assigned target.
Some others (e.g. Cannon Shells) follow a ballistic trajectory and are unguided
after they are shot. The Weapon can transmit the object's position to the
Simulation Controller from time to time. It depends on the
Communication/Detection subsystem only.

4.1.2 Concurrent Process Decomposition

NA.

4.1.3 Data Decomposition

4.1.3.1 Data entity description

• Each object has a position of the Vector type. A position comprises three float
numbers, representing the object’s tridimensional coordinates.

• Each object also has a status, which represent it is alive or dead.
• Each object has a type represented as follows: 1-Aircraft Carrier; 2–Aircraft;

3–Destroyer; 4–Cruiser; 5–Battleship; 6–Submarine; 7-Missile/Torpedo;
8–Heavy Shell Cannon.

• Each object has a flag of the Character type to indicate its side.



148

4.2 Dependency Description

This section describes the dependency relationships among all the subsystems
i.e. what subsystem uses or requires from other subsystems. The main purpose
of designing emphasizes low module coupling and high module cohesion in
terms of subsystem dependency. [10]

4.2.1 Internal Module Dependency

4.2.1.1 Simulation Controller dependency on BaseShip Subsystem

SC depends on BaseShip to create/destroy itself, update its position and status,
get type, and get flag etc. SC needs all these functions to control the BaseShip
activity during simulation process.

4.2.1.2 Simulation Controller dependency on BaseWeapon subsystem

SC depends on BaseWeapon to get position, update its position and status, get
type, get flag, and execute fire behavior etc. SC needs all these BaseWeapon
functions to simulate the BaseWeapon activity when Weapon are fired and hit the
target.

4.2.1.3 Communication/Detection dependency on Simulation Controller

Communication/Detection depends on SC to get the object list within range of
Radar/Sonar. Radio also depends on SC to communicate with its allies ship.

4.2.1.4 Communication/Detection dependency on BaseShip

Communication/Detection depends on BaseShip to get its ID, type, position and
status when Radar/Sonar detects the ship or aircraft. Same dependency is
between Radio and BaseShip when Radio needs to send/receive the message.

4.2.1.5 BaseShip Subsystem dependency on Communication/Detection

BaseShip depends on Communication/Detection to create/destroy itself
(radar/soanr, radio), get detected objects information, go through the objects
information, send/receive information, get sender/receiver ID and type, and get
sender/receiver position etc.  By the above dependency, BaseShip can detect
enemy and pass the information to allies.



149

4.2.1.6  BaseShip (except Aircraft Carrier) dependency on BaseWeapon

BaseShip depends on BaseWeapon to create/destroy itself, get attributes, get
speed, get position, get type as well. BaseWeapon also provides its status,
velocity to BaseShip. Especially, BaseWeapon can fire itself and hit the target by
listen to the BaseShip command.

4.2.1.7 BaseWeapon dependency on BaseShip

BaseWeapon depends on BaseShip to deduce its resistance when it is hit by
Weapon.

4.2.1.8 BaseWeapon dependency on Communication/Detection

BaseWeapon including all the Weapons except Heavy Cannon Shell, Sub-Sea
Torpedo and Sea-Sub Missile depend on Communiction/Detection (Radar and
Sonar, not Radio) to simulate the Weapon detection device. BaseWeapon need
to get the detected object information and go through the detected information to
aim the target.

4.2.2 Internal Process Dependency

NA

4.2.3 Data Dependency

NA



150

4.3 Interface Description

This section describes the details of external and internal interfaces not provided
in the software requirement specification. It provides the information for the
developer to know how to correctly use the functions provided by each entity. It
contains everything another designer needs to know on how to interact with a
specific entity. It also specifies the type of relations in terms of shared
information, prescribed order of execution, or parameters interfaces. [10]

4.3.1 Module Interface

The whole system working well needs all subsystems to cooperate with each
other. Besides using functions of other subsystems, each subsystem also
provides some service for some other subsystems. This section described the
interface of each subsystem in interface interaction diagram and detailed function
description as well.

4.3.1.1 Simulation Controller

Simulation Controller provides the services to Communication/Detection
subsystem and Weapon subsystem as described following.

4.3.1.1.1 Simulation Controller for Communication/Detection

• getVehicleList() takes no parameters, and return a pointer to the array of
base ship class.  When the ships or Aircraft need to get the information about
the other objects, the Radar/Sonar needs to call this function of SC to get the
object information within its range. The Radio also needs this function to know
the allies position to communicate with each other.

Figure 4-4 Simulation Controller_for_Communication/Detection



151

4.3.1.2 Communication/Detection

Communication/Detection subsystem provides the service to all the ships
(Aircraft) and Weapon subsystem. The Communication/Detection is the
simulation system of detection for Weapon.

4.3.1.2.1 Communication/Detection for Ships and Aircraft

• emitReceive() takes vector type for its position as parameter, returns no
value to ensure that all the object information is updated. This function is
called before getting position info to ensure that all position info are up to date
when the Ship or Aircraft need to know the position of other Ship or Aircraft.

• goFristDetected() takes no parameters, returns the first detected object. This
function is called when the ship want to know the first detected object info.

• goNextDetected() takes no parameters, returns the next detected object.
This function is called when the ship want to know the next detected object
info.

• getDetectedInfo()takes no parameters, returns the Detected type of object
information. Then call a derived object of Ship Base Object functions getId(),
getFlag(), getPosition(), getSpeed() and getPowerSwitch() t o  get the
information of the detected object. This function is called when the ship want
to know the detailed detected object info.

4.3.1.2.2 Communication/Detection for Weapon

• emitReceive() takes vector type for its position as parameter, returns no
value to ensure that all the object information is updated. This function is
called before getting position info to ensure that all position info are up to date
when the Weapon need to know the position of target Ship or Aircraft.

• goFristDetected() takes no parameters, returns the first detected object. This
function is called when the Weapon wants to know the first detected object
info.

• goNextDetected() takes no parameters, returns the next detected object.
This function is called when the Weapon wants to know the next detected
object info.

• getDetectedInfo()takes no parameters, returns the Detected type of object
information. Then call a derived object of Ship Base Object functions getId(),
getFlag(), getPosition(), getSpeed() and getPowerSwitch() t o  get the
information of the detected object. This function is called when the Weapon
wants to know the detailed detected object info.



152

Figure4-5 Radar/Sonar_for_Weapon



153

4.3.1.3 BaseShip Class

Base ship class provides the services to the Simulation Controller,
Communication/Detection and Weapon.  If the derived ship class has additional
services, they will be described in each derived class section.

4.3.1.3.1 BaseShip Class for Simulation Controller

• SBaseConctructor() takes different parameters to create the different kinds
of ships and Aircraft for both sides respectively when simulation is started.

• getPosition() takes no parameter. Returns a vector type position of a derived
object of Ship.

• updatePosition() takes no parameter, and returns no value. It updates the
Ship’s  position from the last time slice to the present time slice.

• isActive() takes no parameter, and return value is Boolean type. It indicates if
a Ship object is still alive. TRUE means alive and FALSE means sunk.

• execute(int) takes an integer type time slice as a parameter, and no return
value. It is called by the Simulation Controller to allow a derived object of Ship
to undertake its all computation at the latest time slice.

• getType() takes no parameter, and return value is an integer. The different
return value indicates the different type of a Ship.

• getFlag() takes no parameter, and returns a char. The return value ‘R’
indicates a Ship belongs to “RED” side and ‘B’ to “BLUE” side.

• setID() takes integer as a parameter, and no return value. This function sets a
unique ID to a Ship as soon as it is created.

• getID() takes no parameters, and returns an integer. The return value
indicates the unique ID of a derived object of a Ship.

• setFuelAmount() takes one float parameter as the fuel amount at the initial
setting, and another integer to indicate ID of a Ship, returns no value.

• setFuelLimit() takes one float parameters as the fuel limit at initial setting,
and another integer to indicate ID of a Ship, returns no value.

• requestFuel()takes one float parameters as the requested fuel amount, and
another integer to indicate ID of a Ship, returns Boolean value to indicate if
the refilling fuel is success or fail.

• requestWeapon() takes no parameters and returns Boolean value to indicate
if the Weapon request is success or fail.

• setWeaponType() takes one integer parameter as the Weapon type at the
initialize setting, and another integer to indicate ID of a Ship, returns no value.

•  setWeaponAmount() takes one float parameters as the weapon amount at
the initialize setting, and another integer to indicate ID of a Ship, returns no
value.

• SetWeaponLimit() takes one parameter as the Weapon limit at the initialize
setting, and another integer ti indicate ID of a derived object of Ship, rrturns
no value.



154

Figure 4-6 BaseShip_for_SC

4.3.1.3.2 Base Ship Class for Communication/Detection

• getPosition() takes no parameter. Returns a vector type position of a derived
object of Ship.

• updatePosition() takes no parameter, and returns no value. It updates the
Ship’s  position from the last time slice to the present time slice.

• isActive() takes no parameter, and return value is Boolean type. It indicates if
a Ship object is still alive. TRUE means alive and FALSE means sunk.

• getType() takes no parameter, and return value is an integer. The different
return value indicates the different type of a Ship.

• getFlag() takes no parameter, and returns a char. The return value ‘R’
indicates a Ship belongs to “RED” side and ‘B’ to “BLUE” side.

• getID() takes no parameters, and returns an integer. The return value
indicates the unique ID of a derived object of a Ship.

4.3.1.3.3 Base Ship Class for Weapon

• hitObject() takes one integer type of parameter for firepower and returns
void. The function is called when Weapon is hit with ship or Aircraft. The ship
will update its resistance according to firepower.



155

4.3.1.4 BaseWeapon

Weapon subsystem provides the service to Simulation controller and all ships
and Aircraft except the Aircraft Carrier.

4.3.1.4.1 BaseWeapon for Simulation Controller

• execute() takes vector as position for parameters, and returns void to
execute all necessary real-time function when it is fired on the map of SC.

• updatePosition() takes one integer type for Weapon ID as parameter and
returns void. When the Weapon is launched, the SC need this function to
know the Weapon updated position for aiming and firing the object.

Figure 4-7 BaseWeapon_for_Simulation Controller

4.3.1.4.2 BaseWeapon for Ship and Aircraft

• WBaseConstructor() takes different parameters to  create the different types
of Weapon objects respectively when the Weapon are launched by the ship s
and Aircraft.

• getAttribute() takes one integer value as Weapon ID , returns vector value to
indicate the Weapon attribute;

• getSpeed() takes one integer value as Weapon ID, returns float value to
indicate the Weapon speed;

• getType() takes one integer value as Weapon ID, returns integer value to
indicate the Weapon type.



156

• getFalg() takes one integer type as Weapon ID, returns char type as flag of
Weapon. The ships and Aircraft need to use this function to know the
Weapon belongs to which side.

• getID() takes no parameters and return the ID of a Weapon. The ships need
this function to know the Weapon ID.

• getPosition() takes one integer type for Weapon ID as parameter and return
the Position type of position of Weapon. The ships need this function to know
the Weapon current position.

• getType() takes one integer type for Weapon ID as parameter and return
integer type for Weapon type. The ships need this function to know the
Weapon type.

• isActive() takes one integer value as Weapon ID , returns Boolean value to
indicate the Weapon is active or not. The ships need this function to know the
Weapon state.

• fire() takes two Position type for start position of launcher and destination
position of target as parameters, and return void. The ships need this function
to fire the Weapon.

• getVelocity() takes one integer type for Weapon ID and return Velocity type
•  for velocity of Weapon.
• getStatus() takes one integer type for Weapon ID and return integer type for

status of Weapon.(Moving or static)

Figure 4-8 BaseWeapon_for_Ship and Aircraft

4.3.2 Process Interface

NA.



157

4.4 System Detailed Design

This section describes the internal design detail of each subsystem. It includes
the attribute descriptions for identification, processing and data. Each subsystem
is described in the aspects of module detailed design, class definition and
description of class data members and member functions.

In Class Definition sub section, the traceability of the class design to SRS
requirement is listed for each class.  The constants and private data member of
class are described in the Constant table and Private(Protected or public)data
member table.

In the description of function, when one function need to use another function of
other class, we use sign Æ . The left side of sign Æ is the class name and the
right side is the function type. This applies to all class descriptions in section 5.4.

4.4.1 Simulation Controller Detailed Design

This section describes all the classes of SC module of the NBSS and the
functions they contain. In module detailed design section, the modules of this
subsystem are diagrammed in UML and designed in such a way that this module
can be implemented easily in MFC and OpenGL. We employed MFC’s
View/Document architecture to describe the core structure of the SC module as
shown in the following figure.



158

4.4.1.1 Module Detailed Design

Figure 4-9 Class Diagram for Simulation Controller Module



159

4.4.1.2 Class Definition

4.4.1.2.1 CMainFrame Class

Traceability to SRS
SC-006, SC-012, SC-014, SC-017, SC-018, SC-019

Constants
NA

Private data members

Name Type Description
sc SC* Handle to Document Class

controller Controller* Handle to View Class

Public functions

Name: CmainFrame
Input: none
Output: none
Description: default constructor, inherit CframeWnd class of MFC
Pseudo-code:

Begin:

End

Name: getActiveDocument
Input: none
Output: CDOcument*
Description:
Pseudo-code:

Begin:

Return a handle of the active Document

End

Name: getActiveView
Input: none
Output: Cview*
Description:
Pseudo-code:

Begin:

Return a handle of the active View.

End

Name: ~CMainFrame
Input: none
Output: none



160

Description: virtual destructor
Pseudo-code:

Begin:

End

4.4.1.2.2 SetUpDlg Class

Traceability to SRS
SC-001, SC-002, SC-003, SC-004, SC-005, SC-007, SC-008, SC-008-01,
SC-008-02

Constants
NA

Private data members

Name Type Description
X Float Condinate of x_axiel of position

Y Float Condinate of y_axiel of position

Type char Ship type

Flag char Side flag

DrawInfo Struct Structure of draw information about

object

m_typebutton Integer Ship type button flag

vInfo[15][15]; VehicleInfo Ship info 2-D array

Public functions

Name: SetUpDlg
Input: pParent CWnd*
Output:none
Description: constructor, inherit from CDialog class of MFC
Pseudo-code:

Begin:

m_typeButton=-1

  End

Name: Draw
Input: wBmp WORD,x1 int,y1 int
Output: none
Description: constructor, inherit from CDialog class of MFC
Pseudo-code: draw the ship object on the map

Begin:

Select image symbol according to type

Copy the bitmap to screen

  End



161

Name: OnInitDialog
Input: none
Output:none
Description: initialize the draw indo array and ship info array
Pseudo-code:

Begin:

 Loop to initialize the draw info array

 X=-1; y=-1;bmp=-1;

 Loop to initialize the ship info array

 vInfo[i][j] = NULL;

End

Name: OnLButtonDown
Input:nFlags UINT, point CPOint
Output:none
Description:
Pseudo-code: draw the ship object on the map

Begin:

Select image symbol according to type

Copy the bitmap to screen
      End

Name: OnUndo
Input: none
Output: none
Description: undo the drawing object on map
Pseudo-code:

Begin:

take the top element of undoStatck;

delete vInfo[r][c];

set vInfo[r][c] = NULL;

set drawInfo array to default value

  End

Name: OnClearall
Input: none
Output: none
Description: clear all the ship image on the map
Pseudo-code:

Begin:

 For all the ship on the map

delete vInfo[r][c];

set vInfo[r][c] = NULL;

set drawInfo array to default value

      End



162

4.4.1.2.3 SC class

Traceability to SRS
SC-011, SC-013, SC-013-01,SC-013-02, SC-013-03, SC-013

Constants

Name Type Value Description
PARA double 1.3

RADAR_RANGE double 150.0 Radar range

SONAR_RANGE double 100.0 Sonar range

RADIO_RANGE double 1000.0 Radio range

WEAPON_RANGE double 140.0 Weapon range for all Weapon

Time double 0.07 Time slice for each ship or Aircraft

Private data members

Name Type Description
vpVehicles static VPtr vector of pointers to

Vehivles

Fac VehicleFactory

vehicleInfo[15][15]

;

VehicleInfo* 2-D Array of ship

information

Mdir CMap<int,int, float,

float>

Simulaiton Map

Anim bool Indicate animation is

started or not

Time static double Time slice for each ship or

Aircraft

lastID static Integer The lastID of new created

ship object

Public functions

Name: SC
Input: none
Output: none
Description: constructor, inherit from CDocument class of MFC
Pseudo-code:

Begin:

Set anim to false;

Loop to set vehicleInfo[i][j]=NULL;

  End

Name: calVelocity
Input: b1 Vector, v0 Vector, speed double
Output: vector



163

Description: calculate the  velocity
Pseudo-code:

Begin:

Generate the random number,

Use V1 and v0 and speed to get the vector of next position randomly

 End

Name: iterator findNearest
Input: *vptr vector<ShipClass*>,*vptr Vector,t1 int,t2 int,t3 int,t4 int,t5 int
Output: vector<baseClass*>
Description: find the pointer of an object which is nearest to the current
position

Pseudo-code:
Begin:

LOOP to get the nearest position

If((the target position minus current position < minimum length) and the

target is type 1 to 6 except itself)

Update the minimum length;

Return pointer of the nearest object

  End

Name: getVehicleList
Input: none
Output: VPtr*
Description:
Pseudo-code:

Begin:

return & vpVehicles

  End

Name: OnStartSetup
Input: none
Output: none
Description: start the animation
Pseudo-code:

Begin:

Loop to set the vehicleInfo[row][col]

VehicleFactory->createVehicle();

Set anim to true

  End

Name: freeVehicleList
Input: none
Output: none
Pseudo-code:

Begin:

Set the pointer to the first of pVehicles;

Loop until the end of the vector

{erase the element of vector}

  End



164

Name: getTimeSlice
Input: none
Output: double
Description:
Pseudo-code:

Begin:

return time

      End

Name: incrLastID
Input: none
Output: none
Description:
Pseudo-code:

Begin:

lastID++;

      End

Name: ~SC
Input: none
Output: none
Description: distructor
Pseudo-code:

Begin:

Call freeupVehicleList();

  End

4.4.1.2.4 Controller Class

Traceability to SRS
SC-009, SC-010, SC-013, SC-014

Constants

Name Type Value Description

PI GLfloat 3.1415926f

Private data members

Name Type Description
counterActive integer Counter of system

start1 Clock_t Start system time

Protected data members

Name Type Description
percent integer Test variable



165

Public data members

Name Type Description
Fhor float Time variable

  fVer float Velocity variable

zoom float Image zoom variable

TextureImage Struct Image struture

textures[18] TextureImage TestureImage array

offset GLfloat Offset of image

Public functions

Name: Controller
Input: none
Output: none
Description: constructor, inherit from CView class of MFC
Pseudo-code:

Begin:

Initialize the member data;

  End

Name: OnDrawc
Input: pDC CDC*
Output: none
Description:
Pseudo-code:

Begin:

Test one loop time;

Clear out the color & depth buffers;

Draw picture by using OpenGL function

Get the object size of ships by calling VPtr *ptr = SC::getVehicleList();

clearing dead Weapons;

Tell OpenGL to flush its pipeline;

Swap the buffers;

If the simulation is over, Swap the buffer;

  End

Name: InitializeOpenGL
Input: none
Output: bool
Description:
Pseudo-code:

Begin:

Get a DC for the Client Area; if fail, return false;

Create Rendering Context by calling ::wglCreateContext (m_pDC-

>GetSafeHdc)()); if fail, return false;

Make the Rendering Context Current; if fail, return false;

Otherwise, return true;

  End



166

Name: calDir
Input: Vo Vector, V1 Vector
Output: GLfloat
Pseudo-code:

Begin:

Calculate the direction according to the vo and v1

  End

Name: OnStartSetup
Input: none
Output: none
Description: start the animation
Pseudo-code:

Begin:

Loop to set the vehicleInfo[row][col]

VehicleFactory->createVehicle();

Set anim to true

  End

Name: OnCreate
Input: lpCreateStruct  LPCREATESTRUCT
Output: integer
Description: start the animation
Pseudo-code:

Begin:

get rid of the default title;

Call InitializeOpenGL();

Return –1 if can not load images;

Call OpenGl function to set the background and Enable blending

Return 0;
      End

Name: OnSize
Input: nType UINT, cx int, cy int
Output: none
Description:
Pseudo-code:

Begin:

Handle paints of graphical ships when window size is changing

  End

Name: OnTimer
Input: nIDEvent UINT
Output: none
Pseudo-code:

Begin:

For each element of vehicleArray

Do execute function in a time slice

Do Update position;

  End



167

Name: LoadTGA
Input: texture TextureImage *, filename char *
Output: bool
Description: Loads A TGA File Into Memory
Pseudo-code:

Begin:

Open The TGA File by calling FILE *file = fopen(filename, "rb");

Read file Bytes;

Loop the image data to swap the data;

If (texture Building of OpenGL function) success Return True;

  End

Name: drawVehicles
Input: TextureImage *tex, float posx, float posy,float w,    float h,
       float angle

Output: none
Pseudo-code:

Begin:

Call OpenGL function to draw the ship or Aircraft objects;

Flush the buffer for openGL;

  End

4.4.1.2.5 VehicleInfo Class

Traceability to SRS
SC-001, SC-002, SC-013, SC-015, SC-015-01

Constants
NA

Public data members

Name Type Description
position vector vector of Vehicle position

type integer Type of Vehicle

flag char Flag of Vehicle

Public functions

Name: VehicleInfo
Input: Vector pos, int aType, char aFlag
Output: none
Description: constructor
Pseudo-code:

Begin:

Initialize the member data

   End



168

4.4.1.2.6 VehicleFactory Class

Traceability to SRS
SC-001, SC-002, SC-013, SC-015, SC-015-01

Constants
NA

Public data members

Name Type Description
pDoc Cdocument* Handle for document object

Public functions

Name: VehicleFactory
Input: CDocument* pDoc
Output: none
Description: constructor
Pseudo-code:

Begin:

this->pDoc = pDoc;

  End

Name: createVehicle
Input: none
Output: bool
Description: create the ship or Aircraft according to the user setting
Pseudo-code:

Begin:

Create SC object;

Switch(SC->VehicleInfo[I][j]->Type)

Case AircraftCarrier:

Case Aircraft:

Create new object;

Initialize flag,position and ID for this object;

Increase the object number counter;

Case://for all the other ship object

:

:

:

If (counter>0)

Return true;

Else return flase;

  End

Name: virtual ~VehicleFactory
Input: none



169

Output: none
Description: virtual destructor
Pseudo-code:

Begin:

  End

4.4.1.2.7 BaseSupplier Class

Traceability to SRS
SC-015, SC-015-01, SC-015-02, SC-015-03, SC-015-04, SC-015-05,

Constants
NA

Public data members

Name Type Description

bship BaseShipStructure New created ship object

Fuelamount double Total fuel amount of base supplier

Weapon struct Total Weapon amount and Weapon type structure

Public functions

Name: BaseSupplier
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:

Fuelamount=0;

Weapon.type=-1;

Weapon.amount=0;

Ship.type=-1;

Ship.amount=0;

End

Name: BaseSupplier
Input: double fue, Weapon wep, BaseShipStructure ship
Output: none
Description: constructor
Pseudo-code:

Begin:

Furamount=fue;

 Weapon.type=wep.amount;

Weapon.amount=wep.type;

Bship.type=ship.type;

Bship.amount=ship.amount

End



170

Name: requestFuel
Input: double fuel
Output: bool
Description:
Pseudo-code:

Begin:

Check the fuel is enough or not;

Deduct the fuel amount;

Retrun true;

  Else return false;

End

Name: requestWeapon
Input: Weapon wep
Output: bool
Description:
Pseudo-code:

Begin:

Check the wepaon amount and type;

Create Weapon;

Deduct the Weapon amount o fth etype;

Retrun true;

  Else return false;

End

Name: createShip
Input: none
Output: bool
Description:
Pseudo-code:

Begin:

Check the ship object amount;

If amount<=limits

Create the ship fo setting type and amount.

Deduct the ship amount of the type;

Retrun true;

 Else

 return false;

End

Name: ~BaseSupplier
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End



171

4.4.2 Communication/Detection Detailed Design

This section describes all the classes of Communication/Detection subsystem of
the NBSS and the functions they contain. In module detailed design section, the
modules of this subsystem are diagrammed in UML and designed in such a way
that this module can be implemented easily using MFC. The architecture of this
subsystem is shown in the following figure.

4.4.2.1 Module Detailed Design

The class operation and attribute are not list in the class diagram for all the
classes in Communication/Detection module. Refer to the section of Description
of Class Members and Members Functions for each class.

Figure 4-10 Class Diagram for Communication/Detection Module



172

4.4.2.2 Class Definition

4.4.2.2.1 CommunicaitonBase Class

Traceability to SRS
CD-001, CD-002, CD-003, CD-004, CD-004-01, CD-004-02, CD-005, CD-006,
CD-007, CD-008, CD-008-01, CD-008-02

Constants
NA.

Private data members

Name Type Description
type integer 1 is Radar,2 is Sonar
ID integer Radar/Sonar object ID
ddb CDetectedDatabase All the detected information class
state integer Radar/Sonar on/off state

(“on” for object creation)
range double Radar/Sonar radius of detection

Public functions

Name: CommunicationBase
Input: integer ty
Output: none
Description: default constructor
Pseudo-code:

Begin:

Initialize the member data;

  ID=0;

  Range=0;

  type=ty;

  End

Name:  CommunicationBase
Input: nId integer, nRange integer, ty integer
Output: none
Description: constructor
Pseudo-code:

Begin:
Id= nid;               //initialize id
Range=nRange;          //initialize Range
Type=ty;

  End



173

Name: emitReceive
Input: Vector pos
Output: integer
Description:
Pseudo-code:

Begin:
//refresh the detection list  ddb.deleteAll();
difference=0.0 ;       // distance between two positions.

       i=o;                   // indicator for static gloable array from SC
for (int i=0; i < SCarraylength; i++)
{

length =0;                //length of detected object list.
      point= new detected;      // a pointer point to a detected object.
     detected   dobject;       // instance of detected object.
      Dpoint = SCarray[i] ;     //this pointer point to a object.

 if  (SCarray[i]-> active())     //pointer access in BaseShip class.
         {

      p1 = dpoint->getPosition();
     p2 = pos;
     p3  = p1-p2 ;             // difference between two vectors.

             p3.length();
    if (difference < range) and (difference >0.0))
    {
 //set data members for detected object dobject;

dobject.setDetData(Scarray[I]);
             //insert detected object b to container DetectedDatabase ddb

ddb.addOneDetIntheList(dobject);
             increment length by 1;

     }
}
return length;

  End

Name: getDetected
Input: none
Output: none
Description:
Pseudo-code:

Begin:

get detected object by calling getDetectedFromList() in DetectedDatabase

  End

Name: getFirstDetected
Input: none
Output: none
Description:
Pseudo-code:

Begin:
set pointer points to the first object by calling setFirstDetected() in

           DetectedDatabase;
  End



174

Name: getNextDetected
Input: none
Output: none
Description:
Pseudo-code:

Begin:
set pointer points to the next object by calling setNextDetected() in

       DetectedDatabase;
      End

Name: turnOff
Input: ty integer, id integer
Output: integer
Description:
Pseudo-code:

Begin:
assgin 0 to State for object.ID=id for Radar 1, for Sonar 2.
return State;

      End

Name: turnOn
Input: ty integer, id integer
Output: integer
Description:
Pseudo-code:

Begin:
assgin 1 to State for object.ID=id for Radar 1, for Sonar 2.
return State;

      End

Name: ~ communicationBase
Input: none
Output: none
Description: virtual distructor
Pseudo-code:

Begin:

End

4.4.2.2.2 CDetected Class

Traceability to SRS
CD-004, CD-004-01, CD-004-02, CD-007, CD-008, CD-008-01, CD-008-02

Constants
NA.



175

Private data members

Name Type Description
ID integer Detected  object ID
flag integer Detected object flag
type integer Detected object type
powerswitch integer Detected object power switch
pos vector Detected object position
velocity vector Detected object velocity

Public functions

Name: CDetected
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:

ID=0;
 flag = 0;

type =0;
powerswitch = 0;

      End

Name: CDetected
Input: de CDetected &
Output: none
Description: constructor
Pseudo-code:

Begin:
ID = de.ID;
flag = de.flag;
type = de.type;
powerswitch = de.powerswitch;
pos = de.pos;
velocity = de.velocity;

  End

Name: CDetected
Input: int i1, int f1, int t1, int ps1,

Vector p1, Vector s1

Output: none
Description: constructor
Pseudo-code:

Begin:
ID=i1;
flag=f1;
type=t1;
powerswitch=ps1;
pos=p1;
velocity=s1;

  End



176

Name: getID
Input: none
Output: integer
Description:
Pseudo-code:

Begin:

return ID;

  End

Name: getFlag
Input: none
Output: integer
Description:
Pseudo-code:

Begin:
return flag;

  End

Name: getPosition
Input: none
Output: vector
Description:
Pseudo-code:

Begin:
       return pos;
     End

Name: getVelocity
Input: none
Output: vector
Description:
Pseudo-code:

Begin:
        return velocity
      End

Name: getPowerSwitch
Input: none
Output: integer
Description:
Pseudo-code:

Begin:
return powerswitch;

      End

Name: setDetData
Input: vehicle BaseShip*
Output: none
Description:
Pseudo-code:

Begin:



177

set position, type;
set ID, flag, velocity
Switch on ship type to call their setPowerswitch() function;

      End

Name: setID
Input: id Integer
Output: none
Description:
Pseudo-code:

Begin:
ID = id;

      End

Name: setFlag
Input: f1 Integer
Output: none
Description:
Pseudo-code:

Begin:
flag = fl

      End

Name: setPos
Input: posit Vector
Output: none
Description:
Pseudo-code:

Begin:

pos = posit

      End

Name: setPowerSwitch
Input: ps Integer
Output: none
Description:
Pseudo-code:

Begin:

   powerswitch = ps;

      End

Name: setType
Input: ty Integer
Output: none
Description:
Pseudo-code:

Begin:
type = ty;

      End



178

Name: setVelocity
Input: ve Vector
Output: none
Description:
Pseudo-code:

Begin:

velocity = ve;

      End

Name: ~CDetected
Input: none
Output: none
Description: distructor
Pseudo-code:

Begin:

End

4.4.2.2.3 DetectedDatabase Class

Traceability to SRS
CD-004, CD-008

Constants
NA.

Private data members

Name Type Description
list DetList typedef vector<CDetected*> DetList;
itCurrDetected; DetList::iterator Iterator to the vector of DetList

Public functions

Name: CdetectedDatabase
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:

End

Name: ~CDetectedDatabase
Input: none
Output: none
Description: distructor
Pseudo-code:

Begin:
End



179

Name: addDetected
Input: det CDetected*
Output: none
Description:
Pseudo-code:

Begin:
 //Call Vector push function
 list.push_back( det );

     End

Name: getDetected
Input: none
Output: CDetected
Description:
Pseudo-code:

Begin:
CDetected  det ;      //create new pointer.

       if( itDetList < list.end() )   //get detected object pointed by iterator
Det.getDetData( *itCurDetect )//Remove the det from the database of
messages
delete current iterator which is list.begin() by calling erase() in
vector;
return det;

     End

Name: setFirstDetected
Input: none
Output: none
Description:
Pseudo-code:

Begin:
set pointer to the first element of database be calling list.begin();

     End

Name: setNextDetected
Input: none
Output: none
Description:
Pseudo-code:

Begin:
set pointer to the next element of database by increment iterator;

     End

Name: deleteAll
Input: none
Output: none
Description:
Pseudo-code:

Begin:
 empty list using predefined vector function;
     End



180

Name: singleton
Input: none
Output: CDetecetdDatabase
Description:
Pseudo-code:

Begin:
static CDetectedDatabase instance;

   return instance;
     End

4.4.2.2.4 CRadar Class

Traceability to SRS
CD-001, CD-002, AT-004, DT-004, CS-004, BS-004.

Constants
NA.

Private data members

N/A.

Public functions

Name: CRadar
Input: none
Output: none
Description: default constructor, inherit from the CommunicationBase Class
Pseudo-code:

Begin:

 Type=1;

End

4.4.2.2.5 CSonar Class

Traceability to SRS
CD-005, CD-006, SM-004

Constants
NA.

Private data members
N/A.



181

Public functions

Name: CSonar
Input: none
Output: none
Description: default constructor, inherit from the CommunicationBase Class
Pseudo-code:

Begin:

 Type=2;

End

4.4.2.2.6 CRadio Class

Traceability to SRS
CD-009, CD-010, CD-011, CD-012, AC-004, AT-008, DT-008, CS-008, BS-008,
SM-008.

Constants
NA.

Private data members

Name Type Description
myRadioId integer Radio object ID
range float Range of Radio radius

Private functions

Name: SetRadioId
Input: int RadioId
Output: none
Description:
Pseudo-code:

Begin:

 myRadioId = RadioId;

End

Public functions

Name: CRadio
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:
End



182

Name: CRadio
Input: RadioId Integer
Output: none
Description: constructor
Pseudo-code:

Begin:
SetRadioId( RadioId );
range=1000.0;

End

Name: SendMessage
Input: CMessage & Msg
Output: none
Description:
Pseudo-code:

Begin:
 Msg.updateSenderInfo();
 MESSAGE_DB.AddOneMsgIntheList(Msg);
End

Name: ReceiveMessage
Input: none
Output: none
Description:
Pseudo-code:

Begin:
CMessage *msg = MESSAGE_DB.GetMyMsg( myRadioId );
return *msg;

End

Name: turnOff
Input: none
Output: State integer
Description:
Pseudo-code:

Begin:
assgin 0 to State;
return State;

End

Name: turnOn
Input: none
Output: none
Description:
Pseudo-code:

Begin:
assgin 1 to State;
return State;

End



183

Name:DeleteMessages
Input: none
Output: none
Description:
Pseudo-code:

Begin:
MESSAGE_DB.DeleteMyMessages(myRadioId);

End

Name: ~CRadio
Input: none
Output: none
Description: virtual distructor
Pseudo-code:

Begin:

End

4.4.2.2.7 CMessage Class

Traceability to SRS
CD-011, CD-012

Constants
NA.

Private data members

Name Type Description
Msg Message struct define Message include senderID, receiverID,

senderType, command, sender Position, destination
position and enemyInfo of CDetected type.

pVehicle BaseShip* Pointer variable of BaseShip type to indicate the
ship information.

Public functions

Name: CMessage
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:
pVehicle=0;
Msg.sPos = Position(0,0,0);
Msg.dPos = Position(0,0,0);
Msg.senderID = 0;
Msg.senderType = 0;
Msg.receiverID = 0;
Msg.command = 0;

End



184

Name: CMessage
Input: baseClass *aVehicle
Output: none
Description: constructor
Pseudo-code:

Begin:
pVehicle=aVehicle;
Msg.sPos = pVehicle->getPosition();
Msg.dPos = Position(0,0,0);
Msg.senderID = pVehicle->getID();
Msg.senderType = pVehicle->getType();
Msg.receiverID = 0;
Msg.command = 0;

End

Name: validToSend
Input: none
Output: bool
Description:
Pseudo-code:

Begin:

return (pVehicle!=0);

End

Name: SetMsgData
Input: Message *outMsg
Output: none
Description:
Pseudo-code:

Begin:

set enemyInfo to outMsg

End

Name: GetMsgData
Input: Message inMsg
Output: none
Description:
Pseudo-code:

Begin:
Put the inMsg to Msg struct;

End

Name: updateSenderInfo
Input: none
Output: none
Description:
Pseudo-code:

Begin:
Read the pVehicle info to Msg struct;

End



185

Name: SetSenderId
Input: int psId
Output: none
Description:
Pseudo-code:

Begin:
Msg.senderID = psId;

End

Name: getSenderFlag
Input: none
Output: char
Description:
Pseudo-code:

Begin:
if (pVehicle!=0) return pVehicle->getFlag();

else return 'f';

End

Name: GetSenderId
Input: none
Output: integer
Description:
Pseudo-code:

Begin:
return Msg.senderID;

End

Name: SetSenderType
Input: int psType
Output:
Description:
Pseudo-code:

Begin:
Msg.senderType = psType;

End

Name: GetSenderType
Input: Message inMsg
Output: integer
Description:
Pseudo-code:

Begin:

return Msg.senderType;

End

Name: SetReceiverId
Input: int prId
Output:
Description:
Pseudo-code:

Begin:
Msg.receiverID = prId;

End



186

Name: GetReceiverId
Input: Message inMsg
Output: Integer
Description:
Pseudo-code:

Begin:
return Msg.receiverID;

End

Name: SetCommand
Input: int pCommand
Output: none
Description:
Pseudo-code:

Begin:
Msg.command = pCommand;

End

Name: GetCommandId
Input: none
Output: Integer
Description:
Pseudo-code:

Begin:

return Msg.command;
     End

Name: SetSenderPosition
Input: Vector  Pos
Output: Integer
Description:
Pseudo-code:

Begin:
Msg.sPos[1] = Pos[1];
Msg.sPos[2] = Pos[2];
Msg.sPos[3] = Pos[3];

End

Name: GetSenderPosition
Input: none
Output: Vector
Description:
Pseudo-code:

Begin:
return Msg.sPos;

End



187

Name: SetDestinationPosition
Input: Vector Pos
Output: none
Description:
Pseudo-code:

Begin:
Msg.dPos = Pos;

End

Name: GetDestinationPosition
Input: none
Output: Vestor
Description:
Pseudo-code:

Begin:
return Msg.dPos;

End

Name: SetDetectedInfo
Input: CDetected Det
Output: none
Description:
Pseudo-code:

Begin:
Msg.enemyInfo = Det;

      End

Name: GetDetectedInfo
Input: none
Output: CDetected
Description:
Pseudo-code:

Begin:
return Msg.enemyInfo;

     End

4.4.2.2.8 MessageDatabase Class

Traceability to SRS
CD-011, CD-012

Constants
NA.

Private data members

Name Type Description
list MsgList Typedef std::vector<Message*> MsgList



188

Private functions

Name: MessageDatabase
Input: none
Output: none
Description: constructor
Pseudo-code:

Begin:

 //Initialize the member data
Message *msgData= new Message();
list.push_back(msgData);

End

Public functions

Name: ~MessageDatabase
Input: none
Output: none
Description: virtual destructor
Pseudo-code:

Begin:

End

Name: DeleteAllMsg
Input: none
Output: none
Description:
Pseudo-code:

Begin:

 list.clear();

End

Name: singleton
Input: none
Output: CMessageDatabase&
Description:
Pseudo-code:

Begin:
   static CMessageDatabase instance;
   return instance;

End

Name: AddOneMsgIntheList
Input: CMessage & Msg
Output: none
Description:
Pseudo-code:

Begin:
check if this Msg is valid (check if receiver is alive and within range;
for broadcast message, define a list of message with receiverId equal to
the ID of those objects alive and within range;)



189

if this Msg is valid, keep this message to the list; For broadcast
message,  keep that list of message to the list;

     End

Name: GetMyMsg
Input: int pRadioId
Output: CMessage
Description: Get the message from the database
Pseudo-code:

Begin:
return the first message in the list with receiverID equal to pRadioId;
return NULL if no message with this receiverID.

delete this message

End

Name: DeleteMyMessages
Input: int pRadioId
Output: none
Description:
Pseudo-code:

Begin:
delete the all message in the list with receiverID equal to pRadioId;

End



190

4.4.3 Ship and Aircraft Detailed Design

The Ship and Aircraft subsystem is composed of Aircraft Carrier, Aircraft,
Destroyer, Cruiser, Battleship and Submarine. All of them are derived from the
base ship and Aircraft class. The derived class feature is described in each sub
section of this part. In module detailed design section, the modules of this
subsystem are diagrammed in UML and designed in such a way that this module
can be implemented easily using MFC. The architecture of this subsystem is
shown in the following figure.

4.4.3.1  Module Detailed Design

The class operation and attribute are not list in the class diagram for class
Captain, WeaponLauncher, WeaponOfficer, RadioOfficer, RadarOfficer,
SonarOfficer, NavigationOfficer and BaseShip class. Refer to the section of
Description of Class Members and Members Functions for each class. See
Figure 4-12 for a diagram representing the detailed design.

4.4.3.2 Class Definition

4.4.3.3 Description of Class Members and Member Functions

The traceability of the class design to SRS requirement is listed for each
class.The constants and private data member of class are described in the
Constant table and Private data member table. In the description of function,
when one function needs to use another function of other class, we use sign Æ.
The left side of sign Æ is the class name and the right side is the function type.
This applies to all class descriptions in section 5.5



191

Figure 4-11 Class Diagram for BaseShip (ship and Aircraft) Module



192

4.4.3.3.1 BaseShip Class

Traceability to SRS
SC-001, SC-002

Constants (Defined in the derived class if different constant is used)

Name Type Value Description
MAX_RESISTANCE integer Depends

on ship

resistance value when ship and

Aircraft first created

RECOVERABLE_RESISTANCE integer Depends

on ship

minimum resistance that the  can

make  reparation

MAX_REPAIR_TIME integer Depends

on ship

Maximum time the ship and Aircraft

needs to restore the resistance

Protected data members

Name Type Description
ID integer Ship and Aircraft ID

Check int used to indicate if the ship object is selected or

not

Public functions

Name: BaseShip
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:

baseClass(){ check = 0; }

End

Name: getPosition
Input: none
Output: none
Description: pure virtual function
Pseudo-code:

Begin:

virtual Vector getPosition() = 0;

End

Name: updatePosition
Input: none
Output: none
Description: pure virtual function
Pseudo-code:



193

Begin:

virtual void updatePosition() = 0;

End

Name: isActive
Input: none
Output: none
Description: pure virtual function
Pseudo-code:

Begin:

virtual bool isActive() = 0;

End

Name: execute
Input: a double type as time to recover
Output: none
Description: pure virtual function
Pseudo-code:

Begin:
virtual void execute(double) = 0;

End

Name: getType
Input: none
Output: none
Description: pure virtual function
Pseudo-code:

Begin:
virtual int getType() = 0;

End

Name: getFlag
Input: none
Output: none
Description: pure virtual function
Pseudo-code:

Begin:
virtual char getFlag() = 0;

End

Name: setID
Input: none
Output: none
Description: pure virtual function
Pseudo-code:

Begin:
virtual char getFlag() = 0;

End



194

Name: setID
Input: an integer type as ID
Output: none
Description: to set the object ID when it is creation
Pseudo-code:

Begin:

ID = id

End

Name: getID
Input: none
Output: an integer type as ID
Description: to get the object ID when it is creation
Pseudo-code:

Begin:

Return id

End

Name: setCheck
Input: an integer type as Check is true or false
Output: none
Description: to set the object Check is true or false
Pseudo-code:

Begin:

check = ck

End

Name: getCheck
Input: none
Output: an integer type as Check is true or false
Description: to get the object Check is true or false
Pseudo-code:

Begin:

return check

End

Name: ~BaseShip
Input: none
Output: none
Description: virtual distructor
Pseudo-code:

Begin:

virtual ~baseClass(){}

End

4.4.3.3.2 Derived Class

The derived class includes Aircraft Carrier, Aircraft, Battleship, Cruiser,
Destroyer, and Submarine. Because the most of function of derived class are



195

same, the general function will be described for all the derived class in one
pseudo code section, only the different and additional functions will be addressed
with bold style; otherwise, the Battleship is taken as the example IN pseudo
code dexcription.  Radar/Sonar represents the Radar class for all the applicable
ships and Sonar class foe all the applicable ship in different class
implementation.

Traceability to SRS
SC-001, SS-002

Constants(Redefined in Different Derived Ship Class if applicable)

Name Type Description
MAX_RESISTANCE integer resistance value when ship and Aircraft

first created
RECOVERABLE_RESISTANCE integer minimum resistance that the  can make

reparation
MAX_REPAIR_TIME integer Maximum time the ship and Aircraft needs to

restore the resistance

Private data members

Name Type Description
ID integer Ship and Aircraft ID
active bool used to distinguish between alive and dead
flag char used to distinguish between allies and

enemies
type integer used to distinguish among different ships

and Aircraft
fuelamount integer fuel amount at ship creation
fuellimit integer Fuel limit when need to send request
Weaponamount integer Amount of on board Weapon when ship is

created
captain Captain an object of the class Captain
n_officer NavigationOfficer

;
An instance of class NavigationOfficer

Radar_officer DetectionOffice An instance of class DetectionOffice
Radio_officer RadioOfficer An instance of class RadioOfficer
w_officer WeaponOfficer An instance of class WeaponOfficer
w_launcher WeaponLauncher An instance of class WeaponLauncher
S_Radar Radar An instance of class Radar
s_Radio Radio An instance of class Radio
time_counter long records the simulation time
resistance integer The value stands for the status of the

ship and Aircraft, i.e. how serious the
ship is damaged



196

Public functions

Name: AircraftCarrier, Aircraft, Battleship, Cruiser, Destroyer, Submarine
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:

create n_officer using default constructor

create captain

call getID() function which is in the base class to obtain the continued

ID for this object

create Radar, pass ID and sea Radar radius as parameter

create Radar_officer

create Radio_officer

create Radio, pass ID as parameters for derived object

create w_officer

create w_launcher

set flag and type for this object

resistance = MAX_RESISTANCE;

active = true;

time_counter = 0;

End

Name: AircraftCarrier, Aircraft, Battleship, Cruiser, Destroyer, Submarine
Input: fl: char, cPos: Vector, dPos: Vector
Output: none
Description: constructor
Pseudo-code:

Begin:
create n_officer, pass cPos, dPos as parameters

create captain

call getID() function which is in the base class to obtain the ID of this

object

create Radar, pass ID and sea Radar radius as parameter

create Radar_officer

create Radio_officer

create Radio, pass ID as parameters

create w_officer (Not for AircraftCarrier Class)
create w_launcher (Not for AircraftCarrier Class)
flag = fl;

type = 1 to 6; //SC assign integer 1 for AircraftCarrier, 2 for

Aircraft,3 for Cruiser, 4 for Destroyer,5 for the type Battleship and 6

for Submarine.

resistance = MAX_RESISTANCE;

active = true;

time_counter = 0;

End



197

Name: ~AircraftCarrier,~Aircraft,~Battleship,~Cruiser,~Destroyer,~Submarine
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:
End

Name: execute
Input: t: integer
Output: void
Description: update the ship or Aircraft status
Pseudo-code:

Begin:
time_counter + 1;

w_launcher Æ deleteWeapon();(Not for AircraftCarrier Class)
captain Æ updateCaptain(t, Radar_officer, Radio_officer, n_officer,

w_officer, w_launcher, Radar, Radio, time_counter);

(Not for AircraftCarrier Class)
captain Æ updateCaptain(t, Radar_officer, Radio_officer, n_officer,

 Radar, Radio, time_counter); (for AircraftCarrier Class)
updateStatus(t);

End

Name: getFlag
Input: none
Output: char
Description: get the flag of the ship or Aircraft, ‘B’ OR ‘R’
Pseudo-code:

Begin:
return flag;

End

Name: getType
Input: none
Output: integer
Description: get the ship or Aircraft type
Pseudo-code:

Begin:
return type;

End

Name: isActive
Input: none
Output: bool
Description: check if the Battleship is alive or dead
Pseudo-code:

Begin:
return active;

End



198

Name: getPosition
Input: none
Output: Vector
Description: get position of the ship or Aircraft
Pseudo-code:

Begin:

return n_Officer Æ getPosition();

      End

Name: updatePosition
Input: none
Output: void
Description: update position from last snapshot to this snapshot
Pseudo-code:

Begin:

n_Officer Æ updatePosition()

  End

Name: hit
Input: firePower: integer
Output: void
Description: used to decrease resistance points when ship or Aircraft is hit
Pseudo-code:

Begin:

resistance = resistance - power;

  End

Name: * operator new
Input: size_t s
Output: void
Description: overloading operator: create an object, register this object to
the Simulation Controller and return this object. Simulation Controller will

provide code.

Pseudo-code:
Begin:

create an object and register this object to the Simulation Controller;

return this object;

      End

Name: operator delete
Input: void * mem
Output: void
Description: overloading operator: delete this object; remove the object.

registration from the Simulation Controller.  Simulation Controller  will

provide code

Pseudo-code:
Begin:

delete this object;

remove the object registration from Simulation Controller;

  End



199

Private functions

Name: updateStatus
Input: t: integer
Output: void
Description: update the status(alive or dead)
Pseudo-code:

Begin:

  if resistance <= 0 or captain Æ isCrash() = true, set active = false

 if resistance > RECOVERABLE_RESISTANCE and < MAX_RESISTANCE

 call resistanceRecover(t)

      End

Name: resistanceRecover
Input: t: integer
Output: void
Description: used to recover resistance point
Pseudo-code:

Begin:

resistance = resistance + (MAX_RESISTANCE – RECOVERABLE_RESISTANCE) * t

/     MAX_REPAIR_TIME;

  if resistance > MAX_RESISTANCE, resistance = MAX_RESISTANCE;

      End

Name: getResistance
Input: none
Output: integer
Description: get resistance point
Pseudo-code:

Begin

 return resistance;

End

Name fuelRequest
Input: Integer
Output: bool
Description: if true, the ship or Aircraft get the fuel filling from the SC
base supplier

Pseudo-code:
Begin:

If(fuelamount of base supplier >=fuelamount request)

{

  Basesupplier->deductFuel(fuelamount);

  return true;

}

else return false;

End



200

Name WeaponRequest (Not for AircraftCarrier class)
Input: Integer
Output: bool
Description: if true, the ship or Aircraft get the Weapon needed from the SC
base supplier

Pseudo-code:
Begin:

If(Weaponamount of base supplier >=Weaponamount request)and

Weapontype==ship’s Weapon type)

{

  Basesupplier->createWeapon();

  Return true;

}

else return false;

End

4.4.3.3.3 Captain Class

Traceability to SRS
AC-001, AC-001-01, AC-001-02, AC-003, AC-009, AC-010, AC-011, AC-012,
AC-013, AC-025, AC-026. AC-018 to AC-024. AT-001-01,AT-001-02, AT-002,
AT-003, AT-013 to AT-018,AT-032 to AT034, AT-024 to AT-031. DT-001-01,DT-
001-02, DT-002, DT-003, DT-013 to DT-018,DT-032 to DT034, DT-024 to DT-
031. CS-001-01,CS-001-02, CS-002, CS-003, CS-013 to CS-018,CS-032 to
CS034, CS-024 to CS-031. BS-001-01,BS-001-02, BS-002, BS-003, BS-013 to
BS-018,BS-032 to BS034, BS-024 to BS-031. SM-001-01,SM-001-02, SM-002,
SM-003, SM-013 to SM-018,SM-032 to SM034, SM-024 to SM-031.

Constants
NA

Private data members

Name Type Description
friend_list ObjectList the node of the ObjectList will contain

information of id, position, flag, speed of

object. This list contains friends info.

enemy_list ObjectList list after update

previous_enemy_lis

t

ObjectList list before update

crash bool if true, the ship or Aircraft collides with

another object

attack_target Detected Target object the ship and Aircraft will

attack



201

Public member functions

Name: Captain
Input: none
Output: none
Description: constructor
Pseudo-code:

Begin:

initial friend_List ,enemy_List, and previous_enemy_list as empty list

crash = false;

attack_target = NULL; //no attack target

  End

Name: ~Captain
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End

Name: updateCaptain
Input: t: int, Radar: RadarOfficer&, Radio: RadioOfficer&, n_officer:

navigationOfficer&, w_officer: WeaponOfficer&, w_launcher:

WeaponLauncher&, Radar: Radar&, Radio: CRadio&,counter: long

(Not for AircraftCarrier Class)
Input: t: int, Radar: RadarOfficer&, Radio: RadioOfficer&, n_officer:

navigationOfficer&, Radar: Radar&, Radio: CRadio&,counter: long

(for AircraftCarrier Class)
Output: void
Description: execute every time slice, to update all decisions made by captain
Pseudo-code:

Begin:

First step:

  update friend_list and enemy_list

remove all elements in the friend_list;

remove all elements in the previous_enemy_list;

copy enemyList to previous_enemy_list;

remove all elements in the enemyList;

1. Information from Radar/Sonar

get number of objects detected by calling function

RadarOfficer/SonarOffice->getNumOfDetected(Radar,Vector currPos ).

check the first detected object:

RadarOfficer/SonarOffice Æ getFirstDetected(Radar, currPos);

if DetectedÆgetFlag() is the same as the flag of the ship or Aircraft,

  store in friend-list by calling addToFriendList(Detected);

if the flag is different, store in enemy_list: addToEnemyList(Detected);

loop until all object detected have been checked

  {



202

  RadarOfficer/SonarOffice Æ getNextDetected(Radar)

  check returned object Detected,

  if Detected Æ getFlag is the same as the flag of the ship or Aircraft

     store in friend_list, call: addToFriendList(Detected)

  else store in enemy_list: addToEnemyList(Detected);

  }

  2. Information from Radio

while (return value of receiveMessage () in the RadioOfficer is not

NULL,    which means there is at least one message)

   {

   Cmessage Æ getDetectedInfo() which return Detected object

   check if it is friend, if yes, store in friend-list,

          else store in enemy-list, similarly step  as info from Radar

   }

Second step:

decide if the ship collides with another object, no matter friend or

enemy by checking both the friend-list and enemy-list. If there is one

object is too close to the ship or Aircraft, which means that the

distance between two object is less than one tolerant value,we think it

collides with the ship, then the ship will sink.

  crash = true;

Third step:

  If there are any new enemies detected, send message to allies

  loop the friend_list

    {

compare previous-enemy-list with friend-list, whenever find an object

that is in friend-list and not in previous-enemy-list

    RadioOfficer/SonarOffice Æ sendDetectMessage (bRadio, Detected, 0)

    }

Fourth step:

         if(ifAttack()=true), attack the enemy

  get current position of the ship from NavigationOfficer

  get target positon, speed, ID from object attackTarget

WeaponOfficerÆprepareAttack(currPos,targetPos,targetSpeed,targetId,

count,launcher)

         (Not for AircraftCarrier Class)

  (for AircraftCarrier Class)

Fifth step:

  adjust navigation: adjustNavigation();

End

Name isCrash
Input: none
Output: bool
Description: if true, the ship and Aircraft collides with other object
Pseudo-code:



203

Begin:

return crash;

End

Private member functions

Name: ifAttack
Input: none
Output: bool
Description: if true, there is a specific target to attack
Pseudo-code:

Begin:

case 1: there is no enemy around, return false

 if(the enemyList is empty) return false

case 2: there are only enemies which can not be target for this object,

for example, there are only under water enemies (Submarines) or air

enemies(Aircrafts), return false for Battleship

--check all elements in the enemy_list from the first one to the

last one

--get position (Vector) of the each object

--get z value of the position

--check if the z value is equal to 0, that means the object is

sea-borne object for Battleship eg.

--if z values of all objects are not equal to 0, no object can be

attacked for Battleship eg., return false

case 3: there is at least one enemy for this object, for example, sea-

borne enemy for Battleship

Following the same procedure as case 2 to find the number of sea-

borne enemy for Battleship eg.

//the following code take Battleship as example, it is also

applicable for other ship or Aircraft object

(not for AircraftCarrier Class)

if (the number of the sea-borne is equal to one)

  {

  then it is the intended target

  if (this object position is within the Missile range)

    {

    int wtype = WeaponOfficer Æ selectWeapon();

    int cQty = WeaponOfficer Æ getCannonQty();

    int mQty = WeaponOfficer Æ getMissileQty();

if(wtype is cannon and (cQty or mQty >= 1) or wtype is Missile

and     mQty >= 1))

{

attack_target = this object

return true.

    }else

{

can not attack the target,

return false;

}

  }



204

if (the target position is out of the Missile range)

return false;

if (the number of the sea-borne is more than one)

  {

  Compute the distance between each enemy and the Battleship

  Choose the nearest one to the sea-brone as the target.

Following the same procedure as the case of having only one sea-

borne    enemy

  }

End

Name: adjustNavigation
Input: none
Output: void
Description: adjust navigation, speed and direction
Pseudo-code:

Begin:
case 1:  there is no enemy within range in enemy_list at this

moment, for example, sea-borne enemy for Battleship
if(found enemies’Submarine(s) (z value of the positon is less than
0))
   {

calculate the distances from enemies’ Submarine(s), steer to a
direction which has angle q with current direction to get away
from enemy.
NavigationOfficer Æ steer(q);

   double accl= 525; //525km/hr2 for Battleship
   NavigationOfficer Æ adjustSpeed(accl, MAX_SPEED);
   }

  if(no friend on the heading direction and |speed|<Max)
     {

find a direction which has angle q with current direction where
there is no friends and object on the way;

   NavigationOfficer Æ steer(q);
     }

      if(friends or object on the way)
     {

find a direction which has angle q with current direction where
there is no friends and object on the way;

   NavigationOfficer Æ steer(q);
                 double  deceleration = -700; // -700km/hr2

                 for Battleship
   NavigationOfficer Æ adjustSpeed(deceleration, 0);
  }

case 2:
 if (ifAttack() = true)

  {
   find a closest target direction on which there is no friend;

  NavigationOfficer Æ cruise(t, attack_target.position);
  double  deceleration = -700; // -700km/hr2 for Battleship

     NavigationOfficer Æ adjustSpeed(deceleration, 0);
  }

End



205

Name: addToFriendList
Input: Detected
Output: void
Description: add new detected or received friend info to friend_list
Pseudo-code:

Begin:

 add Detected to friend_list

End

Name: addToEnemyList
Input: Detected
Output: void
Description: add new detected or received enemy info to enemy_list
Pseudo-code:

Begin:

 add Detected to enemy_list

End

Name iffuelEmpty
Input: none
Output: bool
Description: if true, the ship or Aircraft has no fuel any more
Pseudo-code:

Begin:

If(fuelamount==0) Return true;

else return false;

End

4.4.3.3.4 Radar/Sonar Officer

Traceability to SRS
AT-004 to AT-007, CS-004 to CS-007, DT-004 to DT-007,BS-004 to BS-007,
SM-004 to SM-007.

Constants
NA

Private data members

Name Type Description
det Detected a Detected object, store object information

Radar_on/Sonar_on bool Radar/Sonar is on if true



206

Public member functions

Name: RadarOfficer
Input: none
Output: none
Description: constructor
Pseudo-code:

Begin:

det = Detected ();

Radar_On = true; or Sonar_on=true;

End

Name: ~RadarOfficer
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

Name: turnOffRadar/turnOffSonar
Input: Radar/Soanr: Radar&/Sonar&
Output: void
Description: turn off Radar/Sonar
Pseudo-code:

Begin:

Radar/Sonar Æ turnoff();

End

Name: turnOnRadar/turnOnSonar
Input: Radar/Soanr: Radar&/Sonar&
Output: void
Description: turn on Radar/Sonar
Pseudo-code:

Begin:

Radar/Sonar Æ turnon();

End

Name: getNumOfDetected
Input: Radar/Sonar: Radar&/Sonar&, pos: Vector
Output: integer
Description: the function pass the ship position in order to know the center of
the Radar/Sonar. It is used to get number of detected objects

Pseudo-code:
Begin:

return Radar/Sonar Æ emitReceive(pos);

End



207

Name: getFirstDetected
Input: Radar/Sonar: Radar&/Sonar&,
Output: Detected
Description: get the first detected object information
Pseudo-code:

Begin:

  Radar/Sonar Æ goFirstDetected();

  return Radar/Sonar Æ getDetectedInfo();

End

Name: getNextDetected
Input: Radar/Sonar: Radar&/Sonar&,
Output: Detected
Description: get the next detected object information
Pseudo-code:

Begin:

  Radar/Sonar Æ goNextDetected();

  return Radar/Soanr Æ getDetectedInfo();

End

4.4.3.3.5 RadioOfficer Class

Traceability to SRS
AC-004 to AC-008, AT-008, AT-012, CS-008 to CS-012, DT-008 to DT-012, BS-
008 to BS-012, SM-008 to SM-012.

Constants
NA

Private data members

Name Type Description
message CMessage an instance of CMessage, store message info

Public member functions

Name: RadioOfficer
Input: object: BaseShip
Output: none
Description: constructor
Pseudo-code:

Begin:
  message = CMessage(object); //communication group ask for this

End

Name: RadioOfficer
Input: object: BaseShip
Output: none



208

Description: default constructor
Pseudo-code:

Begin:

message = CMessage();

End

Name: ~RadioOfficer
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

Name: sendDetectMessage
Input: Radio: CRadio&, det: Detected, id: integer
Output: void
Description: send the detected message to a specific object or broadcrast
Pseudo-code:

Begin:

message Æ setReceiverId(id); // set 0 for message broadcast

message Æ setDetectedInfo(det);

Radio Æ sendMessage(message);

End

Name: sendDesPosMessage
Input: Radio: CRadio&, pos: Vector, id: integer
Output: void
Description: send the destination position to a specific object or broadcrast
Pseudo-code:

Begin:

message Æ setReceiverId(id); // set 0 for message broadcast

message Æ setDestinationPosition(pos);

Radio Æ sendMessage(message);

End

Name: receiveMessage
Input: Radio: Radio&
Output: CMessage
Description: receive message by using Radio
Pseudo-code:

Begin:

  return message = Radio Æ receiveMessage();

End

Name: getMessage
Input: none
Output: CMessage
Description: get the value of data member message
Pseudo-code:



209

Begin:

return message;

End

4.4.3.3.6 NavigationOffice Class

Traceability to SRS
AC-001, AC-001-01, AC-001-02, AC-003. AT-001-01,AT-001-02, AT-002, AT-
003. DT-001-01,DT-001-02, DT-002, DT-003. CS-001-01,CS-001-02, CS-002,
CS-003. BS-001-01,BS-001-02, BS-002, BS-003. SM-001-01,SM-001-02, SM-
002, SM-003.

Constants

Name Type Description
MAX_SPEED integer Maximum speed of the Battleship

Private data members

Name Type Description
Curr_position Vector Current position
Temp_position Vector Temparily positon before update
velocity Vector including direction

Public member functions

Name: NavigationOfficer
Input: curPos: Vector, desPos: Vector, spd: Vector
Output: none
Description: constructor
Pseudo-code:

Begin:

curr_position = curPos;

temp_position = curPos;

velocity = (desPos – curPos)*MaxSpeed;

End

Name: ~NavigationOfficer
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

Name: cruise
Input: Dt: integer, decPos: Vector
Output: void



210

Description: navigate the ship or Aircraft from current position to the

destination position

Pseudo-code:
Begin:
//ship decelerate at the original Velocity (Vector), and adjust direction

of Velocity accordingly every t interval. See the figure below to

understand the algorithm.

//calculate direction needed to get to target position.

Vector direction = targetPos – curr_position;

//calculate Velocity on original direction after Dt.
Vector velocity_ori = velocity-aDt;
//calculate Vector Velocity on target direction.

Vector velocity_des= direction/length()*|velocity|; //target Velocity

//calculate the actual Velocity at this time slot and update velocity of

//ship or aircraft.

velocity = velocity_des – velocity_ori;

//calculate the position after Dt and update position of ship or aircaft.
curr_position = curr_position + VelocityDt;

End

Name: getPostion
Input: none
Output: Vector
Description: get current position
Pseudo-code:

Begin:

return curr_position;

End

Name: getVelocity
Input: none
Output: Vector
Description: get current velocity
Pseudo-code:

Begin:

return velocity;

End

Name: setPosition
Input: pos: Vector
Output: void
Description:
Pseudo-code:

Begin:

curr_position = pos;

End

Name: setVelocity
Input: vel: Vector
Output: void



211

Description: set velocity
Pseudo-code:

Begin:
Velocity = vel;

End

Name: adjustSpeed
Input: accl: double, targetSpeed: double
Output: void
Description: adjust the velocity with certain acceleration to the target

velocity.

Pseudo-code:
Begin:

  //accelerate to a Velocity bigger than original one.

if ((accl>0) and (targetVelocity>velocity))

velocity = velocity + acclDt;
  //decelerate to a velocity smaller than original

  else if (accl<0 & (targetVelocity<Velocity)&(targetVelocity>=0))

  {temp_Velocity = velocity + acclDt;
    if (temp_Velocity<0) velocity =0;

    else velocity = velocity + acclDt;
End

Name: steer
Input: angle: float
Output: void
Description: changes the navigation direction of the ship or Aircraft by angle
with the current direction.

Pseudo-code:
Begin:

tan(b)=velocity.y/velocity.x;

tan(a+b) = velocity’.y/velocity’.x;

End

Name: updatePosition
Input: none
Output: void
Description: updates the current position of the ship or Aircraft with

temp_position

Pseudo-code:
Begin:

curr_position = temp_position;

End

4.4.3.3.7 Weapon Officer Class

Traceability to SRS
AT-019 to AT-023. CS-019 to CS-023. DT-019 to DT-023. BS-019 to BS-023.
SM-019 to SM-023



212

Constants

Name Type Description
CANNON_QTY integer The quantity of cannon (Battleship eg.)

MISSILE_QTY integer The quantity of sea-sea Missile ( Battleship

eg.)

Private data members

Name Type Description
cannon_qty integer contain the quantity of cannon(Battleship

eg.)

Missile_qty integer contain the quantity of Missile(Battleship

eg.)

is_cannon integer record the selected Weapon: 1 denotes cannon,

0 denotes Missile(Battleship eg.)

target_id integer record target id

first_aim_time Long integer record the first aim time

last_fire_time Long integer record the last fire time

Public member functions

Name: WeaponOfficer
Input: none
Output: none
Description: Constructor initializes attributes
Pseudo-code:

Begin:
is_cannon = 0;
target_id = 0;
first_aim_time = 0;
last_fire_time = 0;
//For Battleship
cannon_qty = CANNON_QTY;
Missile_qty = MISSILE_QTY;

End

Name: ~WeaponOfficer
Input: none
Output: none
Description: Destructor
Pseudo-code:

Begin:

End

Name: prepareAttack
Input: cp:Vector, tp:Vector, ts:Vector, tid:int, ct:long, launcher:

WeaponLauncher

Output: void



213

Description: directly or indirectly do every prepare work for attack enemy:
select Weapon, check if the target id has been changed and the selected Weapon

has been changed, consider aim latency time and fire latency time, call the

function of launcher to create Weapon and fire it, and finally update the

quantity of Weapon.

Pseudo-code:
Begin:
  // check if the target Id has been changed.
if(target_id isn’t equal to tid, i.e. the target Id has been changed
comparing with the last target Id)

{Record target Id, first aim time, last fire time and the choosed
Weapon at this snapshot:
target_id = tid;
first_aim_time = ct;
last_fire_time = 0;
is_cannon = selectWeapon(cp, tp);
}

       if(targe_id = tid, i.e. the target Id hasn’t been changed)
{//choose Weapon and record it at this snapshot:
int n = selectWeapon(cp, tp);
// check if the selected Weapon has been changed. For example, the
Battleship has two types of Weapon as canon and Missile:
if((is_cannon isn’t equal to n, i.e. the selected Weapon has been

changed)
{record first aim time, last fire time and the chosen Weapon again
at this snapshot:
first_aim_time = ct;
last_fire_time = 0;
is_cannon = n;}

if(is_cannon = n, i.e. the selected Weapon hasn’t been changed)
{if(the choosed Weapon is cannon and aim time >= latency time and
fire time >= fire interval for continually firing cannon)

{compute the intended destination of cannon:
laucher-> aimByBallistic(cp, cs, tp, ts),
return destination Vector: dp;
Create and fire cannon shell:

     launcher->fireCannonShell(cp, dp);
    Record last fire time: last_fire_time = ct;
    Update the quantity of cannon: updateCannonQty();}
if(the choosed Weapon is Missile and aim time >= latency time and
fire    time >= fire interval for continually firing Missile)
    {Create and fire Missile:

                launcher->fireMissile(cp, tp);
    Record last fire time: last_fire_time = ct;
    Update the quantity of Missile: updateMissileQty();}
}

   }

  End

Name: cancelAttack
Input: none
Output: void
Description: cancel this attack
Pseudo-code:

Begin:
//Cancel attack and initialize attributes:



214

taget_id = 0;
first_aim_time = 0;
last_fire_time = 0;

End

Name: selectWeapon
Input: tp: Vector, cp: Vector
Output: integer
Description: select Weapon: for example, cannon or Missile according to the
distance between Battleship and target. If choose cannon, return 1; if choose

Missile, return 0. Suppose that before this function is called, the quantity of

Weapon has been checked.

Pseudo-code:
Begin:
Suppose that before this function is called, the quantity of Weapon has
been   checked.
Compute the distance between Battleship and target;
if(this distance <= the range of cannon){

if(the quantity of cannon >= 3)
{
Choose cannon:
return 1;
}

otherwise
{
Choose Missile:
return 0;
}

}
if(this distance > the range of cannon)

{
choose Missile:
return 0;
}

End

Name: updateCannonQty (for Battleship)
Input: none
Output: void
Description: update the quantity of cannon
Pseudo-code:

Begin:
Update cannon quantity (suppose that three cannon shell will be fired
every time): cannon_qty = cannon_qty – 3

End

Name: updateMissileQty (for Battleship)
Input:none
Output: void
Description: update the quantity of Missile
Pseudo-code:

Begin:
Update Missile quantity: Missile_qty = Missile_qty - 1

End



215

Name: getCannonQty (for Battleship)
Input: none
Output: integer
Description: return the quantity of cannon
Pseudo-code:

Begin:
return the quantity of cannon;

End

Name: getMissileQty (for Battleship)
Input: none
Output: integer
Description: return the quantity of Missile
Pseudo-code:

Begin:
return the quantity of Missile;

      End

4.4.3.3.8 WeaponLauncher Class

Traceability to SRS
AT-021,  CS-021,  DT-021,  BS-021, SM-021

Constants

Name Type Description
GRAVITITY_ACCELERATION double Physic constant (Battleship)

Private data members

Name Type Description
cannon_attribute WAttribute contain the attributes of cannon (Battleship)

Missile_attribute WAttribute contain the attributes of Missile (Battleship)

cannon_list List keep the created cannon shell until it is

detonated (Battleship)

Missile_list List keep the created Missile until it is detonated

(Battleship)

Public member functions

Name: WeaponLauncher
Input: none
Output: none
Description: constructor initializes the attributes
Pseudo-code:

Begin:

End



216

Name: ~WeaponLauncher
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

Name: aimByBallistic (for Battleship)
Input: cp: Vector, tp: Vector, ts: Vector
Output: Vector
Description: For example, Battleship compute initial velocity of cannon shell
and intended destination by using ballistic trajectory formular based on some

assumption

Pseudo-code:
Begin:

use the ballistic equation to calculate the fire angles and fire speeds of

cannon shells so that they can hit the targeted ship precisely.

The equations used here are:

(1) V*cosg*t = (g*t2)/2
V*cosb*t = (Ym – Ye) – Vx*t
V*cosa*t = (Xm – Xe) – Vy*t
(cosa)2 + (cosb)2 + (cosg)2 = 1
Note:  V is the magnitude of the cannon shell speed.

a, b, g are the fire angles of the cannon with x, y, z  coordinate
 directions respectively

Xm, Ym are the positions of my ship in x and y coordinates

respectively

Xe, Ye are the positions of enemy ship in x, y coordinate

respectively

Vx, Vy are the speeds of enemy ship in x and y directions

respectively

From the above four functions we can derive the following equation:

V2*t2 = ((g*t2)/2)2 + ((Ym – Ye) – Vx*t)2 + ((Xm – Xe) – Vy*t)2

In order to make the above equation has a definite solution, we have

to make some assumption to simplify it. We observe that the sum of the

last two items in the equation is the distance from the position of my

ship to the final position where the cannon shell falls. Therefore we make

the following assumptions so that we can get a solution from the equation:

One, we suppose V is constant with its value to be the maximum speed.

Two, we divide the attack range of the cannon into different areas. For

each area we make the sum of the last two items is outer boundary value of

the area. So it is a constant value.

Through this way, we can get a fixed time the cannon shells fly in

each of the areas. Then we can get the fire angle, as well as the fire

speed of the cannon shells in x, y, z directions for any intended fire

destination within cannon fire range, using different fixed times for

different fire areas. These fire speeds in x, y, z directions are what we

should provide to the Weapon subsystem. However, the Weapon subsystem asks

for the intended destination of cannon shell. We can also provide this



217

destination, but we think it is more reasonable to provide initial

velocity of cannon shells.

Return the destination Vector of cannon shells;

End

Name: fireCannonShell (for Battleship)
Input: cp: Vector, dp: Vector
Output: void
Description: create cannon shell and fire it
Pseudo-code:

Begin:

create cannon_shell of WCannonShell;

add cannon_shell to cannon_list;

fire cannon: cannon_shell Æ fire(cp, dp);

End

Name: fireMissile (for Battleship)
Input: cp: Vector, tp: Vector
Output: void
Description: create Missile and fire it
Pseudo-code:

Begin:

create sea_Missile of WMissileSeaSea;

add Missile_list to Missile_list;

fire Missile: sea_Missile Æ fire(cp, tp);

End

Name: deleteWeapon (for Battleship)
Input: none
Output: void
Description: delete cannons or Missiles if them have been detonated
Pseudo-code:

Begin:

while(cannon_list is not empty)

   {

   if(cannon_shell Æ isActive() = false, i.e. the cannon has been

detonated)

 delete cannon_shell;

   }

while(Missile_list is not empty)

   {

          if(sea_Missile Æ isActive() = false, i.e. the Missile has been

detonated)

delete sea_Missile;

   }

End

Name: getCannonAttribute (for Battleship)
Input: none
Output: WAttribute



218

Description: return the attributes of cannon
Pseudo-code:

Begin:

return attributes of cannon;

End

Name: getMissileAttribute (for Battleship)
Input: none
Output: WAttribute
Description: return the attributes of Missile
Pseudo-code:

Begin:

return attributes of Missile;

End



219

4.4.4 Weapon Detailed Design

This section describes all the classes of Weapon subsystem of the NBSS and
the functions they contain. In module detailed design section, the modules of this
subsystem are diagrammed in UML and designed in such a way that this module
can be implemented easily in MFC . The architecture of this subsystem is shown
in the following figure

4.4.4.1 Module Detailed Design

The class operation and attribute are not list in the class diagram for all the
classes in Weapon module. Refer to the section of Description of Class
Members and Members Functions for each class.

Figure 4-12 Class Diagram for Weapon Module



220

4.4.4.2 Class Definition

4.4.4.2.1 CWeapon

Traceability to SRS

WP-001

Constants

Name Type Value Description
CHARGE_RANGE float Depends on

Weapon

Take from structure

wAttr.wMaxSpeed/15

Private data members

Name Type Description
wFlag integer friend and enemy

time_len double record time length for each loop

wPosContr CWPositionController

wAimContr CWAutoAimController

wChgContr CWChargeController

wStaContr CWActiveStateController

Protected data members

Name Type Description
wAttr struct WAttribute Weapon Attribute Structure

Private member functions

Name: checkValidPosition
Input: none
Output: integer
Description:
Pseudo-code:

Begin:
call checkValidPosition position controller
For Cannon Shell: detonate()
For Carrier Weapons: launched()
For AutoAimming Weapons: detonate()

End



221

Protected member functions

Name: Initialize
Input: TYPE_WEAPON id, int flag, CWCharge *charge
Output: none
Description: function overloading for different type of Weapon
Pseudo-code:

Begin:
  initialize Weapon instead of constructor function
  // differ three kinds of Weapons to implement
  // Cannon Shell, carrier Weapons, auto aimming Weapons.
  // Cannon Shell: only Charge
  // Carrier Weapons: only carried Weapon pointer
  // Auto Aimming Weapons: Rudder, Charge, Radar/Sonar.
  For Auto Aimming Weapons.Rudder, Charge, Radar/Sonar use function
Initialize(TYPE_WEAPON id, int flag, CWRudder *rud, CWCharge *charge,
void   *RSpt)

End

Public member functions

Name: CWeapon
Input: none
Output: none
Description: Default Constructor to initializes attributes
Pseudo-code:

Begin:
wFlag(0),
wCarriedWeapon((CWeapon *)NULL)

 //Initialize(WeaponType);

End

Name: getFlag
Input: none
Output: char
Description:
Pseudo-code:

Begin:

return (char) wFlag

End

Name: setFlag
Input: char flag
Output: none
Description:
Pseudo-code:

Begin:
if( wFlag == flag ) return;
wFlag = flag;
wAimContr.setFlag(flag);
wChgContr.setFlag(flag);

End



222

Name: getPosition
Input: none
Output: Position
Description: return current position from PositionController
Pseudo-code:

Begin:
return wPosContr.getPosition();

End

Name: getType
Input: none
Output: integer
Description:
Pseudo-code:

Begin:
return wAttr.wType

End

Name: isActive()
Input: none
Output: bool
Description: return state from StateController
Pseudo-code:

Begin:
return wStaContr.getState();

End

Name: updatePosition
Input: none
Output: none
Description:
Pseudo-code:

Begin:
wPosContr.updatePosition();

End

Name: getAttributte
Input: none
Output: Wattribute
Description:
Pseudo-code:

Begin:
return wAttr;

End

Name: locateTargetPosition
Input: Position curPos
Output: integer
Description: Only for carried Weapon: SeaSeaMissile and Torpedo
Pseudo-code:

Begin:
set target position for carried Weapon
return 0 for successful; return 1 for fail;

End



223

Name: setInitTargetPosition
Input: Position targetPos
Output: none
Description: Only for carried Weapon: SeaSeaMissile and Torpedo
Pseudo-code:

Begin:
Call wAimContr.setInitTargetPosition(targetPos);
set target position for carried Weapon by calling
wCarriedWeapon->setInitTargetPosition(targetPos);

End

Name: fire
Input: Position curPos, Position destPos
Output: none
Description:
Pseudo-code:

Begin:
calls ActiveStateController.setState(ACTIVE) to set active state.
calls PositionController.setInitPosition(init) to set initial position.
calls AutoAimController.setInitTargetPosition(target) to set target

position.
calls PositionController.setDestinationPosition() to set destination

position.
But for carrier Weapon, this function create Weapon object that will be
launched by carrier Weapon.
Call ActiveStateController.setState(ACTIVE)
Call PositionController.setInitPosition(initial position)
Call PositionController.setDestinationPosition(destination)
If Weapon type is Carrier Weapon like Sub-Sea Missile and Sea-Sub Missile
Then
Create launchedWeapon
Call launchedWeapon.setInitTargetPosition
// launchedWeapon is a Weapon carried by this carrier Weapon
else
call AutoAimController.setInitTargetPosition
endif

End

Name: execute
Input: double time
Output: none
Description: main function to control all modules in controller
Pseudo-code:

Begin:
If Weapon type is not carrier type Weapon like Sub-Sea Torpedo/Missile

and Sea-Sub Missile/Torpedo
Then
Call chargecont.checkDetonateRange
Endif
If Weapon type is auto aim Weapon
Then

Call AutoAimController.locateTargetPosition
Call AutoAimController.updateVelocity
updateVelocity is called in locateTargetPosition()

Endif
If Weapon type is Carrier Weapon like Sub-Sea Torpedo/Missile and
Sea-Sub Missile/Torpedo



224

Then
Call launchedWeapon.locateTargetPosition
//launchedWeapon is a Weapon carried by this carrier Weapon

endif
Generate a random value ram which is between 0 to 1;
if (ram > precision) // The Weapon failed to hit the target.

return false;
else

return true;         // The target was hit
End

Name: checkValidPosition
Input: none
Output: integer
Description:
Pseudo-code:

Begin:
call checkValidPosition position controller
For Cannon Shell: detonate()
For Carrier Weapons: launched()
For AutoAimming Weapons: detonate()

End

Name: ~CWeapon
Input: none
Output: none
Description: distructor
Pseudo-code:

Begin:
End

4.4.4.2.2 WCommon Class

Traceability to SRS
WP-002, WP-003

Constants

Name Type Value Description
DOUBLE_MAX double (1.0e+60) Maximum double
INVALID_VEC Vector (Vector(-

DOUBLE_MAX, -
DOUBLE_MAX, -
DOUBLE_MAX))

Invalid Vector for speed

W_RADAR_RANG integer 50 50000 meters
MAX_TARGET_DIST double DOUBLE_MAX Maximum target distance
WeaponTypeStart integer 7 the begin type of Weapon
WRadar_Type integer 0 //aiming device no.
Ballistic integer 2 //aiming device no.
DOUBLE_PREC double 0.00001 Precise of double
AircraftCarrier_Type integer 1 Ship type

Aircraft_Type integer 2 Ship type
Destroyer_Type integer 3 Ship type
Cruiser_Type integer 4 Ship type



225

Battleship_Type integer 5 Ship type
Submarine_Type integer 6 Ship type
HeavyCannonShell integer WeaponTypeStart Weapon Type
AirAirMissile integer WeaponTypeStart+1 Weapon Type
AirSeaMissile integer WeaponTypeStart+2 Weapon Type
SeaSeaMissile integer WeaponTypeStart+3 Weapon Type
SeaAirMissile integer WeaponTypeStart+4 Weapon Type
SeaSubMissile integer WeaponTypeStart+5 Weapon Type
Torpedo integer WeaponTypeStart+6 Weapon Type
SubSeaTorpedo integer WeaponTypeStart+7 Weapon Type

Private data members

Name Type Description
struct WAttribute struct Weapon Attribute

Public functions

Name: IsTargetType
Input: int mytype, int targettype
Output: bool
Description:
Pseudo-code:

Begin:

Switch on the Weapon type, and check if the target can be hit by this

type of Weapon;

   End

Name: betweenTwoPosition
Input: Position destPos, Position start, Position end
Output: bool
Description:
Pseudo-code:

Begin:
Return Value: TRUE: destpos is on the line between two positions
FALSE: not on the line.
Cannon Shell should be detonated when destination position is
on the line from current position to next time position.
how to check current position ??? two necessary conditions
1. the distance between destination and current position should
be less than distance between current position and next time position
2. the unit of (destination - current position) should equal to
the unit of (next time position - current position)

  End

Name: calDestination
Input: int type ,Position curPos,Position targetPos,double range
Output: Position
Description:
Pseudo-code:

Begin:
 get two project positions for current and target position
 calculate maximum horizontal distance
 calculate horizontal direction



226

 convert to unit ( length == 1 )
 calculate destination horizontal position
 return position;

  End

Name: IsSamePosition
Input: Position p1, Position p2
Output: bool
Description:
Pseudo-code:

Begin:

Compare the position value of x, y and Z
return TRUE;//if same;
else return false;

  End

Name: IsZeroDouble
Input: double db
Output: bool
Description:
Pseudo-code:

Begin:
 If( abs(db) < DOUBLE_PREC ) return TRUE;
 Else return FALSE;

  End

Name: IsSameDouble
Input: double db1, double db2
Output: bool
Description:
Pseudo-code:

Begin:
return ( ( db1 > db2 )? (( db1 - db2 ) < DOUBLE_PREC)

 : (( db2 - db1 ) < DOUBLE_PREC) );

  End

4.4.4.2.3 CWAutoAimController Class

Traceability to SRS

Constants

Name Type Value Description
doublePI const double 3.1415926;  radius of Circle

Private data members

Name Type Description
wTargetPosition Position Target position
wType TYPE_WEAPON Weapon type
MyFlag int Friend and enemy
StaContrPt; CWActiveStateController* Weapon state controller



227

rudderPt CWRudder* Weapon Rudder
RSDetect void* convert void pointer in function

according to Weapon type.

Public functions

Name: CWAutoAimController
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:
wType(0), myFlag(0),
staContrPt( (CWActiveStateController *) NULL),
rudderPt( (CWRudder *)NULL ),
RSDetect(NULL),

wTargetPosition(INVALID_VEC)

End

Name: CWAutoAimController
Input: none
Output: none
Description: default constructor, Cannon Shell don't use this class For Carrier
Weapons, no rudder and Radar/Sonar

Pseudo-code:
Begin:
(TYPE_WEAPON id,int flag, CWActiveStateController *state)
wType(id),
myFlag(flag),
staContrPt(state),
rudderPt( (CWRudder *)NULL ),
RSDetect(NULL),
wTargetPosition(INVALID_VEC)
End

Name: CWAutoAimController
Input: TYPE_WEAPON id,int flag,

CWActiveStateController *state,
CWRudder *rud, void *RSpt

Output: none
Description: For Auto Aimming Weapons: Rudder, Radar/Sonar system
Pseudo-code:

Begin:
wType(id),
myFlag(flag),
staContrPt(state),
rudderPt(rud),
RSDetect(RSpt),
wTargetPosition(INVALID_VEC)

  End

Name: init
Input: TYPE_WEAPON id, int flag,

CWActiveStateControlle *state
Output: none



228

Description: for carrier Weapons, function overloading
Pseudo-code:

Begin:
wType = id;
myFlag = flag;
staContrPt = state;
rudderPt = (CWRudder *)NULL;
RSDetect = (void *)NULL;
//for Auto Aimming Weapons
wType = id;
myFlag = flag;
staContrPt = state;
rudderPt = rud;
RSDetect = RSpt;

  End

Name: updateVelocity
Input: Position curPos, Position desPos
Output: integer
Description:
Pseudo-code:

Begin:
Call CWPositionController.getPosition() to get current postion
Call Rudar.setCurrentPos() to set current position.
Call Rudar.setTargetPos() to set target position.
Call Rudar.calcVelocity() to get the change of Velocity.
Call Rudar.getVelocity() to get the Velocity and set wVelocity

to returned Velocity.
  End

Name: locateTargetPosition
Input: Position curPos
Output: integer
Description: differ Radar and Sonar system
Pseudo-code:

Begin:
• Call Radar/Sonar.EmitReceive() to check how many objects is

in the Radar/Sonar range. If it returns zero, then it is
    finished and return 0.
• For each object, it gets target using Radar/Sonar.getFirstDetect()

for first time. It gets target using Radar/Sonar.getNextDetect()
• if it isn't the first time.
And it calls isTargetType() to check object type. If type is
invalid, then go to second step for next object.
• And then it call Radar/Sonar.getPosition() to get position of object.

And then it counts the distance between object position and
the target position.

• And compares this distance with saved distance, and keep distance
and position of the lesser distance object. If saved distance

   is null, then keep this distance and position.
From above steps, it gets the nearest object and sets wTargetPosition
to the position of the nearest object, and return 1. If there
are not valid object in the valid range because of object type,
then it doesn't change wTargetPosition,

  End



229

Name: setInitTargetPosition
Input:Position targetPos
Output: none
Description: called in fire() function
Pseudo-code:

Begin:
if( ( wType == SeaSeaMissile ) || ( wType == SeaAirMissile )

|| ( wType == Torpedo ) || ( wType == AirSeaMissile )
|| ( wType == AirAirMissile ) )

 wTargetPosition = targetPos;
  End

Name: ~CWAutoAimController
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

4.4.4.2.4 CWCharge Class

Traceability to SRS
WP-005, WP-006, WP-007, WP-008

Constants
N/A

Private data members

Name Type Description
Firepower integer Fire power of Weapon
precision double Weapon precision

Public functions

Name: CWCharge
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:
  firepower(0),

precision(0)

  End

Name: CWCharge
Input: int fp, double ps
Output: none
Description: constructor
Pseudo-code:



230

Begin
firepower = fp;
precision = ps;

      End

Name: setFirepower
Input:int fp
Output: none
Description:
Pseudo-code:

Begin:
firepower = fp;

  End

Name: setPrecision
Input: double ps
Output: none
Description:
Pseudo-code:

Begin:
precision = ps;

  End

Name: chargeTarget
Input:none
Output: bool
Description: check if the target was hit
Pseudo-code:

Begin:
double ram = rand()/(RAND_MAX+1);
if (ram > precision)
return false;     // The Weapon failed to hit the target
else
return true;      // The target was hit

      End

Name: detonateTarget
Input: baseClass *target
Output: bool
Description:
Pseudo-code:

Begin:
Switch on Ship type
Call hit() function of the BaseShip class;
Return true;
Default: return false;

  End

Name: ~CWCharge
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End



231

4.4.4.2.5 CWChargeController Class

Traceability to SRS
WP-005, WP-006, WP-007, WP-008

Constants
N/A

Private data members

Name Type Description
hitDet ChitDetect Hit detected object
Ch CWCharge* Weapon charge object
Asc CWActiveStateController * Weapon state controller object
MyFlag integer Enemy or friend
FirePower integer Fire power of Weapon
HitRange double Hit range of Weapon
WeaponType integer Type of Weapon
pObject baseClass* Target object

Private functions

Name: detonate
Input: baseClass *pO
Output: none
Description:
Pseudo-code:

Begin:
Detonate the Weapon;

      End

Public functions

Name: CWChargeController
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:

  End

Name: init
Input: TYPE_WEAPON id, int flag,

CWActiveStateController *pAsc
Output: none
Description: overload function
Pseudo-code:

Begin
WeaponType = id;
myFlag = flag;
asc = pAsc;
ch = (CWCharge *)NULL;



232

hitRange = 0;
firePower = 0;

      End

Name: checkDetonateRange
Input: double timeLen, Position curPos, Position nexPos
Output: integer
Description:
Pseudo-code:

Begin:
number = Call Detect.EmitReceive

Loop index from zero until index = number
If index is zero
Then
  Call Detect.getFirstDetect
Else

Call Detect.getNextDetect
Endif

   Type = Call Detect.getType
If IsTargetType(type) is false

   Then
Goto loop

Endif
objectPoint = Call Detect.getObjectPoint()
detonate( objectPoint )

End Loop
If the Weapon type of this controller is Cannon Shell
Then

CWActiveStateController.setState(INACTIVE)
return 1

Endif
if state is INACTIVE

Return 1
else

return 0;

End

Name: checkDetonateRange
Input: double timeLen, Position curPos, Position nexPos
Output: integer
Description:
Pseudo-code:

Begin:
number = Call Detect.EmitReceive

Loop index from zero until index = number
If index is zero
  Call Detect.getFirstDetect
Else
  Call Detect.getNextDetect
Endif

       Type = Call Detect.getType
If IsTargetType(type) is false
  Goto loop
Endif
objectPoint = Call Detect.getObjectPoint()
detonate( objectPoint )

End Loop
If the Weapon type of this controller is Cannon Shell



233

CWActiveStateController.setState(INACTIVE)
return 1;

Endif
if state is INACTIVE Return 1;
else return 0;

  End

Name: ~CWChargeController
Input: none
Output: none
Description: distructor
Pseudo-code:

Begin:
  End

4.4.4.2.6 CWPositionController Class

Traceability to SRS
WP-001, WP-002, WP-003

Constants
N/A

Private data members

Name Type Description
WCurrentPositon Position  current position

wDestinationPosition Position Destination position

wNextPosition Position next time slice position
wRoute double Route for this Weapon

WVelocity Velocity Cannon Shell and carrier
Weapons don't have Radar and
Sonar system.
other Weapons use Velocity
from
CWAutoAimController.getVeloc
ity()

wType TYPE_WEAPON Type of Weapon

CWRudder *rudderPt CWActiveStateController* None of Cannon shell
StaContrPt CWActiveStateController* Weapon active state control

object

Public functions

Name: CWPositionController
Input: none
Output: none
Description: default constructor



234

Pseudo-code:
Begin:

  wType(0),
rudderPt((CWRudder *)NULL),
staContrPt((CWActiveStateController *)NULL),
wRoute(0),
wCurrentPosition(INVALID_VEC),
wDestinationPosition(INVALID_VEC),
wNextPosition(INVALID_VEC)

  End

Name: CWPositionController
Input: TYPE_WEAPON id,CWActiveStateController *state
Output: none
Description: constructor For Cannon Shell
Pseudo-code:

Begin
wType(id),
rudderPt((CWRudder *)NULL),
staContrPt(state),
wRoute(0),
wCurrentPosition(INVALID_VEC),
wDestinationPosition(INVALID_VEC),
wNextPosition(INVALID_VEC)

      End

Name: CWPositionController
Input: TYPE_WEAPON id,CWActiveStateController *state,

CWRudder *rud
Output: none
Description: constructor For Auto Aimming Weapons: CWRudder to getVelocity
Pseudo-code:

Begin:
wType(id),
rudderPt(rud),
staContrPt(state),
wRoute(0),
wCurrentPosition(INVALID_VEC),
wDestinationPosition(INVALID_VEC),

wNextPosition(INVALID_VEC)

  End

Name: init
Input: TYPE_WEAPON id
Output: none
Description: function overloading, init is for Cannon Shell and init is for
carrier

Weapons

Pseudo-code:
Begin:
wRoute = 0;
wType = id;
staContrPt = state;

rudderPt = (CWRudder *)NULL;
//init for Auto Aimming Weapons
//Parameters TYPE_WEAPON id,CWActiveStateController *state,
CWRudder *rud



235

wRoute = 0;
wType = id;
staContrPt = state;
rudderPt = rud;

  End

Name: checkValidPosition
Input:none
Output: integer
Description:
Pseudo-code:
      Begin:

checks range for any Weapon. If it exceeds range, wActive is set to
INACTIVE.

checks condition for height
return 1;
else return 0;

      End

Name: updateNextPosition
nput: double newtime
Output: none
Pseudo-code:

Begin:
Call RudarController.getVelocity to get current
velocity.
Count new position according to current position, velocity and time.
Increase wRoute value.

  End

Name: updatePosition
Input: none
Output: none
Pseudo-code:

Begin:
if it is INACTIVE state, then don't change position. Next position is
calculated in updateNextPosition() only when updatePosition() is called,
currentPosition is updated by next position that is kept in

wNextPosition. It also increase wRoute when current position is changed.
  End

Name: ~CWPositionController
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End

4.4.4.2.7 CWActiveStateController Class

Traceability to SRS
WP-005, WP-006



236

Constants
N/A

Private data members

Name Type Description
wActive bool Weapon state(Alive or dead)

Public functions

Name: CWActiveStateController
Input: bool d_wActive
Output: none
Description: default constructor
Pseudo-code:

Begin:
  (wActive(d_wActive),

  End

Name: CWActiveStateController
Input: none
Output: none
Description: constructor
Pseudo-code:

Begin
wActive(false)

      End

Name: getState
Input:none
Output: bool
Description:
Pseudo-code:

Begin:
return wActive;

      End

Name: setState
Input: bool state
Output: integer
Pseudo-code:

Begin:
wActive = state;

return 0;

  End

Name: ~CWActiveStateController
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End



237

4.4.4.2.8 CWRudder Class

Traceability to SRS
WP-002, WP-003, WP-004

Constants

Name Type Value Description
doublePI const double 3.1415926;  radius of Circle

Private data members

Name Type Description
wpSpeed wSpeed Weapon speed (velocity) wSpeed is structure of speed
currentPos Vector Weapon current position
TargetPos Vector target position
currentRad double current steering angle
NewRad double new steering angle
Steering bool steering on/off
maxSpeed integer maxium Weapon speed (speed)

Public functions

Name: CWRudder
Input: int d_maxSpeed,double d_currentRad
Output: none
Description: constructor
Pseudo-code:

Begin:

maxSpeed(d_maxSpeed), currentRad(d_currentRad)

  End

Name: CWRudder
Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:
maxSpeed(0),currentRad(-1.0)

  End

Name: calcSpeed
Input: none
Output: none
Description:
Pseudo-code:

Begin:
set Weapon speed to 0 if targetpos equal to currentpos;
according to the Weapon's current position and target position, get the
new steering angle;
before Weapons are finally fired, steering will not be turned on.



238

especially for those topedos and Missiles lauched with carrier;
calculate distance between target position and current position;
calculate speed z;
calculate speed x;
calculate speed y;

End

Name: setCurrentPos
Input: Vector pos
Output: none
Description:
Pseudo-code:

Begin:
currentPos=pos;

  End

Name: setTargetPos
Input: Vector pos
Output: none
Description:
Pseudo-code:

Begin:
 targetPos=pos;

  End

Name: getSpeed
Input: none
Output: Vector
Description:
Pseudo-code:

Begin:
initialize speed;

      End

Name: setSteering
Input: bool st
Output: none
Description:
Pseudo-code:

Begin:
 steering=st;

      End

Name: setMaxSpeed
Input: int sp
Output: none
Description:
Pseudo-code:

Begin:
 maxSpeed=sp;

      End



239

4.4.4.2.9 WMissileAirAir Class

Traceability to SRS
AT-019, AT-020, CS-019, CS-020, DT-019, DT-020, BS-019, BS-020, SM-019,
SM-020.

Constants
N/A

Private data members

Name Type Description
Rudder CWRudder Weapon Rudder object
Charge CWCharge Weapon charge object
Radar CRadar Radar object

Public functions

Name: WMissileAirAir
Input: none
Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:

Begin:

initInstance(DEFAULT_FLAG);

   End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:

Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;

      End

Name: operator delete
Input: void * mem
Output: none
Description:
Pseudo-code:

Begin:
vector<baseClass*>::iterator first = SC::vpVehicles.begin(),last =
SC::vpVehicles.end(),it;
it = find(first, last, (baseClass*)mem);
if(it != last)

{::delete mem;
*it = NULL; // set mem = NULL
SC::setDelete();}



240

else cerr<<"Nothing can be deleted\n";
End

Name: ~WMissileAirAir
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End

4.4.4.2.10  WMissileAirSea Class

Traceability to SRS
AT-019, AT-020

Constants
N/A

Private data members

Name Type Description
Rudder CWRudder Weapon Rudder object
Charge CWCharge Weapon charge object
Radar CRadar Radar object

Public functions

Name: WMissileAirSea
Input: none
Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:

Begin:

initInstance(DEFAULT_FLAG);

  End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:

Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: operator new
Input: size_t
Output: none



241

Description:
Pseudo-code:

Begin:
int id=SC::getLastID(); // assign a new index to the new object
SC::vpVehicles.push_back(::new WMissileAirSea());
int sz = SC::vpVehicles.size();
SC::vpVehicles[sz-1]->setID(id);
SC::vpVehicles[sz-1]->setCheck(0);
SC::incrLastID();
SC::setNew();
return SC::vpVehicles[sz-1];

      End

Name: operator delete
Input: void * mem
Output: none
Pseudo-code:

Begin:
vector<baseClass*>::iterator first = SC::vpVehicles.begin(),last =
SC::vpVehicles.end(),it;
it = find(first, last, (baseClass*)mem);
if(it != last)
{

::delete mem;
*it = NULL; // set mem = NULL
SC::setDelete();

}
else cerr<<"Nothing can be deleted\n";

      End

Name: ~WMissileAirSea
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End

4.4.4.2.11 WMissileSeaAir Class

Traceability to SRS
CS-019, CS-020, BS-019, BS-020.

Constants
N/A

Private data members

Name Type Description
Rudder CWRudder Weapon Rudder object
Charge CWCharge Weapon charge object
Radar CRadar Radar object



242

Public functions

Name: WMissileSeaAir
Input: none
Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:

Begin:

initInstance(DEFAULT_FLAG);

  End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:

Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;

      End

Name: operator new
Input: size_t
Output: none
Description:
Pseudo-code:

Begin:
int id=SC::getLastID(); // assign a new index to the new object
SC::vpVehicles.push_back(::new WMissileAirSea());
int sz = SC::vpVehicles.size();
SC::vpVehicles[sz-1]->setID(id);
SC::vpVehicles[sz-1]->setCheck(0);
SC::incrLastID();
SC::setNew();
return SC::vpVehicles[sz-1];

      End

Name: operator delete
Input: void * mem
Output: none
Description:
Pseudo-code:
     Begin:

vector<baseClass*>::iterator first = SC::vpVehicles.begin(),last =
SC::vpVehicles.end(),it;
it = find(first, last, (baseClass*)mem);
if(it != last)
{

::delete mem;
*it = NULL; // set mem = NULL
SC::setDelete();

}
else cerr<<"Nothing can be deleted\n";
End



243

Name: ~WMissileSeaAir
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:
  End

4.4.4.2.12  WMissileSeaSea Class

Traceability to SRS
BS-019, BS-020

Constants
N/A

Private data members

Name Type Description
Rudder CWRudder Weapon Rudder object
Charge CWCharge Weapon charge object
Radar CRadar Radar object

Public functions

Name: WMissileSeaSea
Input: none
Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:

Begin:

initInstance(DEFAULT_FLAG);

  End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:

Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;

      End

Name: operator new
Input: size_t
Output: none
Description:
Pseudo-code:



244

Begin:
int id=SC::getLastID(); // assign a new index to the new object
SC::vpVehicles.push_back(::new WMissileAirSea());
int sz = SC::vpVehicles.size();
SC::vpVehicles[sz-1]->setID(id);
SC::vpVehicles[sz-1]->setCheck(0);
SC::incrLastID();
SC::setNew();
return SC::vpVehicles[sz-1];

      End

Name: operator delete
Input: void * mem
Output: none
Description:
Pseudo-code:

Begin:
vector<baseClass*>::iterator first = SC::vpVehicles.begin(),last =
SC::vpVehicles.end(),it;
it = find(first, last, (baseClass*)mem);
if(it != last)
{

::delete mem;
*it = NULL; // set mem = NULL
SC::setDelete();

}
else cerr<<"Nothing can be deleted\n";

      End

Name: ~WMissileSeaSea
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End

4.4.4.2.13 WMissileSeaSub Class

Traceability to SRS
DT-019, DT-020.

Constants
N/A

Private data members

Name Type Description
CarriedTorpedo Wtorpedo* Carriage Missile object



245

Public functions

Name: WMissileSeaSub
Input: none
Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:

Begin:

initInstance(DEFAULT_FLAG);

  End

Name: initInstance
Input: int flag
Output: none
Pseudo-code:

Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: operator new
Input: size_t
Output: none
Description:
Pseudo-code:

Begin:
int id=SC::getLastID(); // assign a new index to the new object
SC::vpVehicles.push_back(::new WMissileAirSea());
int sz = SC::vpVehicles.size();
SC::vpVehicles[sz-1]->setID(id);
SC::vpVehicles[sz-1]->setCheck(0);
SC::incrLastID();
SC::setNew();
return SC::vpVehicles[sz-1];
End

Name: operator delete
Input: void * mem
Output: none
Description:
Pseudo-code:

Begin:
  vector<baseClass*>::iterator first = SC::vpVehicles.begin(),last =
  SC::vpVehicles.end(),it;
  it = find(first, last, (baseClass*)mem);
if(it != last)
{

::delete mem;
*it = NULL; // set mem = NULL
SC::setDelete();

}
else cerr<<"Nothing can be deleted\n";
End



246

Name: ~WMissileSeaSub
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End

4.4.4.2.14 WtorpedoSubSea Class

Traceability to SRS
SM-019, SM-020.

Constants
N/A

Private data members

Name Type Description
carriedMissile WMissileSeaSea* Carriage Missile object

Public functions

Name: WtorpedoSubSea
Input: none
Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:

Begin:

initInstance(DEFAULT_FLAG);

  End

Name: initInstance
Input: int flag
Output: none
Pseudo-code:

Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: operator new
Input: size_t
Output: none
Pseudo-code:

Begin:
int id=SC::getLastID(); // assign a new index to the new object
SC::vpVehicles.push_back(::new WMissileAirSea());
int sz = SC::vpVehicles.size();
SC::vpVehicles[sz-1]->setID(id);



247

SC::vpVehicles[sz-1]->setCheck(0);
SC::incrLastID();
SC::setNew();
return SC::vpVehicles[sz-1];

End

Input: void * mem
Output: none
Description:
Pseudo-code:

Begin:
vector<baseClass*>::iterator first = SC::vpVehicles.begin(),last =
SC::vpVehicles.end(),it;
it = find(first, last, (baseClass*)mem);
if(it != last)
{

::delete mem;
*it = NULL; // set mem = NULL
SC::setDelete();

}
else

cerr<<"Nothing can be deleted\n";
End

Name: ~WtorpedoSubSea
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End

4.4.4.2.15 WcannonShell Class

Traceability to SRS
BS-019, BS-020

Constants
N/A

Private data members

Name Type Description
charge CWCharge* Weapon Charge Object

Public functions

Name: WcannonShell
Input: none
Output: none
Description: constructor derived from CWeapon Class



248

Pseudo-code:
Begin:

initInstance(DEFAULT_FLAG);

  End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:

Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;

      End

Name: operator new
Input: size_t
Output: none
Description:
Pseudo-code:

Begin:
int id=SC::getLastID(); // assign a new index to the new object
SC::vpVehicles.push_back(::new WMissileAirSea());
int sz = SC::vpVehicles.size();
SC::vpVehicles[sz-1]->setID(id);
SC::vpVehicles[sz-1]->setCheck(0);
SC::incrLastID();
SC::setNew();
return SC::vpVehicles[sz-1];

      End

Name: operator delete
Input: void * mem
Output: none
Description:
Pseudo-code:

Begin:
Vector<baseClass*>::iterator first = SC::vpVehicles.begin(),last =
SC::vpVehicles.end(),it;

  it = find(first, last, (baseClass*)mem);
if(it != last)
{::delete mem;

*it = NULL; // set mem = NULL
SC::setDelete()}

Else cerr<<"Nothing can be deleted\n";
      End

Name: ~WcannonShell
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

  End



249

4.4.4.2.16 Wtorpedo Class

Traceability to SRS
SM-019, SM-020.

Constants
N/A

Private data members

Name Type Description
Rudder CWRudder Weapon Rudder object
Charge CWCharge Weapon charge object
Sonar CSonar Sonar object

Public functions

Name: Wtorpedo
Input: none
Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:

Begin:

initInstance(DEFAULT_FLAG);

  End

Name: initInstance
Input: int flag
Output: none
Pseudo-code:

Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;

      End

Name: operator new
Input: size_t
Output: none
Pseudo-code:

Begin:
int id=SC::getLastID(); // assign a new index to the new object
SC::vpVehicles.push_back(::new WMissileAirSea());
int sz = SC::vpVehicles.size();
SC::vpVehicles[sz-1]->setID(id);
SC::vpVehicles[sz-1]->setCheck(0);
SC::incrLastID();
SC::setNew();
return SC::vpVehicles[sz-1];

      End

Name: operator delete



250

Input: void * mem
Output: none
Description:
Pseudo-code:

Begin:
  vector<baseClass*>::iterator first = SC::vpVehicles.begin(),last =
  SC::vpVehicles.end(),it;
  it = find(first, last, (baseClass*)mem);

        if(it != last)
{

::delete mem;
*it = NULL; // set mem = NULL
SC::setDelete();

}
else cerr<<"Nothing can be deleted\n";

      End

Name: ~Wtorpedo
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:
  End



251

5. System Testing

We use white-box testing to test all the functions for all the subsystem, <<Test
data>> is input of test cases, <<Expected result>> is expected output from
<<Test data>>, which is shown on the screen.  The <<traceability>> traces the
test case specific requirements.

Test cases are derived based on major functions in each class Knowledge of
algorithms used to implement functions is used to identify equivalence partition.
Most of the cases, path testing is used. If test cases of a function are complex,
the function will be listed separately from other simpler functions.

5.1 Unit Testing

The units in the project are defined as functional components within modules.  All
functional components should be verified individually. Unit tests are conducted
on each individual functional component to ensure that it is as clean as possible
before we move on to more complex, multi-component integration.  The goals of
these tests are to verify data integrity, proper hyperlink connection and database
access.

Testing Tasks
• Test preparation: read the Detailed Design Document, SRD; Design the

Module testing plan and test cases; design test design specifications, test
procedures.

• Design test drivers for each bottom up testing. Isolate the testing Module from
other modules, prepare the methods for recording data output.

• Execute test cases according to the specified test procedure, record the
testing result, find the defects, and solve the problem, and then retest the
suspended test.

Test Methods

Unit Static testing
Objective Identifying coding errors
Technique Code inspection

All inspection questions must be checked
Completion criteria Every line of code has been inspected

And each kind of error in the check list  has been checked
and corrected

Special
considerations

None

Table 5-1 Unit Static testing



252

Unit Dynamic testing
Objective Ensure that the internal functions of each component

appear to be working correctly
Ensure that proper input processing and data integrity
have followed the rules

Technique Both white box testing and black box testing will be used
For each data integrity and access rule, at least one test
script should be created for testing

Completion criteria All test cases must be executed
No high priority or severity defects are found

Table 5-2 Unit Dynamic testing

Here, for every class, we choose some important functions to test and some
simple functions are ignored. Testing is done on major functions in all the class
by choosing some significant data as input and observing if the expected output
results appear.

5.1.1 Unit Testing for Simulation Controller

These test case are mainly for test the class functions includes: SetUpDlg,
Controller, and other classes.

5.1.1.1 Unit Test Case for SetUpDlg Class Functions

5.1.1.1.1 Unit Test Cases and Results

Function Name: Draw
Objective: test the overlap and out of range
Test Case # Test Data Expected Result  Traceability

Bitmap:1
X:300 Y:300

TC_SC-001

Bitmap:1
X:300 Y:300

No overlap SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

Bitmap:1
X:500 Y:500

TC_SC-002

Bitmap:2
X:500 Y:500

No overlap SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

Bitmap:2
X:400 Y:400

TC_SC-003

Bitmap:2
X:400 Y:400

No overlap SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

TC_SC-004 Bitmap:1
X:729 Y:599

Within region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

TC_SC-005 Bitmap:1
X:729 Y:600

Out of region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

TC_SC-006 Bitmap:1
X:730 Y:600

Out of region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

TC_SC-007 Bitmap:2
X:130 Y:0

Within region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02



253

TC_SC-008 Bitmap:1
X:130 Y:599

Within region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

TC_SC-009 Bitmap:1
X:729 Y:0

Within region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

TC_SC-010 Bitmap:1
X:100 Y:100

out of region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

TC_SC-011 Bitmap:1
X:200 Y:700

Out of region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

TC_SC-012 Bitmap:2
X:100 Y:700

Out of region SC-001, SC-002, SC-007, SC-008, SC-
008-01, SC-008-02

Table 5-3 Unit Test Case for SetUpDlg Draw function

Function Name: Undo
Objective: test the undo for the ship object
Test Case # Test Data Expected Result Traceability
TC_SC-013 Destroyer properly SC-001
TC_SC-014 Submarine properly SC-001
TC_SC-015 Cruiser properly SC-001
TC_SC-016 Destroyer,Submarine,Cruiser,Battleship Undo correctly SC-001
TC_SC-017 Destroyer,Destroyer,Destroyer,Destroyer Undo correctly SC-001
TC_SC-018 No input No undo SC-001

Table 5-4 Unit Test Case for SetUpDlg Undo function

5.1.1.1.2 Error Reports

a) Window is flashing when undo. We changed the called OnPaint( ) function by draw()
function.

b) The image is drawn overlap for test case 2. We construct a 15*15 matrix and
trace each image sizing 40 by 40 pixels,

c) Image out of map for test case 4. We set image position x, y into  the top-left
of each cell. It is solved problem.

5.1.1.2 Unit Test Case for Controller Class Functions

5.1.1.2.1 Unit Test Cases and Results

Function Name: LoadTGA
Objective: load the image file
Test
Case #

Test Data Expected Result Trace-ability

TC_SC-019 image_tga/Weapon_red.tga Output “image load successful” and
display red Weapon on screen

SC-009, SC-010

TC_SC-020 image_tga/Weapon.tga Output “Load image failure!” SC-009,SC-010
TC_SC-021 image_tga/Weapon_red1.tga Output “Load image failure!” SC-009, SC-010
TC_SC-022 image_tga/Weapon_red1.bmp Output “Load image failure!” SC-009, SC-010

Table 5-5 Unit Test Case for Controller LoadTGA  function



254

Function Name: calDir
Objective: To test the calculation of direction vector
Test Case # Test Data Expected Result Traceability
TC_SC-023 Vector(10.0, 10.0, 0),

Vector(10.0, 10.0, 0)
9.0f (as flag) SC-013, SC-013-01, SC-013-02,

SC-013-03,SC-014
TC_SC-024 Vector(10.0, 10.0, 0),

Vector(10.0, 20.0, 0)
PI/2.0f SC-013, SC-013-01, SC-013-02,

SC-013-03, SC-014
TC_SC-025 Vector(10.0, 10.0, 0),

Vector(10.0, 0.0, 0)
3.0*PI/2.0f SC-013, SC-013-01, SC-013-02,

SC-013-03,SC-014
TC_SC-026 Vector(10.0, 10.0, 0),

Vector(0.0, 10.0, 0)
PI SC-013, SC-013-01, SC-013-02,

SC-013-03,SC-014
TC_SC-027 Vector(10.0, 10.0, 0),

Vector(20.0, 10.0, 0)
0.0f SC-013, SC-013-01, SC-013-02,

SC-013-03,SC-014
TC_SC-028 Vector(0.0, 0.0, 0),

Vector(10.0, 10.0, 0)
PI/4.0f SC-013, SC-013-01, SC-013-02,

SC-013-03,SC-014
TC_SC-029 Vector(0.0, 0.0, 0),

Vector(-10.0, 10.0, 0)
3*PI/4.0f SC-013, SC-013-01, SC-013-02,

SC-013-03,SC-014
TC_SC-030 Vector(0.0, 0.0, 0),

Vector(-10.0, -10.0, 0)
5*PI/4.0f SC-013, SC-013-01, SC-013-02,

SC-013-03,SC-014
TC_SC-031 Vector(0.0, 0.0, 0),

Vector(10.0, -10.0, 0)
7*PI/4.0f SC-013, SC-013-01, SC-013-02,

SC-013-03,SC-014

Table 5-6 Unit Test Case for Controller calDir function

Function Name: OnKeyDown
Objective: To test the mouse key down function

Test Case # Test Data Expected Result Traceability
TC_SC-032 Press key “F12” Images get bigger SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02
TC_SC-033 Press key “F11” Images get smaller SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02
TC_SC-034 Press key “fl” Images move left SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02
TC_SC-035 Press key “‡” Images move right SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02
TC_SC-036 Press key “·” Images move up SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02
TC_SC-037 Press key “‚” Images move down SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02
TC_SC-038 Press key “space”

and “a” and “1”
Image position no change SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02
TC_SC-039 Vector(0.0, 0.0, 0),

Vector(-10.0, -10.0, 0)
5*PI/4.0f SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02
TC_SC-040 Vector(0.0, 0.0, 0),

Vector(10.0, -10.0, 0)
7*PI/4.0f SC-001, SC-006, SC-007, SC-

008, SC-008-01, SC-008-02

Table 5-7 Unit Test Case for Controller OnKeyDown function

5.1.1.2.2 Error Reports

None



255

5.1.1.3 Other Unit Test Through User Interaction

Other units related to UI and receivers, setters are tested through user interaction
and execution of the program.  Traceability for this test case are: SC-003, SC-
004, SC-005, SC-006, SC-012, SC-016, SC-017, SC-018, SC-019.

Class Controller Class SetUpDlg Class SC
drawVehicles();
SetupPixelFormat();
OnRButtonUp();
pauseSimulation();
resumeSimulation();
startSimulation();
endSimulation();

OnLButtonDown();
OnClickAircraftcarrierB();
OnClickAircraftcarrierR();
OnClickBattleshipB();
OnClickBattleshipR();
OnClickCruiserB();
OnClickCruiserR();

OnClickDestroyerB();
OnClickDestroyerR();
OnClickSubmarineB();
OnClickSubmarineR();
OnPaint();
OnClearall();

OnStartSetup();

Table 5-8 Other Unit Test Through User Interaction

5.1.1.3.1 Error Reports

None

5.1.2 Unit Testing for Communication/Detection

Test cases for testing the class functions includes: CDetected, CRadar,
CdetectedDatabase. CSonar, CMessage, CMessageDatabase, and CRadio.

5.1.2.1 Unit Test Case for CDetcted Class Functions

5.1.2.1.1 Unit Test Cases and Results

Function Name: setDetData
Objective: To do correct downcasting according to the type of detected object
Test Case Test Data Expected Result Traceability
TC_CD-001 Poiner to AC

state=0 or state = 1
AircraftCarrier ( ID, type, flag,
Powerswitch=0, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-002 Poiner to Aircraft,
state=0

Aircraft (ID,type, flag,
powerswitch=0, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-003 Poiner to Aircraft,
state=1

Aircraft ( ID, type, flag,
Powerswitch=1, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-004 Poiner to
Destroyer,  state=0

Destroyer ( ID, type, flag,
Powerswitch=0, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-005 Poiner to
Destroyer,  state=1

Destroyer (ID, type, flag,
Powerswitch=1, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-006 Poiner to Cruiser,
state=0

Cruiser (ID, type, flag,
powerswitch=0, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-007 Poiner to Cruiser,
state=1

Cruiser ( ID, type, flag,
Powerswitch=1, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-008 Poiner to
Battleship, state=0

Battleship (ID, type, flag,
powerswitch=0, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-009 Poiner to
Battleship, state=1

Battleship (ID, type, flag,
powerswitch=1, pos,velocity )

CD-004, CD-004-01, CD-004-02



256

TC_CD-010 Poiner to
Submarine state=0

Cruiser (ID, type, flag,
powerswitch=0, pos,velocity )

CD-008, CD-008-01, CD-008-02

TC_CD-011 Poiner to
Submarine, state=1

Submarine (ID, type, flag,
powerswitch=1, pos,velocity )

CD-008, CD-008-01, CD-008-02

TC_CD-012 Poiner to missle,
state=0 or state=1

Missile ( ID, type, flag,
Powerswitch=1, pos,velocity )

CD-004, CD-004-01, CD-004-02

TC_CD-013 Poiner to any other
state=0 or stat =1

Object ( ID, type, flag,
Powerswitch=0, pos,velocity )

CD-004, CD-004-01, CD-004-02

Table 5-9 Unit Test Case for Cdetccted setDetData function

Function Name: ostream& operator <<  overloading
Objective: To overloading operator << to output  CDetected object
Test Case # Test Data Expected Result Traceability
TC_CD-014 CDetected   Object Output  object’s ID, flag, type,

pos (x,y,z) and velocity (x,y,z)
CD-004,
CD-008

Table 5-10 Unit Test Case for CDetccted operator <<  overloading
function

5.1.2.1.2 Error Reports

None

5.1.2.2 Unit Test Case for CDetectedDatabase Class Functions

5.1.2.2.1 Unit Test Cases and Results

Function Name: DeleteAll
Objective: To delete old detected object inside the Radar’s (Sonar’s) database
Test Case # Test Data Expected Result Traceability
TC_CD-015 Delare Radar (Sonar)

object and call
emitReceive two times

The number of detected object
calling the second time is same
as that calling in the first time

CD-004,
CD-008

Table 5-11 Unit Test Case for CDetcctedDatabase DeleteAll function

Function Name: : addDetected
Objective: To add the object that is within the Radar (Sonar) range to Radar’s
(Sonar’s)  database list.
Test Case # Test Data Expected Result Traceability
TC_CD-016 CDetected object There is an error message to

indicate the input should be
constant type

CD-004,
CD-008

TC_CD-017 The pointer of
CDetected object

Insert the pointer of CDetected
object to database

CD-004,
CD-008

Table 5-12 Unit Test Case for CDetcctedDatabase addDeleted function

5.1.2.2.2 Error Reports

None



257

5.1.2.3 Unit Test Case for CRadar Class Functions

5.1.2.3.1 Unit Test Cases and Results

Function Name: EmitReceive
Objective: To get detected objects within Radar’s range, and save them in the
database.
Test Case # Test Data Expected Result Traceability
TC_CD-018 State = 0 Output message to user:

“ Radar is turned off, no
object can be detected ”

CD-004

TC_CD-019 State = 1 and
Range  = 0

Output error message to
user “ Radar’s range
can’t be less or equal to
zero ”

CD-004

TC_CD-020 State = 1 and
Range = -1

Output error message to
user “ Radar’s range
can’t be less or equal to
zero “

CD-004

TC_CD-021 State = 1 and
Range =10  and
type=3  or type =8

Output the number of
detected object and  a
list of pointer to detected
objects.

CD-004

TC_CD-022 State = 1 and
Range =10 and
type != 3  or type != 8

the number of detected
object  is zero. the list of
pointer to detected
objects is empty

CD-004

Table 5-13 Unit Test Case for CRadar EmitReceive function

5.1.2.3.2 Error Reports

None

5.1.2.4 Unit Test Case for CSonar Class Functions

5.1.2.4.1 Unit Test Cases and Results

Function Name: EmitReceive
Objective: To get detected objects within Sonar’s range, and save them in the
database.
Test Case # Test Data Expected Result Traceability
TC_CD-023 State = 0 Output message to user:

“ Somar is turned off, no
object can be detected ”

CD-008

TC_CD-024 State = 1 and
Range  = 0

Output error message to user
“ Sonar’s range can’t be less
or equal to zero ”

CD-008

TC_CD-025 State = 1 and
Range = -1

Output error message to user
“ Sonar’s range can’t be less
or equal to zero “

CD-008



258

TC_CD-026 State = 1 and
Range =10  and
type=3  or
type =8

Output the number of
detected object and  a  list of
pointer to detected objects.

CD-008

TC_CD-027 State = 1 and
Range =10 and
type != 3  or
type != 8

the number of detected object
is zero and  the list of  pointer
to detected objects is empty

CD-008

Table 5-14 Unit Test Case for CSonar EmitReceive function

5.1.2.4.2 Error Reports

None

5.1.2.5 Unit Test Case for CMessage Class Functions

5.1.2.5.1 Unit Test Cases and Results

Function Name: validToSend
Objective: To check that the message is valid to send or not.

Test Case # Test Data Expected Result Traceability
TC_CD-028 Pointer to the vehicle’s base

class set as parameter to the
Cmessage object

True is returned CD-011

TC_CD-029 Pointer to the vehicle’s base
class NOT set as parameter to
the Cmessage object

False is returned
CD-011

Table 5-15 Unit Test Case for CMessage validToSend function

Function Name: updateSenderInfo
Objective: To update the sender’s Id, type and position

Test Case # Test Data Expected Result Traceability
TC_CD-030 Pointer to the vehicle’s base

class set as parameter to the
Cmessage object

Sender’s Id is updated.
Sender’s Type is updated.
Sender’s Position is updated.

CD-011

TC_CD-031 Pointer to the vehicle’s base
class NOT set as parameter to
the Cmessage object

 Function is not called CD-011

Table 5-16 Unit Test Case for CMessage validToSend function

5.1.2.5.2 Error Reports

None



259

5.1.2.6 Unit Test Case for CMessageDatabase Class Functions

5.1.2.6.1 Unit Test Cases and Results

Function Name: DeleteMyMessages
Objective: To delete all the messages from the database of messages corresponding
to the Radio calling this function.
Test Case # Test Data Expected Result Traceability
TC_CD-032 Receiver’s Id is the Radio’s Id

and is passed as parameter
All messages belonging to
the Radio’s id are deleted
from the message database.

CD-012

TC_CD-033 Receiver’s Id IS NOT the Radio’s
Id and is passed as parameter

No messages are deleted. CD-012

Table 5-17 Unit Test Case for CMessage validToSend function

Function Name: DeleteAllMsg
Objective: To delete all the messages from the database of messages

Test Case # Test Data Expected Result Traceability
TC_CD-034 Function Call All messages from the

message database are
deleted.

CD-012

Table 5-18 Unit Test Case for CMessage DeleteAllMsg function

Function Name: AddOneMsgIntheList
Objective: To add one message in the message database
Test Case # Test Data Expected Result Traceability
TC_CD-035 CMessage object sent for

broadcast.
The message is added
in the database for all
the receivers.

CD-012

TC_CD-036 CMessage object sent for a
specific receiver.

The message is added
in the database for the
specific receiver.

CD-012

Table 5-19 Unit Test Case for CMessage AddOneMsgIntheList function

Function Name: GetMyMsg
Objective: To retrieve one message from the message database.

Test Case # Test Data Expected Result Trace-
ability

TC_CD-037 Radio id = receiver id and is
different from sender id.

 A message object is returned. CD-012

TC_CD-038 Radio’s id != receiver’s id but is
still different from  sender’s id.

A default message object with data
set to default values (0) is returned

CD-012

TC_CD-039 Radio’s id != receiver’s id and is
not different from sender’s id.

A default message object with data
set to default values (0) is returned

CD-012

TC_CD-040 Radio’s id = id and is not
different from the sender’s id.

A default message object with data
set to default values (0) is returned

CD-012

Table 5-20 Unit Test Case for CMessage GetMyMsg function



260

5.1.2.6.2 Error Reports

None

5.1.2.7 Unit Test Case for CRadio Class Functions

5.1.2.7.1 Unit Test Cases and Results

Function Name: DeleteMessages
Objective: To delete all the messages from the database of messages corresponding
to the Radio calling this function.
Test Case # Test Data Expected Result Trace-

ability
TC_CD-041 Function call Call to function DeleteMyMessages of

CMessageDatabase class (refer to
CMessageDatabase class).

CD-010
CD-012

Table 5-21 Unit Test Case for CRadio DeleteMessages function

Function Name: SendMessage
Objective: To add one message in the message database.

Test Case # Test Data Expected Result Trace-
ability

TC_CD-042 CMessage object is
passed as parameter.

Call to function AddOneMsgIntheList of
CMessageDatabase class (refer to
CMessageDatabase class).

CD-011

Table 5-22 Unit Test Case for CRadio SendMessage function

Function Name: ReceiveMessage
Objective: To retrieve one message from the message database.
Test Case # Test Data Expected Result Trace-

ability
TC_CD-043 Function call Call to function GetMyMsg of

CMessageDatabase class (refer to
CMessageDatabase class).

CD-012

 Table 5-23 Unit Test Case for CRadio ReceiveMessages function

5.1.2.7.2 Error Reports

None



261

5.1.3 Unit Testing for All Vehicles

Classes Ship or Aircraft are all derived from the class: BaseShip class, a class
for all vehicles. It is responsible to initialize all classes used in the ship or Aircraft
subsystem, including Captain, NavigationOfficer, RadioOfficer, WeaponOfficer,
WeaponLauncher and onboard Radar/Sonar and Radio.  All the derived class
includes AircraftCarrier, Aircraft, Battleship, Cruiser, Destroyer, and Submarine.
The general test case for these class are described in the table of test case, only
the special test case scenario is described in bold for some subsystems.

5.1.3.1 Unit Test Case for Derived BaseShip Class Functions

5.1.3.1.1 Unit Test Cases and Results

Function Name: Constructor(Battleship as example)
Objective: Construct instance using default constrcutor Battleship() and construct an
instance with initialized values using constructor Battleship(char fl, Vector cPos,
Vector dPos)
Test Case # Test Data Expected Result Traceability
TC_BS-001 Battleship() ; 1)N_officer created.

2)Captain created : flag=’B’,
type=5, resistence=300,
active=true, time_counter=0.
3) Radar created :
id=myID,radius=75.
4) BRadarOfficer created .
5) BRadioOfficer created :
type=5.
6) Radio created : id=myID.
7) BWeaponOfficer created.
8) BWeaponLauncher created.

SC-001, SC-002,
BS-001

TC_BS-002 Battleship(‘R’,
Vector(2,2,0),Vector
(5,5,0))

1)N_officer created :
curr_position=Vector(2,2,0),
temp_position=Vector(5,5,0).
2)Captain created : flag=’R’,
type=5, resistence=300,
active=true, time_count=0.
3)Radar created : id=myID,
radius=75.
4)BRadarOfficer created.
5)BRadioOfficer created :
type=5.
6)Radio created : id=myID.
7)BWeaponOfficer created.
8)BWeaponLauncher created.

SC-001, SC-002,
BS-001

Table 5-24 Unit Test Case for Derived BaseShip Constructor function



262

Function Name: updateStatus, resistanceRecovery
Objective: When resistance<RECOVERABLE_RESISTANCE, or resistance>
RECOVERABLE_RESISTANCE, but time not being hit again is longer than minumim
(5400) to check ship or Aircraft can or can not recover. (T : time not attacked by
enemy)
Test Case # Test Data Expected Result Traceability
TC_BS-003 Resistance= 190.

T = 5600.
Resistance=190.
IsActive = ture.

BS-024 to BS-031
BS-032 to BS-034

TC_BS-004 Resistance =201
T = 5399

Resistance=201.
IsActive = ture.

BS-024 to BS-031
BS-032 to BS-034

TC_BS-005 Resistance = 201
T = 5401

Resistance=300
IsActive = ture.

BS-024 to BS-031
BS-032 to BS-034

Table 5-25 Unit Test Case for Derived BaseShip updateStatus and resistanceRecovery  function

5.1.3.1.2 Error Reports

None

5.1.3.2 Unit Test Case for Captain Class Functions

5.1.3.2.1 Unit Test Cases and Results

Function Name: ifAttack
Objective: analyzing the situation, and making decision whether and which enemy
should  be attacked.
Test Case # Test Data Expected Result Traceability
TC_BS-006 enemy_list = NULL or

dist = 120000
return false BS-015

TC_BS-007 sea_enemy_count = 0 return false BS-015
TC_BS-008 sea_enemy_count = 2,

dist = 90000,
wtype = 0 , cQty = 50
OR
sea_enemy_count = 2,
dist = 90000,
wtype = 1 , mQty = 10

return attack = true BS-015

TC_BS-009 sea_enemy_count = 2,
dist = 90000,
mQty = 0, cQty = 0

Return attack = flase
BS-015

Table 5-26 Unit Test Case for Derived Captain ifAttack function

Function Name: isOntheway, adjustNavigation
Objective: calculating the distance between this Battleship and object detected.
Test Case # Test Data Expected Result Traceability
TC_BS-010 pos = vector (50, 30, 0)

my_pos = vector(40, 20, 0)
return dist = 80.62 BS-001 to BS-003

Table 5-27 Unit Test Case for Derived Captain : isOntheway, adjustNavigation function



263

5.1.3.2.2 Error Reports

None

5.1.3.3 Unit Test Case for NavigationOfficer Class Functions

5.1.3.3.1 Unit Test Cases and Results

Function Name: adjustSpeed
Objective: The expected result are calculated according to the following data :
curr_position=Vector(3,1,0), velocity=Vector(0,-3,0)
Test
Case #

Test Data Expected Result Traceability

TC_BS-011 nofficer3.
adjustSpeed(40,80,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-139,0)
velocity=Vector(0,-70,0)

BS-001 to BS-003

TC_BS-012 nofficer3.
adjustSpeed(30,80,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-125,0)
velocity=Vector(0,-63,0)

BS-001 to BS-003

TC_BS-013 nofficer3.
adjustSpeed(40,60,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-119,0)
velocity=Vector(0,-60,0)

BS-001 to BS-003

TC_BS-014 nofficer3.
adjustSpeed(40,80,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-85,0)
velocity=Vector(0,-43,0)

BS-001 to BS-003

TC_BS-015 nofficer3.
adjustSpeed(-2,-1,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,1,0)
velocity=Vector(0,0,0)

BS-001 to BS-003

TC_BS-016 nofficer3.
adjustSpeed(-2,-1,1)

curr_position=Vector(3,1,0)
temp_position=Vector(3,0,0)
velocity=Vector(0,-1,0)

BS-001 to BS-003

TC_BS-017 nofficer3.
adjustSpeed(-2,-1,1)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-1,0)
velocity=Vector(0,-2,0)

BS-001 to BS-003

TC_BS-018 nofficer3.
adjustSpeed(-1.2,1,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-1,0)
velocity=Vector(0,-1,0)

BS-001 to BS-003

TC_BS-019 nofficer3.
adjustSpeed(-1.2,9,2)

error message
temp_position=curr_postion=Vector(3,1,0)
velocity=Vector(0,-3,0)

BS-001 to BS-003

TC_BS-020 nofficer3.
adjustSpeed(2,1,2)

error message
temp_position=curr_postion=Vector(3,1,0)
velocity=Vector(0,-3,0)

BS-001 to BS-003

Table 5-28 Unit Test Case for NavigationOfficer adjustSpeed function



264

Function Name: other functions
Objective: Test the others function(in bold font)

Test
Case #

Test Data Expected Result Trace-
ability

TC_BS-021 Bnavigation nofficer1() ;
BNavigationOfficer() function

curr_position=Vector(0,0,0)
temp_postiion=Vector(0,0,0)
velocity=Vector(0,0,0)

BS-001 to
BS-003

TC_BS-022 BNavigationOfficer
nofficer2(
Vector(2,2,0),Vector,(5,5,0),Vector(1,3,0))
BNavigationOfficer (
Vector curPos,Vector desPos,Vector spd)

curr_position=Vector(2,2,0)
temp_postiion=Vector(5,5,0)
velocity=Vector(1,3,0)

BS-001 to
BS-003

TC_BS-023 BNavigationOfficer
nofficer2(
Vector(2,2,0),Vector(5,5,0),Vector(70,70,0))
BNavigationOfficer (
Vector curPos,Vector desPos,Vector spd)

curr_position=Vector(2,2,0)
temp_postiion=Vector(5,5,0)
velocity=Vector(49.4975,49.4975,0)

BS-001 to
BS-003

TC_BS-024 BNavigationOfficer
nofficer3(Vector(2,2,0), Vector(5,5,0))
BNavigationOfficer (
Vector curPos, Vector desPos);

curr_position=Vector(2,2,0)
temp_postiion=Vector(5,5,0)
velocity=Vector(49.4975,49.4975,0)

BS-001 to
BS-003

TC_BS-025 None
~BNavigationOfficer();

main() runs without error. BS-001 to
BS-003

TC_BS-026 nofficer3.getPosition() ;
getPosition()

Vector(2,2,0) BS-013 to
BS-018

TC_BS-027 nofficer3.getVelocity() ;
getVelocity()

Vector(7.07107,7.07107,0) BS-013 to
BS-018

TC_BS-028 nofficer3.setPosition(Vector(3,1,0))
setPosition(Vector pos)

curr_position=Vector(3,1,0) BS-013 to
BS-018

TC_BS-029 nofficer3.setVelocity(Vector(60,80,0))
setVelocity(Vector spd)

Velocity=Vector(42,56,0) BS-013 to
BS-018

TC_BS-030 nofficer3.setVelocity(Vector(4,3,0))
setVelocity(Vector spd)

Velocity=Vector(4,3,0) BS-013 to
BS-018

TC_BS-031 nofficer3.cruise(Vector(3,1,0),1)
cruise(Vector targetPos, double t)
cruise(Vector targetPos, double t)

curr_position=Vector(3,1,0)
temp_position=Vector(3,1,0)
velocity=Vector(0,0,0)

BS-013 to
BS-018

TC_BS-032 nofficer3.cruise(Vector(3,-3,0),1)
cruise(Vector targetPos, double t)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-2,0)
velocity=Vector(0,-3,0)

BS-013 to
BS-018

TC_BS-033 nofficer3.steer(0.1) steer(a) curr_position=Vector(3,1,0)
temp_position=Vector(3,1,0)
original velocity=Vector(0,-3,0)
velocity=Vector(-2.98501,-0.2995,0)

BS-013 to
BS-018

TC_BS-034 nofficer3.setVelocity (Vector (0, -3,0))
nofficer3.adjustSpeed(30,80,2)
nofficer3.updatePosition() ; updatePosition()

curr_position=Vector(3,1,0)
temp_position=Vector(3,-125,0)
velocity=vector00,-63,0)

BS-013 to
BS-018

Table 5-29 Unit Test Case for NavigationOfficer other function



265

5.1.3.4 Unit Test Case for RadioOfficer Class Functions

5.1.3.4.1 Unit Test Cases and Results

Because it is difficult to test this unit without simulating the communication class,
this unit test will be done in subsystem testing case.

5.1.3.4.2 Error Reports

None

5.1.3.5 Unit Test Case for Radar/SonarOfficer Class Functions

5.1.3.5.1 Unit Test Cases and Results

Because it is difficult to test this unit without simulating the communication class,
this unit test will be done in subsystem testing case.

5.1.3.5.2 Error Reports

None

5.1.3.6 Unit Test Case for WeaponOfficer Class Functions

5.1.3.6.1 Unit Test Cases and Results

Function Name: prepareAttack
Objective: For each test case, some critical data are chosen as input and the output
results are to be compared with the expected results.
Test
Case #

Test Data Expected Result Trace-
ability

TC_BS-035 In every time i,
cp=Vector(i,i,0),
tp=Vector(26+i,26+i,0)ts=Vect
or(20,20,0)
tid=1, ct=10+5*i

After 5 times call, the object of
WeaponLauncher be called and the
cannon shell sent,
8 times, sent again

BS-019 to
BS-023

TC_BS-036 In every time i,
cp=Vector(i,i,0),
tp=Vector(27+i,27+i,0)
ts=Vector(20,20,0),
tid=1, ct=10+10*i

After 4 times call, the object of
WeaponLauncher be called and a Missile
sent, 7 time  calls, sent again.

BS-019 to
BS-023

TC_BS-037 In every time i,
cp=Vector(i,i,0),
tp=Vector(80+i,80+i,0)
ts=Vector(20,20,0),
tid=1, ct=10+10*i

After 4 times call, the object of
WeaponLauncher be called and a Missile
sent, 7 time  calls, sent again.

BS-019 to
BS-023

TC_BS-038 In every time i,
cp=Vector(i,i,0),
tp=Vector(85+i,85+i,0)
ts=Vector(20,20,0),
tid=1, ct=10+10*i

The object of
WeaponLauncher is not called, so
neither cannon shells nor misslies is
launched.

BS-019 to
BS-023



266

TC_BS-039 In every time i,
cp=Vector(i,i,0),
tp=Vector(26+i,26+i,0)
tp=Vector(27+i,27+i,0)
ts=Vector(20,20,0),
tid=1, ct=10+10*i

The object of
WeaponLauncher is not called, so
neither cannon shells nor misslies is
launched.

BS-019 to
BS-023

TC_BS-040 In every time i,
cp=Vector(i,i,0),
tp=Vector(26+i,26+i,0)
ts=Vector(20,20,0),
tid=1, then tid=2, ct=10+10*i

The object of BWeaponLauncher is not
called, so no  cannon shells are
launched.

BS-019 to
BS-023

Table 5-30 Unit Test Case for WeaponOfficer prepareAttack function

Function Name: selectWeapon
Objective: For each test case, some critical data are chosen as input and the output
results are to be compared with the expected results.
Test Case # Test Data Expected Result Traceability
TC_BS-041 cp=Vector(0, 0, 0),

tp=Vector(26, 26, 0)
 cannon_qty=4.

return value is 1. BS-019

TC_BS-042 cp=Vector(0, 0, 0),
tp=Vector(26, 26, 0),
cannon_qty=2.

return value is -1. BS-019

TC_BS-043 cp=Vector(0, 0, 0),
tp=Vector(27, 27, 0),
Missile_qty=1.

return value is 0. BS-019

TC_BS-044 cp=Vector(0, 0, 0),
tp=Vector(27, 27, 0),
Missile_qty=0.

return value is -1. BS-019

TC_BS-045 cp=Vector(0, 0, 0),
tp=Vector(80, 80, 0),
Missile_qty=1.

return value is 0. BS-019

TC_BS-046 cp=Vector(0, 0, 0),
tp=Vector(85, 85, 0),
Missile_qty=1.

return value is 0 BS-019

Table 5-31 Unit Test Case for WeaponOfficer selectWeapon function

5.1.3.6.2 Error Reports

a) In the test of the prepareAttack function, we observed that when enemy was
the fire range of Missiles, after the latency time for launching Missiles was
arrived, there were no Missile launched. After examining the code, we found
that there was an error in calculating the latency time for Missile launching.

b) In the test of the selectWeapon function, we found that it might cause
confusion if using return value 0 to represent two cases when Missile was
selected and neither Missile nor cannon was selected. We add a return value
–1 which represent the neither Missile nor cannon selection case.



267

5.1.3.7 Unit Test Case for WeaponLauncher Class Functions

5.1.3.7.1 Unit Test Cases and Results

Function Name: aimByBallistic
Objective: For each case, some significant or critical data are inputted and the output
results are to be compared with the expected results
Test Case # Test Data Expected Result Traceability
TC_BS-047 cp=Vector(0, 0, 0),

tp=Vector(12, 13, 0) ,
ts=Vector(10, 20,0),

dx=10/3600*t+12
dy=20/3600*t+13

CS-021, DT-021,
SM-021, AT-021

TC_BS-048 cp=Vector(0, 0, 0),
tp=Vector(18, 20, 0) ,
ts=Vector(20,15,0),

dx=20/3600*t+18
dy=15/3600*t+20

CS-021, DT-021,
SM-021, AT-021

TC_BS-049 cp=Vector(0, 0, 0),
tp=Vector(25, 28, 0) ,
ts=Vector(15, 20,0),

dx=15/3600*t+25
dy=20/3600*t+28

CS-021, DT-021,
SM-021, AT-021

Table 5-32 Unit Test Case for WeaponLauncher aimByBallistic function

Function Name: fireCannonShell
Objective: The function is used to create cannon shells, insert them in the cannon
shell list and fire them when they are required
Test Case # Test Data Expected Result Traceability
TC_BS-050 cp=Vector(0, 0, 0),

tp=Vector(20, 20, 0) ,
b-flag=R.

A cannon shell is inserted
into the cannon_list.
The fire function in
WMissileSeaSea is called

BS-021

Table 5-33 Unit Test Case for WeaponLauncher fireCannonShell function

Function Name: fireMissile
Objective: This function is used to create Missiles, insert them in the Missile list and
fire them when they are required
Test Case # Test Data Expected Result Traceability
TC_BS-051 cp=Vector(0, 0, 0),

tp=Vector(50, 50, 0) ,
b-flag=R.

A Missile is inserted into
the Missile_list. The fire
function in
WMissileSeaSea is
called.

CS-021, DT-021,SM-
021, AT-021

Table 5-34 Unit Test Case for WeaponLauncher fireMissile function

Function Name: deleteWeapon
Objective: This function is used to delete cannon shells or Missiles when they have
been detonated.
Test Case # Test Data Expected Result Traceability
TC_BS-052 Create a Missile list with

Missiles some marked
active, some inactive

The Missiles marked active
are deleted and those
marked inactive remain

CS-022, DT-022,
SM-022, AT-022



268

TC_BS-053 Create a cannon shell
list with cannon shells
some marked active,
some inactive

The cannon shells marked
active are deleted and those
marked inactive remain

BS-022

Table 5-35 Unit Test Case for WeaponLauncher deleteWeapon function

5.1.3.7.2 Error Reports

In the test of aimByBallistic function, we found that the output results were too
large, comparing with the expected results. After checking the code carefully, we
found that there was some errors with the units used in some places in the
function. After correcting the error, we get the expected results.



269

5.1.4 Unit Testing for Weapons

These test cases are mainly for testing the class functions includes:
CWActiveStateController, CWPositionController, CWAutoAimController,
CWChargeController, CWCharge, and CWRudder.

5.1.4.1 Unit Test Case for CWActiveStateController Class Functions

5.1.4.1.1 Unit Test Cases and Results

Function Name: Every Weapon has this class to indicate its state. There are only 2
functions, one is getState( ) and another is setState( ).
Objective: While constructing, it needs parameter of the state, which is true or
false(active or inactive respectively).
Test Case # Test Data Expected Result Traceability
TC_WP-001 Create an act ive

instance
getState return true WP-005

TC_WP-002 SetState to inactive ,getState( ) returns false. WP-005
TC_WP-003 Create an inactive

instance
getState return false WP-005

TC_WP-004 SetState to active getState return true WP-005

Table 5-36 Unit Test Case for CWActiveStateController get/setState function

5.1.4.1.2 Error Reports

None

5.1.4.2 Unit Test Case for CWPositionController Class Functions

5.1.4.2.1 Unit Test Cases and Results

Aerial Weapons
Function Name: initialposition
Objective: To control Weapon’s positions, such as initial position, destination position,
update current position, and check if the position is valid.  For self-guided Weapon, a
rudder will be created to update the velocity.

Test Data Expected ResultTest Case #
destination state velocity position

Traceability

TC_WP-005 (100,0,0) Active (50,0,0) (0.014,0,0) WP-001
TC_WP-006 (100,0,100) Active (35.36,0,35.36) (0.01,0,0.01) WP-001
TC_WP-007 (100,0,-100) Inactive N/A N/A WP-001

Table 5-37 Unit Test Case for CWActiveStateController initialposition function



270

Submarine Weapons
Function Name: initialposition
Objective: To control Weapon’s positions, such as initial position, destination position,
update current position, and check if the position is valid.  For self-guided Weapon, a
rudder will be created to update the velocity.

Test Data Expected ResultTest Case #
destination state velocity position

Traceability

TC_WP-008 (100,0,0) Active (50,0,0) (0.014,0,0) WP-001
TC_WP-009 (100,0,100) Inactive N/A N/A WP-001
TC_WP-010 (100,0, -100) Active (35.36,0,35.36) (0.01,0,0.01) WP-001

Table 5-38 Unit Test Case for CWActiveStateController initialposition function

5.1.4.2.2 Error Reports

None

5.1.4.3 Unit Test Case for CWAutoAimController Class Functions

5.1.4.3.1 Unit Test Cases and Results

Target: ship
Function Name:.
Objective: self-guided Weapons to trace target touses Radar/Sonar to detect all objects in
Radar/Sonar’s range, select the valid nearest target to the pervious target position

Test DataTEST

CASE # Initial
Position

Detected
Object 1

Detected
Object 2

Detected
Object 3

Detected
Object 4

Expected
Result

Trace-
ability

TC_WP-
011

(100,0,0) Ship,
(100,0,0)

Ship,
(100,10, 0)

Submarine,
(100,0,-50)

Aircraft,
(100,10,80)

Ship,
(100,0,0)
Return
success

WP-002,
WP-003
WP-004

TC_WP-
012

(100,0,0) Ship,
(300,0,0)

Aircraft,
(100,0,50)

Submarine
(100,0,-50)

N/A Ship,
(300,0,0)
Return
success

WP-002,
WP-003
Wp-004

TC_WP-
013

(50,0,0) Aircraft,
(50,0,100)

Submarine
(50,0,-50)

N/A N/A Return
failure

WP-002,
WP-003
Wp-004

Table 5-39 Unit Test Case for CWAutoAimController tracetarget function



271

Target: Aircraft
Function Name:.
Objective: self-guided Weapons to trace target touses Radar/Sonar to detect all objects in
Radar/Sonar’s range, select the valid nearest target to the pervious target position

Test DataTest Case
# Initial

Position
Detecte
d
Object
1

Detected
Object 2

Detected
Object 3

Detected
Object 4

Expected
Result

Trace-
ability

TC_WP-014 (100,0,100) Ship,
(100,0,0)

Aircraft,
(100,0,100)

Submarine,
(100,0,-50)

Aircraft,
(100,10,80)

Aircraft,
(100,0,100)
Return
success

WP-002,
WP-004

TC_WP-015 (100,0,50) Ship,
(100,0,0)

Aircraft,
(200,0,100)

Submarine
(100,0,-50)

N/A Aircraft,
(200,0,100)
Return
success

WP-002,
WP-004

TC_WP-016 (50,0,50) Ship,
(100,0,0)

Submarine
(100,0,-50)

N/A N/A Return
failure

WP-002,
WP-004

Table 5-40 Unit Test Case for CWAutoAimController tracetarget (Aircraft)
function

Target: Submarine
Function Name:.
Objective: self-guided Weapons to trace target touses Radar/Sonar to detect all objects in
Radar/Sonar’s range, select the valid nearest target to the pervious target position

Test DataTest Case
# Initial

Position
Detecte
d
Object
1

Detected
Object 2

Detected
Object 3

Detected
Object 4

Expected
Result

Trace-
ability

TC_WP-017 (100,0,-50) Ship,
(100,0,0)

Submarine,
(80,0,-50)

Submarine,
(100,0,-50)

Aircraft,
(100,10,80)

Submarine,
(100,0,-50)
Return
success

WP-002,
WP-003
Wp-004

TC_WP-018 (100,0,-50) Ship,
(100,0,0)

Aircraft,
(100,0,50)

Submarine
(150,0,-50)

N/A Submarine
(150,0,-50)
Return
success

WP-002,
WP-003
Wp-004

TC_WP-019 (50,0,-50) Ship,
(50,0,0)

Aircraft,
(50,0,50)

N/A N/A Return
failure

WP-002,
WP-003
Wp-004

Table 5-41 Unit Test Case for CWAutoAimController tracetarget (Submarine)
function

5.1.4.3.2 Error Reports

None



272

5.1.4.4 Unit Test Case for CWChargeController Class Functions

5.1.4.4.1 Unit Test Cases and Results

All ships
Function Name: HitDetect
Objective: This unit uses HitDetect to detect if there is any valid target in the Weapon’s
detonate range all the time.  If there is any, it set Weapon’s state inactive and detonate the
target.

Test Data Expected
Result

Test Case
#

Weapon
Position

Weapon
Velocity

Detected
Object 1

Detected
Object 2

Detected
Object 3

Detonation
Check

Trace-
ability

TC_WP-020 (0,0,0) (1000,0,0) Ship1,
(0,0,0)

Ship2,
(0.2,0,0)

N/A Return
success
(detonate 2
objects)

WP-005,
Wp-006

TC_WP-021 (0,0,0) (1000,0,0) Ship1,
(0.1,0,0)

N/A N/A Return
success
(detonate 1
objects)

WP-005,
Wp-006

TC_WP-022 (0,0,0) (1000,0, 0) N/A N/A N/A Return failure WP-005,
Wp-006

Table 5-42 Unit Test Case for CWChargeController HitDetect function

Aircraft
Function Name: HitDetect
Objective: This unit uses HitDetect to detect if there is any valid target in the Weapon’s
detonate range all the time.  If there is any, it set Weapon’s state inactive and detonate the
target

Test Data Expected
Result

Test Case
#

Weapon
Position

Weapon
Velocity

Detected
Object 1

Detected
Object 2

Detected
Object 3

Detonated
Check

Trace-
ability

TC_WP-023 (0,0,100) (1000,0,0) Aircraft,
(0,0,100)

Aircraft,
(0,0,100.2)

N/A Return
success
(detonate 2
objects)

WP-005,
Wp-006

TC_WP-024 (0,0,100) (1000,0,0) Aircraft,
(0,0,100.1)

N/A N/A Return
success
(detonate 1
objects)

WP-005,
Wp-006

TC_WP-025 (0,0,100) (1000,0, 0) N/A N/A N/A Return failure WP-005,
Wp-006

Table 5-43 Unit Test Case for CWChargeController HitDetect(Aircraft) function



273

Submarine
Function Name: HitDetect
Objective: This unit uses HitDetect to detect if there is any valid target in the Weapon’s
detonate range all the time.  If there is any, it set Weapon’s state inactive and detonate the
target.

Test Data Expected
Result

Test Case
#

Weapon
Position

Weapon
Velocity

Detected
Object 1

Detected
Object 2

Detected
Object 3

Detonation
Check

Trace-
ability

TC_WP-026 (0,0,-50) (1000,0,0) Submarine,
(0,0,0)

Submarine,
(0.2,0,0)

N/A Return
success
(detonate 2
objects)

WP-005,
Wp-006

TC_WP-027 (0,0,-50) (1000,0,0) Submarine,
(0.1,0,0)

N/A N/A Return
success
(detonate 1
objects)

WP-005,
Wp-006

TC_WP-028 (0,0,-50) (1000,0, 0) N/A N/A N/A Return failure WP-005,
Wp-006

Table 5-44 Unit Test Case for CWChargeController HitDetect(Submarine) function

5.1.4.4.2 Error Reports

a) The HitDetect returned a null pointer of target, but the target actually existed.
The return type of HitDetect is wrong. It has been fixed:
int CWChargeController::checkDetonateRange(double timeLen,
Position curPos, Position nexPos)

b) Weapon attack any target no matter if its flag is opposite to itself.
Modified the following code:

int vehicleFlag = infoDet.getFlag();
if( ( vehicleFlag != myFlag )&& (
IsTargetType(WeaponType,vehicleType) == TRUE ) )

Old version:
if(  IsTargetType(WeaponType,vehicleType) == TRUE

5.1.4.5 Unit Test Case for CWCharge Class Functions

5.1.4.5.1 Unit Test Cases and Results

Function Name: This unit is called when Weapons detonate targets,
Objective: It determines whether hit or not according the Weapon’s precision. If hit, it calls
target’s hit( ) function with the parameter fire power.
Test Case # Test Data Expected Result Traceability
TC_WP-029 baseClass * ship1,

resistance 50,
precision=80%,
fire power=1 .

20 iterations are run and 18 times hit, 2
times miss, resistance=42.

WP-006,
WP-0007,
WP-008

Table 5-45 Unit Test Case CWCharge detonateTarget function



274

5.1.4.5.2 Error Reports

Hit function is not called.  The reason is the type of the pointer is baseCalss, we
have to convert it to the type of each vehicle respectively.  It’s fixed.

5.1.4.6 Unit Test Case for CWRudder Class Functions

5.1.4.6.1 Unit Test Cases and Results

Function Name: This unit will change Weapon’s velocity according to Weapon’s
current velocity, current position and target position.
Objective: In each time slice it will not turn more then 30 degree

Test DataTest Case
# Current

Velocity
Current
Position

Target
Position

Expected Result Traceability

TC_WP-030 (1000,0,0) (0,0,0) (0,0,0) (0,0,0) WP-001
TC_WP-031 (1000,0,0) (0,0,0) (100,0,0) (1000,0,0) WP-001
TC_WP-032 (1000,0,0) (0,0,0) (0,100,0) (866.03, 500,0) WP-001
TC_WP-033 (1000,0,0) (0,0,0) (0,100,100) (612.37,353.55,707.11) WP-001

Table 5-46 Unit Test Case CWRudder changeVelocity function

5.1.4.6.2 Error Reports

Vector::unit() will happen assert 0 Error in Vector Class, if speed is zero. So we
can’t return zero speed if speed doesn’t have valid value. We offer a minimum
speed.



275

5.2 Subsystem testing

After all the classes and functions has complete the unit testing. The subsystem
testing must be done to ensure various components in the subsystem corporate
correctly and fulfill all the functionality. Testing interface is also developed for
effective and convenient testing.

5.2.1 Simulation Controller Subsystem Testing

5.2.1.1 Test Cases and Results

Objective: For class SetUpDlg, test the user action to interface is correct.
Test Case # Test Data Expected Result Traceability
TC_SC-041 Click icon, click map Bitmap, position, type, flag SC-001 to SC-006
TC_SC-042 Click icon, click map Full of vehicles within the map SC-001 to SC-006
TC_SC-043 Click clear all button All vehicles disappear from the map SC-001 to SC-006
TC_SC-044 Click Undo button The most recent object is removed from

the map
SC-001 to SC-006

TC_SC-045 Click Ok button Setup dialogue window closed and main
window display

SC-001 to SC-006

TC_SC-046 Click Cancel button Setup dialogue will be closed. SC-001 to SC-006

Table 5-47 Test Case for Simulaiton Controller(SetUpDlg) Subsystem

Objective: For class Vector, test the vector operation
Test Case # Test Data Expected Result Traceability
TC_SC-047 V1(0.0, 0.0, 0.0) +

V2(1.0,1.0,1.0 )
V(1.0,1.0,1.0) SC-013-01

TC_SC-048 V2(1.0,1.0,1.0 ) * 2.0 V(2.0, 2.0, 2.0) SC-013-01
TC_SC-049 V2(1.0,1.0,1.0 ) / 2.0 V(0.5, 0.5, 0.5) SC-013-01
TC_SC-050 V2(1.0,1.0,1.0 ) / 0.0 Error SC-013-01
TC_SC-051 V1(1.0, 1.0, 1.0) - V1 (0.0, 0.0, 0.0) SC-013-01
TC_SC-052 Click Cancel button Setup dialogue will be closed. SC-013-01

Table 5-48 Test Case for Simulaiton Controller(Vector) Subsystem



276

Objective: For class SC, test the user action to interface is correct.

Test Case # Test Data Expected Result Trace-
ability

TC_SC-053 Click on SETUP button on the
Toolbar or Set up item from Start
menu of the main window

Set up dialog window is to be
displayed, iconic buttons and a cyan
rectangle shown

SC-012

TC_SC-054 Using mouse clicks to select
vehicles, generate positions and
create 1, 10, 225 VehicleInfo
objects in separate tests as
described in 3.2.1.1

Output the text info of the 2-D array to
a text file out.txt via cout. The same
number of VehicleInfo expected

SC-001

TC_SC-055 Click on OK button of the
SetUpDlg dialog window after
picking up a number of vehicles

Created objects will display in the
simulated naval  battle fields in the
main window

SC-012

Table 5-49 Test Case for Simulaiton Controller (SC) Subsystem

Objective: For class VehicleFactory, test creation of ship object is correct.

Test DataTest Case
# Type #Blue #Red

Expected Result Trace-
ability

TC_SC-056 Aircraft Carrier 1 Created objects will display in the
simulated naval  battle fields

SC-001,
SC-012

TC_SC-057 Aircraft Carrier 1 Created objects will display in the
simulated naval  battle fields

SC-001,
SC-012

TC_SC-058 Aircraft Carrier 1 1 Created objects will display in the
simulated naval  battle fields

SC-001,
SC-012

TC_SC-059 Aircraft Carrier
Aircraft

1
10

1
10

Created objects will display in the
simulated naval  battle fields

SC-001,
SC-012

TC_SC-060 Aircraft Carrier
Aircraft
Destroyer

1
10
2

1
10
2

Created objects will display in the
simulated naval  battle fields

SC-001,
SC-012

TC_SC-061 Aircraft Carrier
Aircraft
Destroyer
Cruiser

1
10
2
1

1
10
2
1

Created objects will display in the
simulated naval  battle fields

SC-001,
SC-012

TC_SC-062 Aircraft Carrier
Aircraft
Destroyer
Cruiser
Battleship

1
10
2
1
1

1
10
2
1
1

Created objects will display in the
simulated naval  battle fields

SC-001,
SC-012

TC_SC-063 Aircraft Carrier
Aircraft
Destroyer
Cruiser
Battleship
Submarine

1
10
2
1
1
1

1
10
2
1
1
1

Created objects will display in the
simulated naval  battle fields

SC-001,
SC-012

Table 5-50 Test Case for Simulaiton Controller (VehicleFactory) Subsystem



277

Objective: For class Controller, test the start, pause, stop, and resume functions.
Test Case# Test Data Expected Result Trace-

ability
TC_SC-064 Click “start” with vehicles created Animation starts. (Fig. 4) SC-012
TC_SC-065 Click “start” without vehicles created No action. SC-012
TC_SC-066 Click “start” when animation is running No effect. SC-012
TC_SC-067 Click “Pause” when animation is running Animation is paused. SC-016
TC_SC-068 Click “Pause” when animation isn’t

running
No action. SC-016

TC_SC-069 Click “Resume” when animation is
paused

Animation is resumed. SC-017

TC_SC-070 Click “Pause” when animation  running No action. SC-016
TC_SC-071 Click “Stop” when animation  is running Animation is terminated and

is reset for next simulation.
SC-018

TC_SC-072 Click “Stop” when animation  isn’t running No action. System is set for
new simulation if necessary.

SC-018

Table 5-51 Test Case for Simulaiton Controller (Controller) Subsystem

5.2.1.2 Error Reports

None

5.2.1.3 Untested Components

All the important components are tested.



278

5.2.2 Communication/Detection Subsystem Testing

5.2.2.1 Test Cases and Results

Objective: Vehicle can use its Radar/Sonart the detailed information about detected
object within its range. For all test cases, fifteen vehicles, three of each Aircraft,
Submarine, Cruiser, Battleship, Destroyer, are created.  Each vehicles can use their
Radar/Sonar to detect other vehicles within Radar’s range. It can also get the total
number of detected vehicles, and view attributes of every detected objects.
Test Case # Test Data Expected Result Trace-

ability
TC_CD-044 Vehicle declare Radar object

r(ID, 200),  state=1,and its
position(4,5,6)

Get the number of detected object within
Radar’s range  and a list of pointer to
detected objects

CD-004
CD-008

TC_CD-045 Vehicle declare default Radar
object
r(),range=1000, state=1,
position(4,5,6)

Get the number of detected object within
Radar’s range  and a list of pointer to
detected objects

CD-004
CD-008

TC_CD-046 the number of detected object
within Radar’s range.

Go through all pointer  inside the
detected   List

CD-004
CD-008

TC_CD-047 vehicle detects the number of
objects  within Radar’s range,
and access detected objects by
declaring a detected object.

Get each detected object  pointed by
pointer  inside the detected list

CD-004
CD-008

TC_CD-048  Call turnoff  Nothing is detected. CD-004
CD-008

Table 5-52 Test Case for Communication/Detection Subsystem

5.2.2.2 Error Reports

None.

5.2.2.3 Untested Components

All the important components are tested



279

5.2.3 Ship/Aircraft Subsystem Testing

5.2.3.1 Test Cases and Results

Objective: All the ship and Aircraft can moved on the map, receive the message,detect
the enemy,  attack enemy, and can be attacked by the enemy and recover or dead.
Test Case# Test Data Expected Result Trace-

ability
TC_BS-054 Ship/Aircraft current

position
Vector(10,10,0)
destination position
Vector(100,10.0)

Ship/Aircraft move at fix speed towards to
the destination

BS-001 to
BS-002

TC_BS-055 1)An underwater object:
Vector(10,10,-10) )
is aimed at ship/Aircraft.
2)Message send by allies.

Ship/Aircraft changes its direction 1800C
at max speed.

BS-003

TC_BS-056 1)Ship/Aircraft position :
Vector(0,0,0)
2)Object Vector(26,26,0).

Ship/Aircraft reduces its speed and fire
cannon.

BS-001 to
BS-002,
BS-021

TC_BS-057 1)Ship/Aircraft position:
Vector(0,0,0)
2)Object
Vector(80,80,0)

Ship/Aircraft reduces its speed and fire
Missile.

BS-002,
BS-021

TC_BS-058 1)Ship/Aircraft position :
Vector(0,0,0)
2)Object Vector(53,53,0)

Ship/Aircraft reduces its speed and fire
Missile.

BS-002,
BS-021

TC_BS-059 Fire Weapon to ship/Aircraft The resistance points of ship/Aircraft
reduces continuously without recovery
and finally reduces to zero.

BS-025,
BS-026,

TC_BS-060 Fire Weapon to ship/Aircraft The resistance points reduced first and
recovered to maximum 300 later on.

BS-025,
BS-026,
BS-027

                        Table 5-53    Test Case for Ship/Aircraft Subsystem

5.2.3.2 Error Reports

None

5.2.3.3 Untested Components

All the important components are tested.



280

5.2.4 Weapon Subsystem Testing

5.2.4.1 Test Cases and Results

Objective: For class Wtorpedo, use time slice 0.005 during whole testing process and
use different types of vehicle and different positions of vehicle to generate test cases.
Test Case # Test Data Expected Result Trace-ability
TC_WP-034 Destroyer(0,0,0)  Flag1

Destroyer(30,0,0) Flag0
Both Destroyer are hit WP-005,WP-006

WP-007,WP-008
TC_WP-035 Destroyer (0,0,0)  Flag1

Destroyer (50,0,0) Flag0
None of Destroyer is hit
because out of range

WP-005,WP-006
WP-007,WP-008

TC_WP-036 Destroyer (0,0,0) Flag1
Submarine (30,0,-10) Flag0

Both vehicle are hit WP-005,WP-006
WP-007,WP-008

TC_WP-037 Destroyer (0,0,0) Flag1
Aircraft(30,0,100) Flag0

Invalid position WP-005,WP-006
WP-007,WP-008

TC_WP-038 Destroyer (0,0,0) Flag1
Destroyer(10,0,0) to(10,100,0) Flag0

Trace Target and hit WP-005,WP-006
WP-007,WP-008

Table 5-54 Test Case for Weapon(Wtorpedo) Subsystem

Objective: For class WcannonShell, to use time slice 0.005 during whole testing
process and use different types of vehicle and different positions of vehicle.
Test Case # Test Data Expected

Result
Trace-ability

TC_WP-039 Battle Ship(0,0,0)  Flag1
Battle Ship(30,0,0) Flag0

Both Battle ships are
hit.

WP-005,WP-006
WP-007,WP-008

TC_WP-040 Battle Ship(0,0,0)  Flag1
Battle Ship(50,0,0) Flag0

None of battle ship
is hit because out of
range.

WP-005,WP-006
WP-007,WP-008

TC_WP-041 Battle Ship(0,0,0) Flag1
Battle Ship(30,0,-10) Flag0

Invalid Weapon
position

WP-005,WP-006
WP-007,WP-008

TC_WP-042 Battle Ship(0,0,0) Flag1
Submarine(30,0,0) Flag0

Submarine cannot
be detonate

WP-005,WP-006
WP-007,WP-008

Table 5-55 Test Case for Weapon (WcannonShell) Subsystem

5.2.4.2 Error Reports

None

5.2.4.3 Untested Components

All the important components are tested.



281

5.3 System Integration Testing

The Naval Battle Simulation System is composed of nine subsystems. All
subsystems must be integrated and their interaction must be verified. In order to
check if the whole nine subsystems can operate coordinately and undertake their
functions well, integration testing must be performed.

5.3.1 Integration scheme

The Simulation Controller subsystem provides a user interface and affects the
performance of the whole system, so it is the top-level of the whole system. The
top-down strategy with incremental approach should be used for system testing.
The Communication/Detection subsystem is responsible for detecting enemies
and communicating with allies and the Weapons subsystem provides different
kinds of Weapons that can be used by ships and Aircrafts to attack enemies,
they have much interaction with each other and other subsystems. Therefore the
successful integration and coordination of these three subsystems is the basis for
the integration and coordination of the whole system. According to this analysis,
these three subsystems should be integrated at first place. After they are
successfully integrated, the other subsystems should be integrated one by one.

However, because there are some relationships between different subsystems,
the integration should follow a sequence. The Aircraft Carrier subsystem should
be integrated before Aircraft subsystem, because Aircraft Carrier will provide
launching and landing base for Aircrafts. Then the Cruiser subsystem should be
integrated because the Cruisers must have Aircrafts to fire at; the Submarine
subsystem should be integrated before Destroyer subsystem because
Destroyers must have Submarines to be destroyed, and etc. The Battleship
subsystem should be integrated into the system later because Battleships must
defense the Submarines and Aircrafts.

5.3.2 Test Cases and Results

The successful integration of the system is only one part of the success of the
system. The more important part of the success is that each subsystem can work
coordinately with each other and the whole system can operate well and achieve
the anticipated goals.

The following test cases are designed to check if Battleship subsystem can work
coordinately with other subsystems when it is put together with them. The
method used in the test cases is black-box testing. Some crucial and critical



282

situations are chosen as input states and the output results are examined and
compared with the expected results.

Objective: To test the system in a fully integrated state, as used after finished.
Test
case
#

Descriptive Description

Test
Description

This test case is to check the navigation aspect of ship/Aircraft subsystem when other
ships and Aircrafts are present.

Input states Some other ships, Aircrafts on both sides are created and put in places relatively near,
then relatively far away to the ship/Aircrafts.

TC1

Expected
results

Battle ships navigate properly and accordingly, meaning they adjust their directions and
navigation speeds to avoid collision and for defense. If there is no enemy around, they
navigate with constant speed towards the destination

Test
Description

This test case is to check the interaction of ship/Aircraft subsystem with
detection/communication and Weapon subsystems. Allies should exchange information
about the presence of enemy with each other, and Missiles should be launched when
enemy ships enter the fire area of Missile.

Input states Some other ships and Aircrafts on both sides are created and some allies are placed in
the communication areas of ship/Aircraft, some enemy ships are placed in the Missile fire
range, but out of the Radar detect range and the fire range of cannon of the
ship/Aircrafts.

TC2

Expected
results

Ship/Aircrafts act accordingly with the presence of enemy and allies. When there are
enemies in the fire range of Missiles (which is out of the detect range of Radar on
battleships), Missiles, not cannon are launched,

Test
Description

This test case is to check the interaction of ship/Aircraft subsystem with
detection/communication and Weapon subsystems. Enemies should be detected by
Radar on the ship/Aircrafts and Missiles, not cannon should be launched when enemy
ships are out of the fire range of cannon on the battle ships.

Input states Some other ships and Aircrafts on both sides are created and allies are placed out of the
communication areas of ship/Aircraft, some enemy ships are placed in the detect area of
Radar (75km), but out of the cannon fire range (38km) of battleshoip.

TC3

Expected
results

Ship/Aircrafts act accordingly with the presence of enemy and allies. When the Missiles,
not cannon shells are launched.

Test
Description

This test case is to check the interaction of battle ship subsystem with
detection/communication and Weapon subsystems. Enemies should be detected by the
Radar on the ship/Aircrafts. Cannon shells should be launched when enemy ships enter
the fire area of cannon.

Input states Some other ships on both sides are created and some enemy ships are placed within the
detection range of Radar on the ship/Aircraft, which is also within the range of cannon.

TC4

Expected
results

Ship/Aircrafts act accordingly with the presence of enemy and allies. When there are
enemies in the fire range of cannon (which is within the detect range of Radar on battle
ships), cannon, not Missiles are launched,

Test
Description

This test case is to check if Weapons fly in the right way and the targets should vanish
when their resistance points reached.

Input states Some other ships of both sides and some enemy ships are placed in the fire range of
Missile, some are placed in the fire range of cannon of ship/Aircrafts

TC5

Expected
results

Missiles, cannon shells fly towards enemies not allies and hit the enemies with certain
precision. Enemies vanish when their resistance points reach.

Table 5-56 Test Cases and Results



283

5.3.3 Error Reports

The results found a “division by zero” error. After checking, the errors were found
when using “unit()” of Vector class. Since unit() is actually calculated by deviding
Vector by length, so length can not be zero. By adding the checking code to
make sure the unit is not called when length is zero.  Also other places where
calculation includes division are checked.



284

This page

INTEND TO BE EMPTY


