
COMP 442/6421 Compiler 
Design
Instructor: Dr. Joey Paquet    paquet@cse.concordia.ca
TA: Zachary Lapointe zachary.lapointe@mail.Concordia.ca

LAB 5 – PROCESSING THE ABSTRACT SYNTAX TREE:
THE VISITOR PATTERN

1

mailto:paquet@cse.concordia.ca
mailto:zachary.lapointe@mail.Concordia.ca


Abstract Syntax Tree

2

AST
Augmented AST

+

Symbol Table
ExecutableSemantics Code Gen

• A rich structure which represents the meaning of the program
• It is the primary artifact used for semantic analysis (A3) and code generation (A4)

• Persistent: can be traversed any number of times

• It represents a program which obeys lexical and grammatical specifications
• Semantic specifications are next



Abstract Syntax Tree

3

• We want to be able to traverse the syntax tree in multiple phases, performing different sets 
of actions on the nodes each time

• Action will depend on both the type of node, and the phase we are in.
• Double dispatch: Polymorphism, depending on the runtime type of two objects

• In OOP languages, this can be achieved with the visitor pattern



The Visitor Pattern – Why

4

• Primarily used here to cleanly achieve double dispatch, in static OO languages
• Action taken depends on which phase we are in (type checking, code generation, etc.) and which node we are in (type declaration, 

assignment, etc.)

• Pros
• Clean and organized: double dispatch is possible without the pattern, but messy and error prone

• Pattern centralizes behaviour by phase (each phase, or visitor, gets its own class)

• Adding new phases does not require modifying existing phases

• Code for actions not inside the nodes of AST

• Versatile pattern, high potential to customize when implementing

• Cons
• Somewhat complex to first understand

• Requires a fair amount of boilerplate code

• Kind of a hack



The Visitor Pattern – How 

5

• Two functions:
• Visit(ConcreteNodeType)

• Uses polymorphism (visitor class) and overloading (concrete node type)

• Accept(AbstractVisitor)

• Makes the above overloading polymorphic.

• Boilerplate code in every node type

• Demo



The Visitor Pattern – Variations 

6

• Traversal
• We want the visitor to visit an entire tree

• Implement directly in visitor

• Iterator

• Parent class function type
• Abstract

• Empty implementation

• Pitfall

• How many visitors?
• Adding new visitors is easy

• A3 requires at least 2 (semantic analysis in 2 passes)

• Edge cases might warrant their own visitor (pre-processing, propagating information through AST, etc.)



AST traversal

7

• Traversal
• It may be worth differentiating pre, in and post order visits to nodes

• Maintaining symbol table scope during traversal

• Code generation for control structures

• in may not be required

• Euler Tour

• Traversal implementation
• Built into Visitor

• Separate Iterator connects visitor and AST nodes

• Euler tour algorithm
• Using DFS



Euler Tour – Using DFS

8

Starting at root . . .

pre-visit action

for each child

recurse into child

in-order-visit action

post-visit action


