COMP 442/6421 Compiler Design

Grammars and Parsing

Instructor: TAs: Dr. Joey Paquet Dhaval Patel Hamed Jafarpour paquet@cse.concordia.ca p haval@encs.concordia.ca hamed.jafarpour@concordia.ca

Assignment 2 : syntax analysis

- This lab material is about helping you achieve assignment #2, which is done in two stages:
 - Transform the grammar into an LL(1) grammar
 - Implement the parser
- The implementation absolutely cannot start before the grammar has been transformed.
 - We propose a set of tools to help achieve the transformation
 - Sample usage of these tools is depicted in this slide set

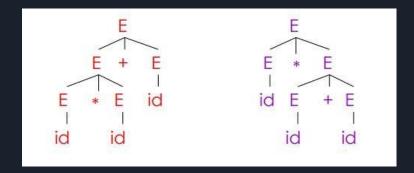
The Goal of Assignment 2

- 1. Convert the given CFG to an LL(1) grammar
 - a. Use tools to help your transformation procedure
 - b. Remove the grammar from EBNF to non-EBNF representation
 - c. Remove ambiguities and left recursions
 - d. After each transformation step, verify that your grammar was not broken
- 2. Implement a LL(1) parser
 - a. Recursive descent predictive parsing
 - b. Table-driven predictive parsing

Three Roadblocks in Assignment 2 Step 1

Quick review

- 1. Ambiguity
- 2. Non-deterministic
- 3. Left recursion

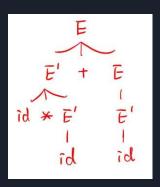

For theoritical detail, see the lecture slide set [syntax analysis: introduction].

Ambiguity Grammar

Grammar: $\underline{E \rightarrow E + E | E * E | id}$

Input string: id * id + id

Requirement of the parse tree:


A tree that its in order traversal should give the string same as the input string

Ambiguity Grammar

The solution for ambiguity is rewrite the grammar (that's exactly what you need to do in assignment 2) to make it unambiguous.

In this case, we want to enforce precedence of multiplication over addition.

original: E -> E + E | E * E | id modified:

 $E \rightarrow E' + E \mid E'$

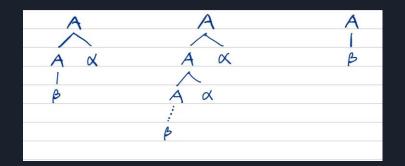
 $E' \rightarrow id *E' | id$

Non-deterministic Grammar

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \alpha \beta_3$$

- 1. backtracking can solve this problem, but it is inefficient;
- 2. introduce a new non-terminal which we refer as left factoring

$$\begin{array}{cccccccc} A \rightarrow \alpha A' \\ A' \rightarrow \beta_1 & | & \beta_2 & | & \beta_3 \end{array}$$


Left Recursion

Garmmar: A -> A α | β

By analyze these three possibilities, our goal is to construct something like: A -> $\beta \alpha^*$

But we don't allow *in the grammar, so we can replace a* with a new non-terminal A', so we have:

A -> βA' A' -> αA' | ε

Example: removing EBNF constructs

Assume you was given a grammar as following, with EBNF repetition:

commaSeparatedList -> a {,a} | EPSILON

You should remove the EBNF repetition and come up with the following grammar:

ail

. Tail

commaSeparatedList	-> a commaSeparatedListT EPSILON
commaSeparatedListTail	<pre>-> ,a commaSeparatedList</pre>

Example: removing left recursion

After removal of all EBNF format instances, assume you have something like:

expr -> expr + term | term
term -> term * factor | factor
factor -> '(' expr ')' | 'x'

Remove left recursions (on expr and term) using the transformation shown in class:

Big Tip

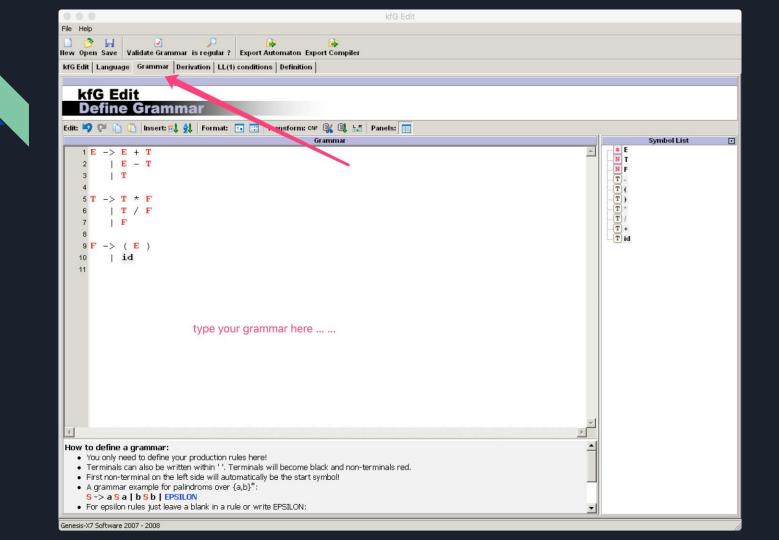
When you implement the assignment 2, the online tool we introduced in the this tutorial can solve the non-deterministic and left recursion problems!

But as the theoretical part of the course you should also be able to fix the grammar by hand.

AtoCC kfgEdit

- Tool that allows you to analyze your grammar and locate possible ambiguities in the grammar.
- After you grammar is entered, it also allows you to enter a string representing a token stream and verify if this token stream is derivable from the grammar. If it is, it generates a parse tree and a derivation for it.
- How to install A to CC were described in previous labs

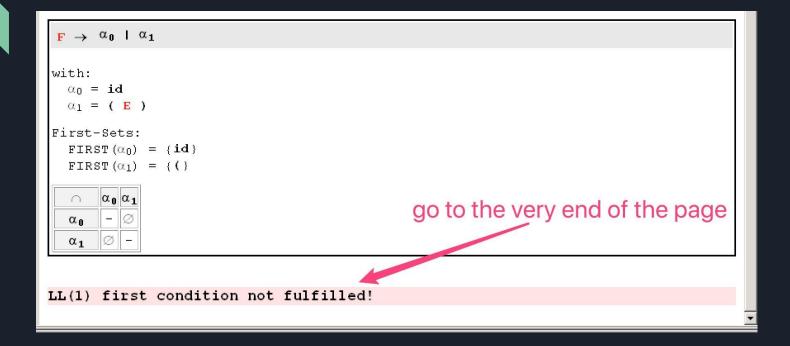
How to come up with the proper grammar?


- You receive the initial grammar in EBNF in assignment 2 description already
- You need to remove the EBNF since AtoCC kfgEdit cannot understand this form
- Perform left factoring (if necessary)
- Remove left recursion (if exist, unfortunately, they exist in the given grammar)

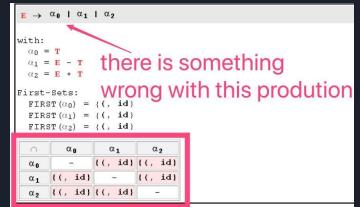
It is strongly suggested that every time you make a single transformation step, that you use AtoCC to check whether your transformation broke the grammar or not.

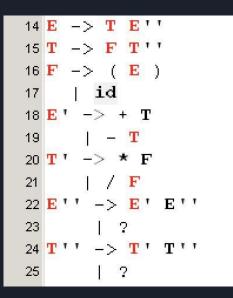
Don't try to correct many errors in one shot, it is easy to get lost. Plus, if you make a mistake in one transformation step and you carry on without checking, your further transformation will be made on a wrong grammar and thus be invalid.

Example --- How to use AtoCC for verification



8 😑 🖶	kfG Edit	
File Help		
📄 🤔 📙 🔽 Iew Open Save Validate Grammar	is regular ? Export Automaton Export Compiler	
kfG Edit Language Grammar Deri	ivation LL(1) conditions Definition	
		-
kfG Edit First&Follow	$\mathbf{E} \rightarrow \alpha_0 \mid \alpha_1 \mid \alpha_2$	ſ
LL(1) Conditions:	with:	
Check Condition 1	$\alpha_0 = \mathbf{T}$ $\alpha_1 = \mathbf{E} - \mathbf{T}$	
	$\alpha_2 = \mathbf{E} + \mathbf{T}$	
Check Condition 2	First-Sets:	
(i) is LL(1) Grammar?	$FIRST(\alpha_0) = \{(, id)\}$	
	FIRST $(\alpha_1) = \{(, id)\}$ FIRST $(\alpha_2) = \{(, id)\}$	
A		
	$\alpha_0 \alpha_1 \alpha_2$	
	$\alpha_0 - \{(, id)\} \{(, id)\}$	
	$\frac{\alpha_1}{\alpha_2} \left\{ \begin{pmatrix} i & i \\ i & i \end{pmatrix} - \begin{pmatrix} i & i \\ i & i \end{pmatrix} \right\} = \frac{\alpha_1}{\alpha_2}$	
	α_2 {(, id) {(, id) -	
	$\mathbf{T} \rightarrow \alpha_0 \mid \alpha_1 \mid \alpha_2$	
	with:	
	$\alpha_0 = \mathbf{F}$	
	$\alpha_1 = \mathbf{T} / \mathbf{F}$ $\alpha_2 = \mathbf{T} * \mathbf{F}$	
	First-Sets: FIRST $(\alpha_0) = \{(, id)\}$	
	$FIRST(\alpha_1) = \{(, id)\}$	
	$FIRST(\alpha_2) = \{(, id)\}$	
	\cap α_0 α_1 α_2	
	$\alpha_0 - \{(, id)\} \{(, id)\}$	
	α_1 {(, id) - {(, id)	•
eperic-V7 Software 2007 - 2008		


Genesis-X7 Software 2007 - 2008



Whatyou should do?

- 1. Locate a specific error and identify the faulty productions (shown in red)
- 2. Copy the related productions into the grammar transformation tool mentioned above(<u>https://cyberzhq.github.io/toolbox/cfg2ll</u>).
- 3. Copy the correction from the tool and paste it into AtoCC
- 4. Do some modification to adapt to AtoCC format
- 5. Check the grammar again

Note: Don't try to solve more than one production at a time. When you solve one production's error, use the tool to check to make sure you are not bringing new errors.

1 E -> T ETailTail 2 T -> F TTailTail 3F -> (E) | id 4 5 ETail -> + T 6 - T 7 TTail -> * F 8 | / F 9 ETailTail -> ETail ETailTail 10 | EPSILON 11 TTailTail -> TTail TTailTail | EPSILON 12 13

result from the tool

after modification, adapted to AtoCC

000	kfG Edit
File Help	
Naw Open Save Validate Grammar is	regular ? Export Automaton Export Compiler
kfG Edit Language Grammar Deriva	
KIG Luk Language Grammar Deriva	
kfG Edit First&Follow	$E \rightarrow \alpha_0$
LL(1) Conditions:	with: $\alpha_0 = \mathbf{T}$ ETialTial
Check Condition 1	First-Sets:
Check Condition 2	$FIRST(\alpha_0) = \{ \{, id \} \}$
🥘 is LL(1) Grammar ?	$\mathbf{T} \rightarrow \alpha_{0}$
	with: $\alpha_0 = \mathbf{F} \ \mathbf{TTialTial}$ First-Sets: $\mathrm{FIRST}(\alpha_0) = \{(, \mathbf{id}\})$ $\mathbf{F} \rightarrow \alpha_0 \mid \alpha_1$ with: $\alpha_0 = \mathbf{id}$ $\alpha_1 = \{\mathbf{E}\}$ First-Sets: $\mathrm{FIRST}(\alpha_0) = \{\mathbf{id}\}$ $\mathrm{FIRST}(\alpha_1) = \{(\}$ \mathbf{C} C
	with:

Genesis-X7 Software 2007 - 2008


```
LL(1) first condition fulfilled!
```

```
FIRST (ETailTail) = {+, -, EPSILON}
FOLLOW(ETailTail) = {$, }}
FIRST (ETailTail) \cap FOLLOW(ETailTail) = Ø
```

```
FIRST (TTailTail) = {*, /, EPSILON}
FOLLOW(TTailTail) = {$, }, +, -}
FIRST (TTailTail) \cap FOLLOW(TTailTail) = \emptyset
```

LL(1) second condition fulfilled!

Example --- How to use University of Calgary Tool

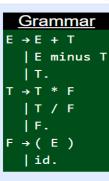
Understand the format of University Calgary grammar tool

- Go to the link (https://smlweb.cpsc.ucalgary.ca/start.html)
- Enter the grammar in below format.

Enter a grammar:		
	1	
View Vital Statistics		
Here's a small, quic	k, example grammar to give you an idea of the format of the gran	nmars
S -> id V assign E. V -> id. E -> V		

To see more grammars and learn more about the format of the grammars:

- Read about the <u>structure of the grammars</u>.
- Look at some <u>example grammars</u>.

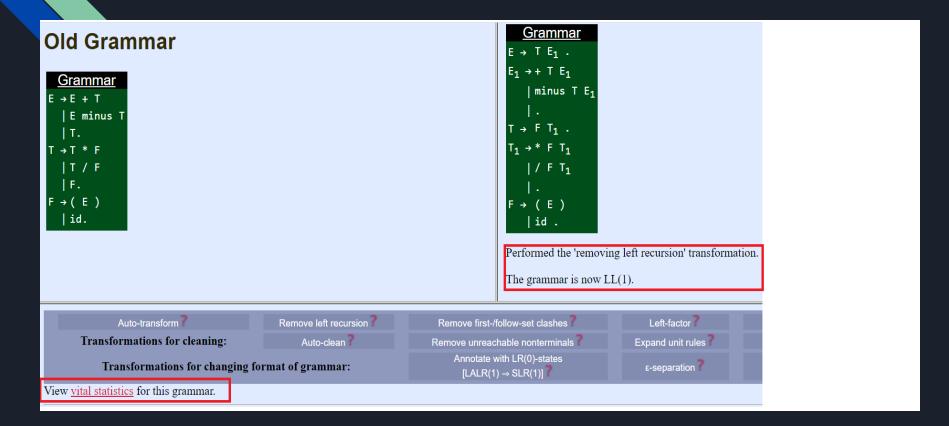

num.

Use Previous Example

View statistics

- All nonterminals are reachable and realizable.
- There are no nullable nonterminals.
- The endable nonterminals are: F E T.
- No cycles.

nonterminal	first set	follow set	nullable	endable
Е	(id	+ minus)	no	yes
Т	(id	* / + minus)	no	yes
F	(id	* / + minus)	no	yes


The grammar is not LL(1) because:

- E is left recursive.
- T is left recursive.
- attempt to $\underline{\text{transform}}$ the grammar (to LL(1))

Transforming to LL(1) Grammar

<u>Grammar</u> E → E + T E minus T T. T → T * F T / F F. F → (E) id.				
Auto-transform ?	Remove left recursion ?	Remove first-/follow-set clashes ?	Left-factor ?	Expose first-set clashes ?
Transformations for cleaning:	Auto-clean ?	Remove unreachable nonterminals ?	Expand unit rules ?	Remove unrealizable productions ?
Transformations for changing fo	ormat of grammar:	Annotate with LR(0)-states $[LALR(1) \Rightarrow SLR(1)]$	ε-separation ?	Chomsky Normal Form ?
View <u>vital statistics</u> for this grammar.				

Transforming to LL(1) Grammar

Grammar is LL(1)

Grammar Some sentences generated by this grammar: {i id * id, id * id / id / id, id / id * id / id, id * id / $\rightarrow T E_1$. E $E_1 \rightarrow + T E_1$ | minus T E₁ T₁ . F T1 $T_1 \rightarrow$ / F T1 (E) -> id . · All nonterminals are reachable and realizable. • The nullable nonterminals are: E1 T1. • The endable nonterminals are: T1 F E E1 T. · No cycles.

nonterminal	first set	follow set	nullable	endable
Е	(id)	no	yes
E ₁	+ minus)	yes	yes
Т	(id) + minus	no	yes
T ₁	*/) + minus	yes	yes
F	(id) * / + minus	no	yes

The grammar is LL(1).

example 1 in format of university of calgary tool : $E \to T E'.$ $E' \to ->$ | + T E'. $T \to F T'.$ $T' \to ->$ |* F T'. $F \to 0$ | 1| (E).

Note: Here, E' -> represents the epsilon

Some sentences generated by this grammar: $\{1, 0, 0+0, 0+0\}$ *1*1, 0*0*0

FIRST(E) =
$$\{0,1,(\}\}$$

FIRST(E') = $\{+, \epsilon\}$
FIRST(T) = $\{0,1,(\}\}$
FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{0,1,(\}\}$

 $FOLLOW(E) = \{\$, \}$ $FOLLOW(E') = \{\$, \}$ $FOLLOW(T) = \{+, \}, \}$ $FOLLOW(T') = \{+, \}, \}$ $FOLLOW(F) = \{*, +, \$, \}$

- All nonterminals are reachable and realizable.
- The nullable nonterminals are: E' T'.
- The endable nonterminals are: T' F E E' T.
- No cycles.

nonterminal	first set	follow set	nullable	endable
E	01()	no	yes
E'	+)	yes	yes
Т	01()+	no	yes
<u>T'</u>	*)+	yes	yes
F	01() * +	no	yes

Generate LL(1) Parsing Table

- All nonterminals are reachable and realizable.
- The nullable nonterminals are: E' T'.
- The endable nonterminals are: T' F E E' T.
- No cycles.

nonterminal	first set	follow set	nullable	endable
Е	01()	no	yes
E'	+)	yes	yes
Т	01()+	no	yes
T'	*)+	yes	yes
F	01()*+	no	yes

The grammar is LL(1).

attempt to transform the grammar (to LL(1))

• generate <u>LL(1)</u> parsing table

Generate LL(1) Parsing Table

	Gra	an	nm	ar
E	÷	Т	Ε'	
E	' →			
		+	Т	E',
Т	→	F	Τ'	
T	' →			
		*	F	Τ',
F	→	0		
		1		
		(Ε).

	\$)	(1	0	*	+
E			$E \rightarrow T E'$	$E \rightarrow T E'$	$E \rightarrow T E'$		
E'	$E' \rightarrow \ε$	$E' \rightarrow \ε$					$E' \rightarrow + T E'$
Τ			$T \to F T'$	$T \to F \ T'$	$T \to F \ T'$		
T'	$T' \rightarrow \ε$	$T' \rightarrow \ε$				$T' \to * \ F \ T'$	$T' \rightarrow \ε$
F			$F \rightarrow (E)$	$F \rightarrow 1$	$F \rightarrow 0$		

Return home to enter a new grammar.

example 2:

S->ABCDE A->a $|\epsilon$ B->b $|\epsilon$ C->c D->d $|\epsilon$ E->e $|\epsilon$

Note: covert the grammar into corresponding format before using the tool

example 3:

S->Bb|Cd B->aB|ε C->cC|ε

example 4:

S->ACB|CbB|Ba A->da|BC B->g|ε C->h|ε

Dr Joey Tool

- In assignment 2 ZIP file refer the read me file.
- Follow the steps given in read me file
- Remove the ambiguity from the grammar
- Convert the grammar to the university of Calgary grammar tool or A to CC format
- Analyze your grammar .

Thanks